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Abstract— We consider an optimizing process (or parametric
optimization problem), i.e., an optimization problem that de-
pends on some parameters. We present a method for imputing
or estimating the objective function, based on observations of
optimal or nearly optimal choices of the variable for several
values of the parameter, and prior knowledge (or assump-
tions) about the objective. Applications include estimation of
consumer utility functions from purchasing choices, estimation
of value functions in control problems, given observations of
an optimal (or just good) controller, and estimation of cost
functions in a flow network.

I. INTRODUCTION

Parametric optimization is a tool for calculating the op-

timal solution of a problem for a given set of parameters.

In this paper, we consider the reverse problem: given a set

of optimal (or nearly optimal) solutions, corresponding to

different parameter values, how can we impute or estimate

the underlying objective function? This is a very practical

problem that arises in many fields such as control, robotics,

economics and societal networks. There are many scenarios

where we can observe a process involving agents that behave

optimally (or approximately optimally), and we want to

be able to say something about what is being optimized.

For instance, economists assume that consumer purchases

maximize a so-called utility function, minus the price paid;

the utility function describes how much satisfaction the con-

sumer receives from purchasing a product or set of products.

In reality, we do not have access to a consumer’s utility

function; indeed, the consumer cannot express the utility

function either. But we can observe consumer purchases in

response to price changes. Using the methods presented in

this paper, we can impute the underlying utility function

based on observations of the consumer’s behavior.

As a different domain where this method can be applied,

we consider controller complexity reduction for general

control problems. In many cases, a good but sophisticated

controller may be available, for example model predictive

control [1] (or a human expert), but we might desire a

lower complexity controller (or one that can be automated).

We can generate optimal (or closely optimal) observations

using the more sophisticated controller, and then use the

paradigm described in this paper to find a controller of lower

complexity.

In this paper we consider a parametric optimization prob-

lem on a convex set, but with an unknown convex objective

function. Given a series of observations, consisting of actions
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that correspond to different parameter values, we will show

that we can impute (or approximately impute) the unknown

objective function by solving another convex optimization

problem. In cases where the underlying objective is not

convex, we can use this method to obtain a convex approx-

imation to the objective function.

A. Prior and related work

Many disciplines, from networks to economics and

robotics, have considered the problem of imputing the un-

derlying objective function of a process based on available

observations. The work of Burton, Pulleyback and Toint [2]

and Burton and Toint [3] focuses on solving the inverse

shortest path problem of imputing the weight of the graph

edges, given a set of observations of shortest path traversals.

Nielsen and Jensen [4] consider the problem of modeling

a decision maker’s utility function from (possibly) incon-

sistent behavior. Ackerberg, Benkard, Berry and Pakes [5]

and Bajari, Benkard and Levin [6] study the problem of

estimating demand and production functions. Ng and Russell

[7] and Abbeel and Ng [8] pose the problem of inverse

reinforcement learning, where the assumption is that some

information about the optimal policy is available (perhaps

through observing an expert’s behavior) and the goal is to

learn the reward function. They consider a discrete and finite

problem, which becomes intractable for large state spaces or

action spaces. For infinite dimensional problems, they use

an affine representation of the reward function, but since

the state space is discretized, the approach still suffers from

the so-called ’curse of dimensionality’ [9]. There are many

similar works in this domain, including [10], [11], [12] and

[13]. This method has been very successfully applied to

helicopter robots [14].

A closely related problem is the inverse problem of

optimal control. In optimal control, given the stage cost

function and state dynamics, we want to calculate the control

policy and the Lyapunov or Bellman functions. In inverse

optimal control, we are given the control policy, but want

to learn the stage cost function and the Lyapunov function

(or determine that none exist that make the given policy

optimal). This topic has a long history, tracing from Kalman’s

original paper, When is a Control System Optimal? [15]. For

a more recent treatment, see [16, §10.6], where it is shown

that for a linear quadratic control problem with stage cost

xTQx + uTRu, given a linear control policy u = Kx, we

can recover Q, R (if they exist) and calculate the Lyapunov

function by solving a semidefinite program (SDP).

Another related area of research is dynamic programming

(DP); see [17], [18] for an overview. The underlying idea
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in dynamic programming is to decompose the problem

into a sequence of subproblems, and solve for a global

minimizer, called the value function. The Hamilton-Jacobi-

Bellman equation [19] is a fixed point equation for the

value function, and the dynamic programming literature

has offered various algorithms for calculating the value

function, including policy iteration, value iteration, and lin-

ear programming [17], [18]. The difference between our

work and dynamic programming is that we assume that we

are given observations of the policy’s behavior (i.e., a set

of decisions corresponding to different parameter values),

whereas in most algorithms in dynamic programming, the

policy is not provided and is estimated in each iteration

of the algorithm. In cases where the exact value function

cannot be determined, mostly due to the so-called curse of

dimensionality [9], approximate dynamic programming algo-

rithms aim to calculate an approximate value function; see

[20], [21], [18], [9]. Usually an approximate value function

is obtained and is represented as a linear combination of

a set of basis functions. One such algorithm, Q-learning,

which was first introduced in [22], [23], has been used

as a method for learning the Q-function, which is closely

related to the value function, based on observing the state

and action over time. Other approaches include approximate

version of value iteration, policy iteration, and the linear

programming formulation of DPs, where the exact value

function is replaced with a linear combination of a set of

basis functions [21], [18], [24].

One main difference between our approach and the works

outlined above is that we do not limit the state space to

discrete and finite set of values. Furthermore, our method

is based on solving a convex optimization problem, which

means that we avoid the curse of dimensionality [9] (at the

cost of a restricted set of problems we can handle).

II. PROBLEM STATEMENT

We consider an optimizing process, that is, a system in

which a decision x is made by optimizing an objective

subject to constraints, where both objective and constraints

can depend on a parameter p. (This is sometimes referred to

as a parametric optimization problem.) Our goal is to learn

or estimate the objective function, given a set of observations

consisting of parameter values p(k) and associated optimal

decisions x(k), for k = 1, . . . , N . We are also given prior

information, which tells us the form of the objective function

and constraint functions. We refer to an objective found from

observations of optimal decisions as an imputed objective

function.

We will focus here on the case when the optimizing

process involves a convex optimization problem [25],

minimize f(x, p)
subject to gi(x, p) ≤ 0, i = 1, . . . ,m

A(p)x = b(p),
(1)

where x ∈ Rn is the variable, f , gi, i = 1, . . . ,m are

differentiable and convex in x for each value of p ∈ P (the

set of allowable parameter values), A : P → Rq×n, and

b : P → Rq. We say that x ∈ Rn is optimal for p ∈ P if it

is a solution of problem (1). We do not assume that for each

p, there is only one solution of (1); in other words, we can

have several x’s that are optimal for a given p.

Optimality and approximate optimality: We will assume

throughout that an appropriate constraint qualification holds,

so for a given p ∈ P the necessary and sufficient (Kharush-

Kuhm-Tucker or KKT) conditions for x to be optimal are the

existence of λ ∈ Rm
+ and ν ∈ Rq that satisfy the following

conditions:

1. gi(x, p) ≤ 0, i = 1, . . . ,m
2. A(p)x = b(p)
3. ∇f(x, p) +

∑m

i=1 λi∇gi(x, p) +A(p)T ν = 0
4. λigi(x, p) = 0, i = 1, . . . ,m,

(2)

where the gradient is taken with respect to x. Like x, the dual

variables λ and ν depend on the parameter p, but to keep the

notation light, we will not explicitly show this dependence.

In (2), the first and second conditions are primal feasibility,

the third condition is stationarity, and the fourth condition is

complementary slackness.

We use these optimality conditions to define what it

means for x ∈ Rn to be approximately optimal for the

problem (1): Given a parameter p ∈ Rq , x ∈ Rn is said

to be approximately optimal if the conditions in (2) hold

approximately. To make this more precise, we define the

residuals

rineq = (gi(x, p))+, i = 1, . . . ,m,

req = A(p)x− b(p),
rstat(α, λ, ν) = ∇f(x, p) +

∑m

i=1 λi∇gi(x, p) +A(p)T ν,
rcomp(λ) = λigi(x, p), i = 1, . . . ,m.

The first two residuals, rineq and req correspond to primal

feasibility, and are thus not a function of the dual variables.

Given a parameter p, if the point x is optimal (and thus

feasible), there exist λ ∈ Rm
+ and ν ∈ Rq such that

all residuals are exactly zero. We say that a point x is

approximately optimal for the problem (1) if the primal

residuals rineq and req are close to zero, and there exist

λ ∈ Rm
+ and ν ∈ Rq such that rstat and rcomp are close

to zero.

The imputed objective problem: We assume that the

inequality constraint functions g1, . . . , gm are known, as are

A and b (which are functions from P into Rq×n and Rq ,

respectively). In addition, we are given a set of N optimal

(or approximately optimal) points along with the associated

parameter values:

(x(k), p(k)), k = 1, . . . , N.

We say that f : Rn×P → R is a consistent objective if x(k)

is optimal for p(k), for all k.

There can be many consistent objective functions. For

example, if the given observations are feasible, f = c, where

c is any constant, is always consistent. If f is a consistent

objective, so is G ◦ f , where G is any convex increasing

function. This issue will be handled by normalization and

regularization, described below.
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In addition to the problem of non-uniqueness, we also

encounter (in applications) the problem of non-existence of

(exactly) consistent objectives. This can be due to measure-

ment or modeling error, which render the samples x(k) only

approximately optimal. When an exactly consistent objective

cannot be found, we look for an imputed objective function

that is approximately consistent with our data.

We will restrict ourselves to the case where f has the finite

dimensional affine parametrization

f =

K
∑

i=0

αifi, α ∈ A,

where fi are pre-selected basis functions, and A is a convex

subset of RK+1. The set A collects our prior information

about the objective f . For example, if the basis functions fi
are convex, then A = RK+1

+ is sufficient to ensure that f is

a convex function. Our goal is to find α ∈ A for which f is

consistent (or approximately consistent) with the data, which

is a finite dimensional optimization problem with variable α.

III. OUR METHOD

Our method for computing an imputed objective function

involves finding weights α ∈ A so that each decision x(k)

is approximately optimal for the associated parameter value

p(k).

For each sample (x(k), p(k)) we first introduce dual vari-

ables λ(k) ∈ Rm and ν(k) ∈ Rq . We let r
(k)
ineq, r

(k)
eq , r

(k)
comp and

r
(k)
stat denote the residuals corresponding to each sample and

its dual variables (x(k), p(k), λ(k), ν(k)). The primal residuals

r
(k)
ineq and r

(k)
eq are fixed for each sample, and do not depend

on α. Thus, to compute an imputed objective we solve the

problem

minimize
∑N

k=1 φ
(

r
(k)
stat, r

(k)
comp

)

subject to λ(k) � 0, k = 1, . . . , N, α ∈ A,
(3)

with variables α, λ(k), ν(k), k = 1 . . . , N . Here, φ : Rn ×
Rm → R+ is a nonnegative convex penalty function, which

satisfies

φ(rstat, rcomp) = 0 ⇐⇒ rstat = 0, rcomp = 0.

The choice of penalty function φ will affect the distribution

of the residuals as well as the imputed objective. As an

example, we can take φ to be any norm on Rn ×Rm. Other

choices for the penalty function include Huber, deadzone-

linear, or log-barrier functions [25, §6.1].

We make a few comments about this optimization prob-

lem. First, since r
(k)
stat and r

(k)
comp are linear in α, λ(k) and

ν(k), it is easy to see that the objective function is convex.

In addition, the constraints are clearly convex, so (3) is a

finite-dimensional convex optimization problem, which can

be efficiently solved. If we solve (3) and find that the optimal

value is equal to zero, then we must have

r
(k)
stat(α, λ

(k), ν(k)) = 0, r(k)comp(λ
(k)) = 0, k = 1, . . . , N.

Furthermore, if the samples are also primal feasible, i.e.,

r
(k)
ineq = 0, r

(k)
eq = 0, k = 1, . . . , N , then our imputed

objective is exactly consistent with our data. On the other

hand if we solve (3) and find that the many of the dual

residuals at the optimum are very large, we can conclude

that our optimizing process cannot be a good model for our

data.

Trivial solutions and normalization: It is very important

that the set A contains enough prior information about our

objective f ; otherwise trivial solutions may easily arise. For

example, when A = RK+1
+ , a simple solution to (3) is α = 0,

λ(k) = 0, ν(k) = 0, k = 1, . . . , N , since r
(k)
stat and r

(k)
comp are

homogeneous in (α, λ(k), ν(k)). Another case is if we can

find α ∈ A for which
∑

i αifi = c, where c is a constant

function of x and p. Then setting λ(k) = 0 and ν(k) = 0 will

solve (3).

In some cases this may be the desired result, but for most

applications we will consider, we have prior knowledge that

the underlying objective function has a non-trivial depen-

dence on x and p. For these problems a constant imputed

objective is implausible, and should be excluded from the

set A. The appropriate method for doing this depends on

the specific application, but here we give a normalization

approach that is applicable to a large class of problems.

We assume that A = RK+1
+ , and f0, . . . , fK are non-

constant, convex functions. For many applications, we know

a part of the objective ahead of time. We encode this knowl-

edge in A by adding the condition α0 = 1, so f0 is the part

of the objective that is fixed. This is a generic normalization

method; we will see other normalization methods, more

appropriate for specific problems, in the examples considered

later.

IV. APPLICATIONS

Here we discuss potential applications of imputing an

objective. One generic application is prediction, i.e., guessing

the decision x, given a parameter p. Another generic appli-

cation is control or manipulation, i.e., choosing a value of

p that produces a desired x. More specific applications are

discussed below.

A. Consumer behavior

We consider a set of n products with prices pi, i =
1, . . . , n. Let xi be the consumer demand for product i. We

assume that the consumer chooses x to maximize an (un-

known) concave and nondecreasing utility U , minus the cost

pTx. The optimizing process involves solving the convex

optimization problem

minimize pTx− U(x)
subject to x ≥ 0,

(4)

with variable x ∈ Rn and parameter p ∈ Rn. We are given

samples (x(k), p(k)) (for example, based on demand patterns

observed in some test situation), and our goal is to impute

the utility function U : Rn
+ → R.

Once we have imputed a utility function, we can use it to

find a set of prices pdes that would achieve a target demand

level xdes.
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Imputed objective problem: For any given price p,

the consumer spends a total of pTx and derives a utility

of U(x) from the purchase. For this application, we will

consider a concave quadratic representation for U , i.e.,

U(x) = xTQx+2rTx, where Q ∈ Sn
−

(the set of symmetric

nonpositive definite matrices), r ∈ Rn. Note that we assume

that the utility function has zero offset, since adding a

constant to the utility function will not affect the optimal

consumption levels. Furthermore, we will assume that U is

nondecreasing over the range [0, xmax], where xmax is taken

as the maximum demand level (which can be calculated from

the training data). This means that ∇U ≥ 0 on that range,

i.e.,

2Qxmax + 2r ≥ 0, r ≥ 0.

Thus, the constraint set A is

A = {(Q, r) | Qxmax + r ≥ 0, r ≥ 0, Q � 0}.

In this problem we know the first part of the objective func-

tion is pTx, so we implicitly use the normalization α0 = 1,

given in §III. To compute an approximate imputed objective

we solve (3), taking φ(rstat, rcomp) = ‖rstat‖
2
2 + ‖rcomp‖

2
2.

Numerical example: As an example, consider a problem

with n = 5 products and N = 200 observations of consumer

demand. We generate the prices from a uniform distribution,

i.e., p
(k)
i ∼ U [pmin, pmax], with pmin = 8 and pmax = 12,

and calculate the demand levels by minimizing (4) with

Utrue(x) = 1
T
√

Ax(k) + b,

where A ∈ Rn×n
+ and b ∈ Rn

+. (Note that this ‘true’ utility

is concave and increasing, but not quadratic.)

We solve (3) and impute a quadratic utility function with

coefficients Q and r. We assess the performance of the

imputed utility function on the training data as well as on

non-trained test data for validation. The relative training error

is 5.4% and the relative test error is 6%.

Usage: We use the imputed objective function to set

prices pdes to achieve a certain demand level xdes. Since

the underlying demand behavior is modeled by Utrue, the

actual realized demand level, xreal will be different from

xdes. Figure 1 shows a scatter plot of the desired demand

level xdes and the realized demand level xreal.

B. Controller fitting

In this example we fit an optimizing process to samples of

a control policy, to mimic the control behavior. This allows

us to simplify complex control policies, such as receding

horizon control (RHC) [26], or human expert control, by ap-

proximating their action with a relatively simple optimizing

process.

Stochastic control: We consider a linear dynamical

system,

xt+1 = Axt +But + wt, t = 0, 1, . . . ,

where xt ∈ Rn is the state, ut ∈ Rm is the input, and

wt ∈ Rn is the noise (or exogeneous input), at time t. We

assume that w0, w1, w2, . . ., are zero mean IID with known
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Fig. 1. Scatter plot of the desired demand level versus the realized demand
level. The dashed line is the y = x line.

distribution. The matrices A ∈ Rn×n and B ∈ Rn×m define

the system dynamics.

We look for state feedback control policies, ut = φ(xt),
where φ : Rn → Rm is the state feedback function. For a

fixed state feedback function, the state and input trajectories

become stochastic processes. Our objective is

lim sup
T→∞

1

T
E

T−1
∑

t=1

ℓ(xt, ut),

where ℓ : Rn × Rm → R is a convex stage cost. We also

have constraints on the input

Fut ≤ h (a.s.), t = 0, 1, . . . ,

where F ∈ Rp×m and h ∈ Rp.

The stochastic control problem is to find a control policy

that minimizes the objective, among all policies that satisfy

the input constraints. Here we omit technical details, such

as conditions under which the expectation/limit exists. For a

full technical discussion of stochastic control, see [17], [18].

Imputing a control policy: We are given samples

(u(k), x(k)) that come from running a suboptimal control

policy, where u(k) is the input applied when the state is x(k).

These samples can come from a policy such as receding

horizon control (RHC, also known as model predictive

control or MPC), or proportional-integral-derivative (PID)

control, but more generally, they can be samples of an expert

operator, such as an experienced pilot.

We model the action of the control policy by the optimiz-

ing process

minimize ℓ(x, u) +EV (Ax+Bu+ wt)
subject to Fu ≤ h,

with variable u and parameter x. Here, the function ℓ :
Rn × Rm → R is the given stage cost function, and V :
Rn → R is called an approximate value function. We refer to

this control policy as the approximate dynamic programming

(ADP) policy [27], [18].
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In this example, we look for a convex quadratic V with

the form V (z) = zTPz. Taking the above expectation

analytically, our optimizing process simplifies to

minimize ℓ(x, u) + zTPz

subject to Fu ≤ h, z = Ax+Bu,
(5)

with variables z and u, and parameter x. The imputed

objective problem is to find a symmetric P � 0 that is ap-

proximately consistent with the samples ((u(k), z(k)), x(k)),
k = 1, . . . , N , where we let z(k) = Ax(k) + Bu(k). Once

we have imputed a P , we can use our optimizing process

as a suboptimal controller. Thus using this method we can

approximate potentially complex control behaviors with a

simple optimizing process model.

Note that in this problem we implicitly use the normal-

ization given in §III, since we know part of the objective

(the stage cost function), and require P � 0. To com-

pute an approximate imputed objective we solve (3), taking

φ(rstat, rcomp) = ‖(rstat, rcomp)‖
2
2.

Numerical example: We consider a control problem

with n = 10 states and m = 4 inputs, where the dynamics

matrices A and B are randomly generated, with entries

drawn from N (0, 1); A is then scaled so |λmax(A)| < 1.

The disturbance wt has distribution N (0, I). Our stage cost

is quadratic, with the form ℓ(x, u) = ‖x‖22 + ‖u‖22, and we

have box constraints ‖u‖∞ ≤ 0.1.

To generate the data, we simulate the system under RHC

(which we describe in §VI-A), for 1000 time steps. Using the

states and inputs obtained in the first 100 steps we impute a

quadratic approximate value function by solving (3). We then

repeat the simulation (using the same disturbance trajectory),

with the system running under our ADP policy. The results

are presented in Figure 2, which shows histograms of stage

costs for RHC (top), and ADP (bottom). The vertical lines

show the average cost incurred over the 1000 step simulation.

For RHC the average cost is Jrhc = 173.0, for ADP the

average cost is Jadp = 173.4, which is almost identical.

Thus, we have obtained similar control performance to RHC

using an ADP policy, which requires solving a smaller

optimization problem with significantly fewer variables and

constraints at each time step. Indeed, when the contraints are

polyhedral and the approximate value function is quadratic,

the ADP policy can be computed extremely fast; see, e.g.,

[28], [29].

C. Single commodity trans-shipment network

In this application we consider a single commodity trans-

shipment network (for example, electricity), with a total of

n nodes, where nodes i = 1, . . . , p are producers and the

remaining nodes i = p+ 1, . . . , n are consumers. There are

m edge between the nodes, and we are given the edge-node

incidence matrix R ∈ Rn×m:

R(i, j) =







1 if node i is the starting node for edge j

−1 if node i is the ending node for edge j

0 otherwise.

We assume that the edges have a maximum capacity of

fmax; furthermore, we also assume that the network obeys

Jrhc

Jclf

Histogram of stage costs for RHC

Histogram of stage costs for ADP

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0

50

100

150

0

50

100

150

Fig. 2. Histogram of stage costs for RHC (top) and ADP (bottom). Vertical
lines indicate the average cost incurred over the 1000 step simulation.

conservation of flows, i.e., for a given flow on the network

f ∈ Rm, production level y ∈ Rp and demand level

d ∈ Rn−p, we have Rf = (y, d).
A negative value for si means that there was an outflow

at node i (which would be common in the demand nodes),

and a positive si means that there is an injection at node

i (which would be common in the producer nodes). Each

producer i = 1, . . . , p can produce a maximum of ymax
i units

of commodity, and incurs a cost of C(i)(yi) for producing yi
units. We also assume that there is a linear transportation cost

wifi associated with each edge i = 1, . . . ,m. Finally, we can

write the underlying optimizing process as an optimization

problem with parameter d and variable y:

minimize

p
∑

i=1

C(i)(yi) +

m
∑

i=1

wifi

subject to 0 ≤ y ≤ ymax,

0 ≤ f ≤ fmax,

Rf =

[

y

d

]

.

(6)

Imputed objective problem: We are given a set of N dif-

ferent demand scenarios d(k), the corresponding flows f (k)

and the producer levels y(k), based on historical operation

of the network. The variable in this problem is x = (y, f)
and the parameter is d. For this example, we will focus on

a polynomial representation for the producer cost functions,

so the objective can be written as

p
∑

i=1

C(i)(yi) +

m
∑

i=1

wifi =

p
∑

i=1

K
∑

j=1

Ai,jy
j
i +

m
∑

i=1

wifi,

where y
j
i , i = 1, . . . , p, j = 1, . . . ,K are the basis functions

for the production level y and fi, i = 1, . . . ,m are basis

functions for the flows f , and

A = {(A,w) | A ≥ 0, w ≥ 0, 1T (w +A1) = 1}.
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Fig. 3. Example of a single commodity network.

Note that unlike the examples in §IV-A and §IV-B, in this

example we do not have access to a part of the objective

function f0. Since we are not interested in a trivial objective

function, we normalize the weights by requiring 1
T (w +

A1) = 1. Since the objective is homogenous in the variables,

this normalization will result in the same solution up to a

multiplicative factor.

To impute the objective function, we solve (3), taking

φ(rstat, rcomp) = ‖rstat‖
2
2 + ‖rcomp‖

2
2.

Numerical example: As an example, consider a problem

instance with n = 8 nodes, p = 3 producers and N = 240
observations of network flows and production levels and

K = 5 polynomials for basis functions. The consumers

and producers are connected according to the graph in

figure 3. For each consumer, we generate negative demand

levels randomly from a uniform distribution U [−1, 0]. The

production levels and edge flows are generated using the cost

functions
C

(1)
true(y1) = ey − 1,

C
(2)
true(y2) = y2,

C
(3)
true(y3) = 2y3.

The edge weights are chosen randomly from a U [2.5, 7.5]
distribution, and the maximum edge capacity is set to

fmax = 1.2 for all edges. We use different production limits

for each producer, ymax = (2, 1.1, 1.7).
As described above, we obtain a polynomial imputed

objective function. The true cost functions (used to generate

the data) and the imputed cost functions are plotted in figure

4. (The imputed cost functions are scaled to be on the same

scale as the true cost functions for illustration purposes).

To assess the performance of the imputed utility function,

we used it to generate production level and edge flows on

the training data as well as non-trained test data for cross
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Fig. 4. Imputed cost functions (dashed) and the true cost functions (solid)
for each production node.

validation. The average relative error in production level is

around 7.8% for the training data and 9.6% for the test data.

Usage: Once we have imputed an objective function,

we can use it to predict the production level and edge flows

for a given demand level. Furthermore, the dual variable ν

associated with the equality constraint Rf = (y, d) provides

a set of shadow prices. The values of ν1, . . . , νp correspond

to production prices and the values of νp+1, . . . , νn provide

a set of consumer prices. Thus, for a given demand level, we

can solve the convex optimization problem (6) and dynami-

cally adjust the consumer prices by using νp+1, . . . , νn. As

a numerical example, consider the network in figure 3. For a

demand level of d = (1, 0.1, 0.2, 0.3, 3), we get ν8 = 0.35,

while νi is on the order of 0.01 or smaller for all other

demand nodes. This means that the consumer at node 8
should be charged a much higher price than other customers,

since it is only connected to the producers that have a small

maximum production capacity, and it is putting a very large

demand on the network.

V. CONCLUSION

The problem of imputing an objective function is a prac-

tical problem that arises frequently, and is closely related

to problems in machine learning, dynamic programming,

robotics, and economics. In this paper we presented a

framework for imputing a convex objective function, based

on observations of the underlying optimizing process. We

develop this framework by noting that if the data is optimal

with respect to the imputed objective, the primal and dual

variables must satisfy the KKT conditions; since the dual

variables and the objective parameters enter these conditions

linearly, we have a convex optimization problem. In the

presence of noise or modeling errors, we minimize the resid-

uals of the KKT conditions under a suitable regularization

function.

We show the application of this method to examples in
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consumer behavior, control, and single commodity networks.

We observe that the method works very well in these exam-

ples. Furthermore, we note that we can use this framework to

reduce the complexity of a controller by observing solutions

derived from a more complicated controller.

VI. APPENDIX

A. Receding horizon control

Here we describe RHC; for more details see, e.g., [26].

RHC works as follows. At each time t we consider a time

period extending T steps into the future t, t+ 1, . . . , t+ T .

We solve a planning problem

minimize
∑t+T−1

τ=t ℓ(zτ , vτ )
subject to zτ+1 = Azτ +Bvτ , τ = t, . . . , t+ T − 1

Fvτ ≤ h, τ = 0, . . . , t+ T − 1
zt = xt,

with variables zt, . . . , zt+T , vt, . . . , vt+T−1. We let

z⋆t , . . . , z
⋆
t+T , v⋆t , . . . , v

⋆
t+T−1 denote an optimal point; the

RHC policy takes ut = v⋆t . The planning process is repeated

at the next time step, using new information that have

become available (in this case, the true value of xt+1).

Receding horizon control has been successfully applied to

many control problems, but one disadvantage is that RHC

is computationally intensive, since an optimization problem

(with a relatively large number of variables) must be solved

at every time step. On the other hand, the ADP policy

requires solving a relatively small optimization problem at

each time step.
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