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Integer Parameter Estimation in Linear
Models with Applications to GPS

Arash Hassibi and Stephen Boyd

Abstract—We consider parameter estimation in linear models the case where the mean is zero and the covariance matrix is
when some of the parameters are known to be integers. Suchidentity, i.e.,v ~ N(0,I) (we can always rescale equation (1)
problems arise, for example, in positioning using carrier phase by the square root of the covariance matrix and remove the
measurements in the global positioning system (GPS), where the . L
unknown integers enter the equations as the number of carrier mean). The_ mqre general Se_tUp' Includmgrlor_l knowledg_e
signal cycles between the receiver and the satellites when theOn the distribution ofr and with component-wise constraints
carrier signal is initially phase locked. on z, is treated in Section VI-A.

Given a linear model, we address two problems: 1) the problem  Gijven y, A, and B, our goal is tofind and verify estimates
of estimating the parameters and 2) the problem ofverifying o the ynknown parametersandz. Therefore, two problems

the parameter estimates. We show that with additive Gaussian . . e .
measurement noise are addressed in this paper: first, the problerastimatingthe

« the maximum likelihood estimates of the parameters are par_ameters and second, the problemeifyingthe parameter
given by solving an integer least-squares problem. The- €stimates.
oretically, this problem is very difficult computationally

(NP-hard); : ;
« verifying the parameter estimates (computing the probabil- A. Estimation Problem
ity of estimating the integer parameters correctly) requires In order to obtain reasonable estimatesda@nd z, we need

computing the integral of a Gaussian probability density g sujtable estimation criterion. Here, we consider maximum
function over the Voronoi cell of a lattice. This problem is likelihood (ML) estimation. By definition, the ML estimates

also very difficult computationally. and of z and z, respectively, are found by maximiz
However, by using a polynomial-time algorithm due to Lenstra, *MI- @nA2mi Oz andz, reSpectively, y
ing the probability of observing, i.e.,

Lenstra, and Lovasz (LLL algorithm)

« the integer least-squares problem associated with estimating

the parameters can be solved efficiently in practice; (zmL; 2ML) = argmax pyix,z(Ylz, 2). (2)
« sharp upper and lower bounds can be found on the proba- (z,2)e R <4

bility of correct integer parameter estimation.

We conclude the paper with simulation results that are based on B. Verification Problem
a synthetic GPS setup. Since z is an integer-valued vector, we have the chance
Index Terms—GPS, integer least-squares, integer parameter of estimating (or detecting) it exactly. Thus, for verifying the
estimation, linear model. estimate of, a reasonable choice is to compute the probability
of estimatingz correctly, i.e.,
|. PROBLEM STATEMENT

HROUGHOUT this paper, we assume that the observa-

tion y € R" depends on the unknown vectarsc B  Clearly, the larger this value, the higher the reliability on the
(real) andz € Z7 (intege)) through the linear relationship  estimatezy;.. Another reliability measure that is associated
with the real parametet, is given by

.PC = PI‘Ob(ZML = Z). (3)

y=Ax+ Bz +wv 1)

where A € RN*? (full column rank) andB € R™*? (full Prob(||z — zmL[| <€) (4)
column rank) are known matrices. The measurement nois

v € R is assumed to be Gaussian with known mean amﬁere I -
covariance matrix. Without any loss of generality, we consid

|| denotes the Euclidean norm. This gives the
&robability of zyr, lying in a Euclidean ball of radius of

its actual value. A combined reliability measure is
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II. BRIEF OVERVIEW be approached using the LLL algorithm to speed up the

Recently, there has been a growing research interest&gorithms for computing and bounding. as a measure of
integer parameter estimation in linear models due to its & liability. As far as we know, prior to our earlier publications

plication in the global positioning system (GPS), which i7]’ PE8], th_efz_re _had no[; beenla sozni thﬁoreﬁcgl treathmznt
a navigation system that enables quick, accurate, and fir the verincation problem, athough t e (heuristic) methods

expensive positioning anywhere on the globe at any timé(_aquently used in GPS applications had been reported to

Roughly speaking, a GPS user calculates its position throu Rrk well in practice [11], [27]. Some of these methods, for

triangulation by measuring its range (or distance) to satellit >S<ample, those in [30] and [31], us¢ tests and the notion of

orbiting the earth using electromagnetic signals [9]—[11], [22%16 shortest lattice vector as we do, but a precise mathematical

A special feature of GPS, which initially was not generall stification is lacking, and there is no apparent connection

. o . ‘petween the reliability measures in these verification methods
understood, is the ability to create extremely precise ranglnﬂd p
.

: . : . a
signals by reproducing and tracking the RF carriers of theTo summarize, in this paper, we will show that by using
e LLL algorithm, it is possible to solve the estimation and

satellites. Because the carriers have a wavelength of 19 q

tracking them to 1/100th of a wavelength provides a precision ... . e . .
: : .verification problems efficiently in practical cases such as GPS,
of 2 mm. Although modern receivers can attain these tracki

ﬂhough both of these problems are theoretically difficult.

precisions, we must. still determine which carrier_cycle s be"]ﬂ Section 1ll, we formulate the estimation and verification
tracked (e.g., relative to the start of modulation). In oth roblems more explicitly. In Section IV, we introduce the

words, carrier cycle resolution is vital for centimeter IeveLLL algorithm, and it is shown how it can be used to help
accuracy in positioning. Using this carrier tracking method, ths%lve the verh:ication problem. In Section V, the solution to

range measurementcan be well approximated to be IInearthe estimation problem is addressed, where again, the LLL

in the pqsition of the _user_and the ambiguous cycles of thealgorithm plays a major role. Extensions to model (1) are
carrier signalsz, as given in (1).

: ) ) considered in Section VI, simulation results (based on GPS)
Computing the ML estimates of and » by observingy  are given in Section VII, and the paper is concluded in
can be reduced to solving a least-squares problem &nd  ggction VI

z. If there were no integer parame}e(ré?_l: TO)' we could  Finally, it should be noted that although most recent ap-
computexy, explicitly aseyr, = (A7 A)™ A%y. However, pjications in integer parameter estimation have been in GPS,
becauser is an integer vector, the least-squares becomes VeRgre are many other fields in which these results could have
difficult to solve, at least in theory. In terms of computational, jmpact. These include, for example, radar imaging, MR,

complexity, the problem is at least as hard as a wide variedid communications (especially for multi-input/multi-output
of other problems for which no polynomial-time algorithm iThannels).

known or thought to exist. One purpose of this paper is to

show that although this problem teeoreticallydifficult, it is 1

possible to solve it efficiently in practical cases such as GPS. . B o )
A good overview of different approaches to the estimation Sincev ~ A(0,I), the probability distribution of; given

problem can be found in [11], [15], and references thereifi. and 7 is N(Az + Bz, I) or

In our opinion, Teunissen [25]-[27] was the first to address

the estimation problem rigorously. Teunissen’s approach, as pyix,z(ylz, %) = (2m)N/2

noted in [27], is based on ideas from Lenstra [17] and

eventually resulted in the least-squares ambiguity decorrelat%rﬁd therefore, from (2)

adjustment (LAMBDA) method (see, e.g., [12] and [23]). (zmr,zmr) =  argmin |y — Az — Bz||%.

Lenstra’'s work in [17] was modified a year later and led (z,2)c R x 4°

to the discovery of the LLL algorithm [18], [1.9]’ which Using completion-of-squares arguments, it can be shown that
can be thought of as an algorithm to approximate a set

. PROBLEM FORMULATION

o~ lly—Az—B=|* /2

of real numbers by rational numbers with a common small (zmr, 2mr.) = argmin  ((z —§:|Z)TE_1(37 —&).)
denominator (simultaneous Diophantine approximation). We (z.2)cR x 2"
will show that the LLL algorithm (or its variations) can be +(z=3)Ir Yz - 2) +47 Ay) (6)

used as a tool for a practically efficient method for solving the
estimation problem (see, also [7], [8], and [23]). Two nic¥here
featqres of t.he LLIT .algorithm that enable such a method Z=ATA)", T=(BYUI-A=AT)B)™!
are its practical efficiency Qnd |t’s guarantegd performapce. i) —EA%(y - Bx), #=TBU(I—-AZAT)y (7)
It is not clear whether Teunissen’s “ambiguity decorrelation
adjustment” method of [27] has any guaranteed performaraed A is a positive definite matrix that only depends_4rand
or polynomial complexity, although it is reported to work wellB. Note that our underlying assumption is that the inverses in
in practice. (7) exist.
The problem of verifying the ML estimates is also made In (6), the termy” Ay is constant and does not affec:;.
computationally difficult because of the presence of the integand z\.. Since= is positive definite, the first term in (6) is
parameters. It turns out that the verification problem can alatways non-negative, and therefore, its minimizer for a given
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z is x = . with a minimum value of zero. The secondwhich is equal to the probability of a-dimensional normal
term in (6) does not depend an and its minimum can be random variable falling inside the ellipsofd | ||='/2z|| < }.
found by minimizing overz alone. Thereforezyr, is simply From (5), we finally get

the minimizer of the second term, angi, = 2., . In other

words Prob(||lz — zmL||<e & 2z = 2m1) = F- - Prob(J|w||<e).

(13)
(8) Formulas (8) and (11)—(13) give the estimates and their
measures of reliability and will be used in later sections to

o ) solve the estimation and verification problems.
Clearly, ~\1, (and thereforeryr) is given by the solution to

a least-squares problem involving integer variableg. \Were
in Z?, then, of course, we would havg,;, = 2. A simple
approach is toround (each component of} to the nearest AS noted in Section |, the probability of detecting the integer
integer vector. This simple approach does yielg when the Parameter correctly [P in (12)] can be used to verify the ML
matrix Y is diagonal or nearly diagonal. In the general cagstimates. The reliability measure given in (13) also requires
(and in practice), however, roundingwill give an integer the calculation ofP.. Therefore, an essential step in verifying
vector that is very far from optimal. The problem of computingmr and zy, is the calculation off.
v is known to be NP-hard [3], [6]. As noted in the previous sectioR, is given by the integral

In order to calculate the measures of reliabili; and of a normal probability distribution over the Voronoi cell of
Prob(||z — ||<e | z = zuL), We need to know the the origin in the lattice{Gz | z € Z*}. It tuns out that the
probability distributions of our estimates. Note that we capfoblem of finding the Voronoi cell of a lattice and performing
easily read the covariance matricessoénd . from (6) as the integration is a very challenging one computationally [7].
cov(?) = T andcov(s|.) = E. Since# and 2|, are linear Therefore, we are motivated to find fast ways to approximate
functions of a Gaussian random variaple- N'(Az + Bz, 1), e that, for example, would enable real-time reliability tests
they are Gaussian random variables themselves, and we higéead. In fact, easily computable upper and lower bounds on

2ur = argmin(z — 2)T Tz — 2),
zEZq

ITML = x|ZML N

IV. VERIFICATION PROBLEM

2~ N(2,T) and &), ~N(z, 5). 9)

The probability distribution of suggests that = >+u, where
w ~ N(0,7). Multiplying both sides byG 2 T-1/2 (which
is the whitening matrix of:) and by definingy 2 Gz, we get

y=Gz+wu, where u~N(0,I). (10)

In addition, (8) can be written in terms & and 4 in the
equivalent form

Z, (11)

ZML = argminHZj — Gz
;:EZQ

F,. exist, which become tight aB, approaches unity. This is

a very fortunate property since, in practice, we are mostly
interested in our estimates when the probability of correct
integer parameter estimation is close to one (high reliability)
when the bounds are good.

In Section IV-A, we will see that the choice @ for a
given lattice is highly nonunique. As a matter of fact, for
q > 1, there exists infinitely many matrices; and G, with
Gy # G2 such that

{(Giz |z € Z7) = {Gaz | 2 € Z7).

Although P. only depends on the lattice and not on the
specific choice of@, this is not necessarily true for the
upper and lower bounds oR.. Therefore, we can sharpen

The set{Gz | » € Z} is a lattice inR?. Equation (11) states these bounds by optimizing over the family of admissible
that z\. is found by computing the closest lattice point tdnatrix representations for the lattice. In the next section, we

the vectorg. In addition, according to (10) is off from Gz
by mw. Therefore, as long a8 is small enough, such that

introduce the LLL algorithm that is an extremely useful tool
for sharpening the bounds aR., and as will become clear

remains closest t6» than any other point in the lattice, thelater, it is also useful for improving the efficiency of the
estimate ofz is correct (i.e.zuL = z). This is equivalent to algorithm for solving the integer least-squares problem for
Gz + 1 remaining inside thé&/oronoi cell of the lattice point computing zur..

Gz, i.e., the set of all points closer @z than any other point

in the lattice. Because of the periodic structure of the latticd, Lattices and Basis Reduction

the Voronoi cell ofGGz is the translation of the Voronoi cell of

Let us denote the lattice C R? generated by the matrix

the origin V by the vectorGz, and therefore, we can write » _ [91 g2+ gq] € R by

P.=Prob(uweVy) where w~N(0,I). (12)

Therefore, P, is equal to the probability of g-dimensional The set of vectors{gi, g2, - -

normal random variable falling inside the Voronoi cg&j.
According to (9),%. = = + w, wherew ~ N(0,Z), and
if 2 = 2ur, we have

Prob(||a: — -TMT,H <e | z = Z]\rﬂ,) = PI‘Ob(HwH < (:)

L=L(G) = {Gz | = € Z7).

.94} is called ¢ basis for L

since all lattice points are integer linear combinations of these
vectors. The same lattice can be generated by other bases as
well. For example, letF" be anyunimodular matrix, i.e., a
matrix such that the elements sfand its inversg"—! are all
integers (or equivalently, the elements Bfare integers and
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| det F'| = 1). Then, the mapping from to F'z is one to one
and onto from the integer lattice into itself. It follows that
and GI' generate the same lattice. Conversealy,bases of a
lattice arise by transformation via unimodular matrices. Thus

L(G) =L(G) <~
G =GF for some unimodular matri¥’".

In other words, the set of unimodular matrices characterize
the set of bases for a given lattice.

Of the many possible bases of a lattice, we would like to :
select one that is in some sense nice or simpleeduced Fig. 1. Voronoi cells of the lattice points are translationsif
There are many different notions of reduced bases in the

literature; one of them consists of requiring that all its vectors o . . Lo
be short in the sense that the produjgt [[||gz|| - - - lg|| is &€ other polynomial time algorithms for basis reduction in
minimum. This problem is known as thminimumqbasis lattices that give better worst-case bounds than those given

problemand has been proved to be NP-hard [6]. here but have higher worst-case complexity [13], [24]. The

Although the minimum basis problem is NP-hard, there ELL algorithm is described in the Appendix.
a polynomial timealgorithm that given any latticé = L(G) )
with G having rational elements, computes a new basis fBr Calculating .
L that is in some senseduced (In practice,G always has  Computing P. as given in (12) requires the knowledge
rational elements due to finite precision computation, butdf 14, which is the Voronoi cell of the origin in the lattice
should be noted that the algorithm still terminates in a finilgenerated byz. The Voronoi cell of a pointZz, is the set of
number of steps if7 has irrational elements.) This algorithmall points in R? that are closer t@rz, than any other point in
is due to Lenstra, Lenstra, Jr., and lase’ (LLL) and is very the lattice. When the Euclidean norm is our distance measure,
efficient in practice (cf., [6]). Given a lattice generator matrithe Voronoi cells of the lattice points become polytopic, i.e.,
G, the LLL algorithm produces a new lattice generator matrian intersection of half spaces R?. By definition
G = GF (with ' unimodular) such thaty has two nice
properties. Roughly speaking, these are 1) the columr& of Vo ={z | fle = Ol < [l — G=|*, vz € 27}
(the basis vectors) are “almost orthogonal,” and 2) the norm ={z [ (Gx)Te < 21G"Gz/2, V2 € 2%}, (17)
of the columns ofG (the length of the basis vectors) are n
“arbitrarily large.”

More specifically, if the columns of are T1,92," 1 0y
then

0ﬁ'he shape of the Voronoi cells are similar and are translated
versions ofV; (Fig. 1). In addition, note thaky is symmetric
with respect to the origin.
' Vo as defined in (17) is an intersection of infinitely many
_ J . half spaces. Such a description is not practical to perform
95 = Zuﬁgi a (numerical) integration to computg., and therefore, we
=1 should eliminate the redundant half spaces to obtain a finite
in which p;; = 1, |5 < % for i # j, and {gi}L, is description for V4. Although this is theoretically possible
an orthogonal basis found by performing the Gram—Schmidfd the use of the LLL algorithm speeds up the method
orthogonalization procedure ofg;}?_,. The fact thatu;; is (cf. [7]), it might not be possible in, for example, real-
at least twice as large dg;;| for i # j shows that the basis time applications. Adding to this the computational cost and
vectors{g, }?_, are “almost orthogonal.” Moreover, we havedeficiencies of the numerical algorithm to perform the integral
of the Gaussian probability density function ovéy, we
111Gl - - 17,1 < 2900774 det G (14)  conclude that although computing, is possible, it requires
extensive computation that might be infeasible in practice or

and
not worthwhile. Therefore, finding easily computable bounds
7.1l <2974/ det G (15) on P, is practically important.
9.1 <24V min ||| (16)
vE L us£0 C. Computing Upper and Lower Bounds &h

which show that the length of the basis vectors cannot bel) Upper Bound Usingdet GG|: The volume of the paral-
“arbitrarily large” (note thaf det G| is constant for any rep- lelepiped formed by the basis vectors of a nondegenerate
resentation of the lattice since all bases of a lattice arise Iaftice is given by det G|. Since the Voronai cells of the lattice
transformation via unimodular matrices that have a deterngieints partition the space with the same density (cells per unit
nant of £1). Although the bounds obtained from (14)—(16yolume) as the parallelepiped cells, it follows that the volume
appear to be very loose for moderately large valueg,dhe of the Voronoi cells are also equal falet G|. Therefore,
LLL algorithm performs substantially better in practice [21].]| det G| is the volume of the region for integrating the noise
Refer to [6, ch. 5] and references therein for a mongrobability density function and is related to the probability of
complete discussion of basis reduction in lattices. In fact, thezerrect integer parameter estimatiBn Roughly speaking, the
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lower bound onF.. This lower bound is given by

d
P low :Prob<||u|| < 5) where u ~ N(0,1) and
d S dmin

or in terms of thex? cumulative distribution function

2
Pc,low = sz <dZ7 (.Z> whered < dmin- (20)

Obviously, this lower bound is best wheh= d,,;,.
In practice, we usually only care fdP, being exact when
FP. is close to unity. It can be shown that & approaches

Fig. 2. Ball centered at the origin and of radidg.i/2 lies inside the UNItY, Felow With d = dy,; becomes tight, and therefore,

Voronoi cell of the origin. The probability of noise falling in this ball giveswe will not be too conservative in acceptimgﬂ when, say,
a lower bound onP.. P ~ (.99 [7
c,low = Y- [ ]

3) Computingd,,,;, and Lower Bounds od,,,;;,: Thus far,
larger this value, the larger the probability of correct integave have not discussed how to computg;,. Unfortunately,
estimation. Of course, the shape of the Voronoi cell is alsocamputing d..in is conjectured to be NP-hard, and no
major factor inP,. We can, however, develop an upper boungolynomial-time algorithm has been found to computg,.
on P, that is based oridet G|, which is the volume of a A generic algorithm for findingd,,;, is given in [7]. It is
Voronoi cell. Among all regions with a given volume, the onégmportant to note that if the columns dF are a reduced
that maximizes the probability (under a normal distribution) isasis in the sense of the LLL algorithm, the efficiency of this
a Euclidean ball (simply because the sublevel sets of a normégorithm is much better. However, we have no guarantee that
distribution are Euclidean balls). Therefore, the probability dhis algorithm will stop in polynomial time. Therefore, it is
a Euclidean ball of volume equal talet G| is larger thanP.. desirable to find methods for computitayver boundson d,,;;,,

A g-dimensional Euclidean ball of radius has volume instead that have very low computational complexity. These
a,p? with o, = 79/2/T(¢q/2 + 1), whereT is the Gamma bounds can be used in (20) to get very fast lower bounds on
function (I'(n) = (n — 1)! for positive integem). Therefore, .. One of the many methods (cf., [7]) for computing a lower
the radius of @-dimensional Euclidean ball of volunidet G| bound ond..;, is suggested in [6] and is as follows.
is p = /| det G|/, and an upper bound aR; becomes Gram-Schmidt Method Lower Bound dRi,: Suppose

G = [g192-- 94, and (g7, 95,---, g;) is the Gram-Schmidt
P, up = Prob(||v|| < {/|det G|/ag) with v ~N(0,I). orthogonalization ofgi, go, - - -, g,) SO thatgi = g1, and

The sum of squares @findependent zero-mean, unit variance . il gJTg;f . .
normally distributed random variables is distribution with G=9- THEL forj=23,---,¢. (21)
q degrees of freedom (cf., [14]). Thugy||? is x? with ¢ =177
degrees of freedom, and we get Then, a lower bound! on d,;, is
Pep = Pz (| det Gl /g5 ) (18) d = min(||g; ], llgs .- -~ g )- (22)

where F\2( - ;q) is the cumulative distribution function of a the columns of7 are a reduced basis in the sense of the LLL

5 / ) .
x~ random variable withy degrees of freedom. This bound,qqrithm, this lower bound is guaranteed not to be arbitrarily
is a very cheap one computationally since it only requires the .om i (i.€., there is a bound in terms gfon how large

determinant ofG followed by ax? cumulative distribution d — dy;| can be [6]). Therefore, the LLL algorithm can be

function table lookup. In practicel, ., tuns out to be a \5eq to sharpen this lower bound, which, in effect, sharpens
very good approximation td”. Simulations in Section VIl iha [ower boundP

. . Jlow-
illustrate this fact. Let us note that there are many other G
methods to compute upper bounds By see [7].

2) Lower Bound Based of,.;,: Given the lattice L = ) ) ) ) _
L(G) with G € R, the shortest lattice vectoror the Until now, we have mainly discussed the issue of calculating

D. Verifying the Real Parameter Estimate

minimum distancef the latticed,,;, is defined by (or bounding) the probability of correct integer estimation
_ F,, i.e., the measure of reliability for the integer parameter
Ainin = ‘EIZT{ZH}#OHGzH- (19) estimate. Once the calculation @, or its bounds sug-

gest that the integer parameters are resolved correctly, the

dmin is actually the distance between the origin and its closesivariance matrixE(ryr — x)(wvn — «)? is known as

neighbor in the lattice. A ball of radiug.in/2 is the largest given in Section Ill, and we can verify theal parameter

ball centered at the Or'.g'n that !|es iy -(se(.a Fig. 2). LIt can be shown that the lower bound erf@P. — P. .. ) is largest
Clearly, the probability of noise falling in a ball centereq,,q, Vo is a slab. In this case, it is easy to verify that Bs — 1,

at the origin and of radiug/2, whered < din, QiVES US @ (P — Pe 1ow) — 0 (cf. [7]).
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estimatery,. For example, since the distribution of;;, — = Voronoi region of Gzsub
is zero-mean Gaussiazyr — 2)T="(zpmr — x) has a
x? distribution with p degrees of freedom, and therefore,

ellipsoidal confidence regions can be found wof, using

x? distribution table lookups (cf., [14]).

V. ESTIMATION PROBLEM

A. Nearest Lattice Vector Problem

The main computational task of the estimation step is
the solution to an integer least-squares problem that gives
the maximum likelihood estimate of the integer parameter.
According to Section IlI

ZvL = argmin||g — GZH2 (23) Fig. 3. If ||§ — Gzeun|| < dumin/2, then it is guaranteed that.;, is
2c A the global minimizerzygr,. dmin Or any lower bound onl,,;, is usually
. a byproduct of the verification step and can be used without any additional
or equivalently computation.
v = argmin(z — 2)T Tz — 2) (24) ) . ] ) )
A algorithms might find the global optimum as they often do in

practice. Ifd,,;,, or any lower bound! < d,,;, is known, a

5 —15 _ T —1
wherez = G~ 'y, andT = (GTG)71. sufficient condition for the suboptimal minimizet,, to be
Equation (23) can be interpreted as finding the closest Iatt% global minimizerzyy. is simply given by
point in L = L(G) to 4. This problem is known as theearest

Iattice_z vector problemand is NP-har_d_ [3], [6]- However, in _ 7 — Gzewn|] < d — Zeub = ZML (25)
practice, there are reasonably efficient ways to solve this 2
problem, which is the main topic of this section. as there is only one lattice point in a ball centered7at.,,

Note that if 2 in (24) is a vector with integer coordinatesand with radiusd..in/2 (see Fig. 3).
zwr, can be found immediately asr, = 2, which would give Suboptimal Algorithm for Finding an Approximately Nearest
a minimum value of zero for the quadratie—2)” T—*(z—2). Lattice Point Based on RoundingSuppose thaG € R?*?
This only happens when the noise level is zero so that thedy € R? are given. A suboptimal solutions,;, € Z7 in
observedy is one of the lattice points. Wheff is diagonal, the sense that

M1 can be simply found by rounding the components o 17 — Gzauwn|| < (1 + 2¢(4.5)7%) min ||§ — Gz|| (26)

the nearest integer since the integer variables are separable as 7
R . 4 o exists that can be found as follows [2].
(2= Tz - ) = Z(zi = &)/ Tii- « Perform the LLL algorithm on the initially given basis
=t vectors, which are the columns @f This results in a new
A diagonal T corresponds to a generat6r with orthogonal lattice generator matri&, which is almost orthogonal and
columns. This observation suggests thaf i “almost” diago- a unimodular matrixt’ such thatG = GF.
nal, or equivalently, the columns 6f are “almost” orthogonal, —« ., F[é_lgj, where [-] is the component-wise
roundingz in (24) would give a close approximation t@ur.. rounding operation to the nearest integer.

Since we can replag@ by GF', whereF' is any unimodular s If ||§ — Gz < dmin/2, Wheredy,, is the minimum
matrix, we can use the LLL algorithm to find an almost distance ofL, ., is the global minimizerof |7 — Gz||
orthogonal basis for a given lattide = L(G). Rounding can for » € Z9.

then be applied to get a hopefully good approximation fQfjearly, the reason why component-wise rounding gives a
zwir.. This approximation can serve as a good initial guess fgboq suboptimal solution is the fact thatis almost orthogo-
zur, in any algorithm for solving the optimization problems,,| hecause of the use of the LLL algorithm. Another heuristic
(23) or (24). to get a suboptimal solution is to perform the component-wise
rounding recursively, i.e., round only one of the components
of 5_133 (e.g., the one closest to an integer) at a time, then fix
In this subsection, we describe a suboptimal polynomighat component in the least-squares problem, and repeat.
time algorithm for calculating the minimum dfy — Gz|| Another suboptimal polynomial time algorithm for finding
or (z — 2)T~1(» — 2) over the integer lattice. Suboptimalan “approximately” nearest lattice point is due to Babai [2],
algorithms of this kind are important for a few reasons. Firg§]. In this method,z,,, is found by recursively computing
they can be performed efficiently with a guaranteed low worgtie closest point in sublattices éfto . The provable worst-
case complexity. Second, suboptimal algorithms provide case bound we get is better than (26) with the price of some
relatively good initial guess or relatively tight upper bound foadditional computation. As reported in [21] and from our own
any global optimization algorithm. Finally, these suboptimaxperience, it should be noted that these suboptimal algorithms

B. Suboptimal Polynomial-Time Algorithms
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work much better in practice than what the worst-case bounds (x—23)TYr Yz —2) <r?

T2
suggest. o 6 o o
L_Jsing the _worst—qas_e perfc_erance_ bounds of these sub-; 4, 1, o o o o o
optimal algorithms, it is possible to find a lower bound on o o oo o
the probability thatz,,;, = =z given =y = 2, i.e., the o o oo o
probability that the suboptimal estimate is correct given the o 0 00 o0
optimal estimate, is correct. Suppose that the known worst- 0o pL e 0 o0
case suboptimality factor of the suboptimal algorithnyjs- 1 © o 6 oo
i = 5)4/2 22 —rv/To o o o o0 o
[e.g., in (26),v, = 1 4 2¢(4.5)%/] so that “d oo o oo
15 — Gzeunll < vgll7 — Ganr]- ©© © 00
o O ! O O O
We have z 2
1
1G(zoun — 2mL)|| = [1(F — Gamn) — (F — Gasun)|| EREPAVA on 5 +ryTh
Sl = Gamell + 119 — Gzew | Fig. 4. Minimum volume box covering the ellipsoidz — £)¥
<147y — Gzl T~ (x — 2) <r? is related to the diagonal entries &f andr.

If 2o # 2vr, then ||G(zew, — 2vn)|| > dmin SO that
z . q - ) .
15— Gomel| > dumin/(1 + ;). However,dim can be (lower) if any, az € Z? such that||ly — Gz|| <r or, equivalently,

—1 1o (z=2)TT7z - 2) <22
bounded byF. asd.,, > 2Q~'((1 — P.)/2), whereQ~* is ) ) ) T
the inverse function of the function (the probability of the Ve can easily bound the integer points= [212; - -~ 2]
satisfying (= — 2)YT=1(z — 2) <r? by boundingz in each

tail of the Gaussian PDF)Therefore, ifz.u, # 2uvr, We have

7 — Garll > 20-1((1 = P.)/2)/(1 + ~.), or equivalentl dimension, i.e., to boung; fori = 1,---, ¢. This is equivalent
i Al 2 2€7(( B/ +7) a y to finding theminimum volume bogovering an ellipsoid (see

—1 A -
15— G| < 2Q (1(1r P2, Fig. 4). The result is
” [2 = VTl <2 < L+ 7/ (29)
Now, if zu1 = #, then||g — Gzue||? is x* with ¢ degrees of
freedom, and we finally get for i = 1,2,---,q, where[-] and || are the rounding up

. ) and rounding below operations, respectively. Clearly, (29)
Prob(su = # | st = 2) > Fis <4Q (1-"r)/2) ; ) gives anexplicit outer approximation for integer points that
x (147,42 lie inside the ellipsoid. However, this outer approximation can
_ _ _ _ (27) " pe very bad (i.e., contain many more integer points than the
The interesting point about (27) is that & gets larger, the g|jipsoid) if the minimum volume box approximation is not
bound on the probability gets larger, which means that thgoq. Therefore, in such cases, checking whether the ellipsoid
suboptimal algorithm is guaranteed to perform better. In othg§ntains an integer point by searching over the integer point
words, for large enougif. or when the reliability on the .5ndidates (29) is very inefficient.
integer estimate i_s high, these subopt_imal algorithms have arpe minimum volume box approximation is best when the
guarantee on their performance. Again, we must note thgles of the ellipsoid are parallel to the coordinate axes, or
in practice, the performance is much better than what tRgyivalently,T is diagonal. Therefore, if we perform the LLL

worst-case bound suggests. algorithm on the originally given basis vectors so that we are
_ _ _ o guaranteed to get an “almost” orthogor@lor diagonal T,
C. Searching for Integer Points Inside an Ellipsoid the minimum volume box covering the ellipsoid is hopefully a

Once a suboptimal solution to the integer least-squaré@od approximation to the ellipsoid and contains fewer integer
problem has been found, we need to check whether apgints satisfying (29). Now, by checking whether any of these
better solution exists or not. This problem is equivalent #9teger points satisfy the inequalitg — 2)" T '(z — z) <2,
checking whether an ellipsoid contains any points with intege can determine whether there is an integer point inside the
coordinates. We consider this problem in this subsection. €llipsoid or not.

Suppose that the ellipsoifl is given by either of the two  Even if T is diagonal, the volume of the minimum volume

equivalent descriptions box is larger than the volume of the ellipsoid by a factor of
} o, = 7%/2/T'(g/2 + 1). This factor is still very large for even
E={z|z e R ||y -Gzl <r} or moderate values af, and therefore, the set of integer vectors

E={z|zec R, (z—2)TT Yo —-2)<r?} (28) = satisfying (29) could be much larger than the set of integer
N ot . - points inside the ellipsoid. Hence, the method just explained
whereG € R, T = (G"G)™', and 2 = G™'y. Our for finding an integer point inside the ellipsoid could still be
goal is to find at least one integer point &hor prove that jnefficient in practice.
no such point exists. In other words, we would like to find, A more efficient method for searching for integer points

2The reason is simply that a slab of widfl,i, covers the Voronoi cell; |ns.|de an eII|pso!d is to bound recurswelyfori =1,2,---,q
see [7]. This can be easily done whéenis lower triangular as follows.
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Suppose that Searching for Integer Points Inside an Ellipsoi@®uppose
G € R 5 ¢ R?, andr € R are given. In order to find a
g 0 -~ 0 point z* € Z? satisfying||7 — Gz*|| <r or prove that no such
G- g21 g22 -+ 0 point exists, do the following.
: P e Find unitary transformatior® such that®G is lower
91 92 Y9gq triangular.
o« j— OFG — OG;i — 1;
is lower triangular. Then|g — Gz|| <2 gives « while 1
a) Computel; andw,; from (31)—(33);5; «— {l;,l; +
(1 —gu121)” + (G2 — 92121 — g2222)" + -+ Lok
+ (g — 9171 — Gg222 — *+* — Ggq2q)> <77 b) while S; = 0

 if ¢ = 1; no integer point exists in ellipsoidtop.
e i —i—1
[ﬁ} <, < {&J ¢) end | _
g1 =~ = g1 d) Pick »; as the element inS; that is closest to
the average of the largest and smallest elements in
Sis Si — S — {zih

and therefore

Fb — g F AP — (i — 91121)2-‘ e) ?f i_: g, then _z* = [2120 -+ 2,]* is an integer point
inside the ellipsoid;stop.
922 ) ie—i+l;
<< {@2 —gnzn +/r?— (g1 — 91121)2J « end
g22 Note that in the above search methds], gives the set of

possible values forz; at each iterationz; is taken as the
and so on. Thusz;, which is theith element ofz, satisfies element inS; that is closest to the average of its largest
the inequality and smallest elements. For exampleSif = {1,2, 3}, then
(1+3)/2=2, andz = 2 is chosen. ForS; = {5,7,10,11},
li <z < (30) the average of the largest and smallest elemerftstig 1) /2 =
8, and therefore, we should pick; = 7. The reason for
with choosingz; like this is that intuitively, the points closer to the
t: — sgr(gis)rs midpoint of the interval of possible values forcorrespond to
I, = [#W and the “fatter” region of the ellipsoid that is more likely to contain
Gid an integer point. In addition, these points correspond to the
w Vﬁ + 397(97171)7’th (31) center of the ellipsoid and will hopefully result in lower values
‘ ii of ||§ — Gz||. This is especially important in the algorithm for
finding the global minimum of|g — G

in which

D. Global Optimization Algorithm

1—1 2
T N <§i_1 _ Zg(i_nwk) Now, we have all the tools to describe a global optimization
P method to solve thénteger least-squaresr nearest lattice
fori=1,2---,g—1 (32) vectorproblem to findzyy, in (23) or (24).
Global Optimization Algorithm for Findingy,: Suppose
and G € R™? andy € R? are given. Furthermore, let be the
minimum distance or a lower bound on the minimum distance
~ ~ =L ) in the lattice L = L(G). zmr, which is the minimizer of
=g, ti=gi=) gan fori=23.q (33 |7 — Gz|| for z € Z4, can be obtained as follows.
k=1 . . .
e Compute a suboptimal solution,,, to the integer least-

Note that the upper bound; might become less than the  Squares problemrgmin._[|g — Gz using the method of
lower bound; as a result of lower and upper rounding. In this ~ Section V-B.

case, there is no integer point in the ellipsoid with the values® if l|7 — Gzuw|| < d/2, then 2y — zw,; Stop.

chosen for the coordinates, zy,- - -,z 1, and therefore, we ~ * 7 < [|§ = Gzauw[l; 2° — Zoun;

need to choose other values far, zo, - - -, z;_; and continue.  * While 1

Whenever, for all possible values of, satisfyingl; < z; < a) Search for an integer point inside the ellipsig—
uy, We get an upper bound that is less than the lower bound for Gz|| < r using the method in Section V-@;no such
one of the coordinates, it can be concluded that no point with point exists,then zyr, < 2*; stop.

integer coordinates exists inside the ellipsoid. This suggests b) Let z* be the integer point found in the previous
the following search method. step;r — [|7 — Gz*||;
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c) if » < d/2, then 2y, «— 2*; stop. are full column rank and, I1, are nonsingular. The equations
e end for 4,G, P, etc. are as before but using these new values

Note that in the first step, we perform a suboptimal polynomid = T+ |-, and 2. zyap and zyap are given by similar

time algorithm to find a good initial integer parameter estimaf@mulas to (8) with the ML subscript replaced by MAP.

Zsup- If we are lucky,z.u, = 21, but even if this is not true,

we will hopefully get a small initial- and, therefore, a small B- State-Space Structure

search space. The algorithm stops at the second step whenevRoughly speaking, in the case B observationgy € RN),

r < d/2 as itis guaranteed that no integer point lies inside thgilculatingg = T—'/22 and G = Y~'/2 using (7) or (35)

ellipsoid. The algorithm still works without any knowledge Of'equires O(N3) operations to compute the various matrix

d as we can simply také = 0 in such cases. However, ainversions involved, which is a substantial amount of work

d that is reasonably close thyin may reduce the number offor large V. Usually, N > ¢, and therefore, calculatingand

outer iterations by one. @ can be even more computationally intensive than solving the
In practice, simulations show that this global optimizatiofhteger least-squares problem. Moreover, in many applications,

method is very efficient for problems with a few ten integethe data comes in sequentially, and it is desirable togiadd

variables, although the worst-case complexity is not polyng for sequentially increasing values @f without requiring

mial. Such problems can be solved almost instantly on a typiegly data storage. Whenhas finite-dimensional (state-space)

personal computér structure, it is possible to computg and G recursively
and with a (significantly) smaller number of floating-point
E. Computing the Real Parameter Estimate operations.
Oncezyy, is found by the global optimization algorithm in Assume a finite-dimensional (state-space) structurezfor
Section V-D, the maximum likelihood estimate ofwhich is (¥ = 0,1,2,---,N) as

Fhe real_ parame'Fer, is straightforwargl,y, is simply given as Zrp1 = Froay + Cr (36)
in Section Il using (7) and (8).
and suppose that the observatigndepends o, € RP and

VI. EXTENSIONS z € Z* through the linear relationship

In this section, we consider extensions to model (1). We first ye = Hyay + Juz + vk (37)
consider the more general case in whelpriori knowledge
on the statistics ofr is assumed and then a special case inheré Fy, Gy, Hy., Ji are known matrices, ange(0), us,, vy }
which z has state-space structure. Finally, we show how &re zero-mean (jointly) Gaussian random variables such that
modify the estimation algorithms to deal with the case in which

T _ T _ T _
component-wise constraints are added~on Ex(0)x(0)" =11, Euwwx(0)" =0, Eux(0)” =0

w | un | _ | Qr Sk
A. Maximum a priori (MAP) Estimates o ||w| T ST Ry |M
When there isa priori knowledge on the distribution of the T1,o goal is to compute the MAP estimate:ofand) given
parameters, an alternative to maximum likelihood estimati% ..~ ,yy- Using the connection between the standard least-

is maximum a posterior(MAP) estimation. In this case, thegqyares problem and the Kalman filter, it is possible to derive
estimates are found as to maximize the probability @ndz  formylas for updating; and G recursively and, therefore, to

having observed;. In other words computeaap from (11).

(zmiap, 2vap) =  argmax  px gy (@, 2|y)- (34) More specifically, ?t can be shown thgt (cf., [7]) the MAP
(2,2)cC R x Z° estimate ofz € Z%, givenyo, - - -, yx, IS given by
If we assume that the noiseis A'(0,%) andx is knowna 28 = argmin [|§% — GWz|
priori to be N(0,11y), MAP estimates forz and z can be PA

found similarly by solving a least-squares problem. EquatiQp,are
(6) still holds but with a different definition fog, T, 2., and

2. It can be shown that these definitions should be GR) = (N2 gl — gtk z(k)
=+ AT Ay and®;, and 2 can be recursively computed through

Y = (BY(Z + AllpAT)"tB)~*
2, =ZATS "y — Bz)
2 =TBY (X + AllpAT) 1y (35)

oW =" + of ROy, 0V =0
0 = (e ~L(eh-z(k=1) | QER:iCk)

;=1 — ¢
y4 =
[Obviously, (7) can be recovered from (35) by settig=
and Hal = 0.] The inverses in (35) always exist wheh B 4For example, (36) might describe the dynamics of a structure and (37)
might be the linearized equations for the pseudo-ranges obtained from GPS
3Contact the authors for an implementation of this global optimizatiosensors mounted on the structure. As another example, these equations might
algorithm in Matlab. describe the GPS pseudoranges obtained in a surveying scenario [7].
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in which 2, and ¢; are found by theinverse system with A Ao
inputs J; andy;, respectively, i.e., - i
X T S R St N B S WY S
Tpq1 = (Fr — Kp i Hi) T + Kp o Ji, U = —Hpop + i, S
s sl Lo
and — & ———+6—>
N N N o 1 [N I 1 [ 1
Tpp1 = (Fn — Kp o Hi) 2w + Kp pyp,  ex = —Hidr +u T S A A
S FE S T P T A
with i = 0,7 = 0 and T UL
Ry =Ry + HyPHy,, Kpy = (FxPuHj + GiSi)R_;, A1z Y1

Epe = B = Kp i Hy Fig. 5. B i d itsi idal signals of | h
_ T T T _ ig. 5. Beacons at points ands» transmit sinusoidal signals of wavelengt
Pk—l—l - FkPka + GkaGk - prkRe,ka,kv Fo=11 A1 and Ao, respectively. The (synchronized) receiverzatlocates itself by
(38) measuring the phase of the signals emitted from the beacons. Estinzating
can be cast as estimating integer variables in a linear model.

for k =0,1,2,---, N. Moreover, the probability of correctly
estimatingz (zvap = z) at timek is given by the integral of | oo by surveyors and geodesists [4]. For simplicity, we
a g-dimensional normal random variable over the Voronoi Cehjonsider a 1-D case. The goal is to estimate an unknown
igin i i (k) q o T . .

of the Or'(%!,?.'n the lattice{G'™z | = € Z}. . positionzy € R using sinusoidal signals sent by two beacons

Oncezy is caIcuIated,standgrd Ka!man f|lter—based me”ﬂfransmitters) located at known positions and s, (see
ods (e.g., thetwo-pass smoothinglgorithm in [1]) can be Fig. 5)

. . . N 3 )

used to estimate;, given the observation@. — Jiz{(;) for Specifically, the (synchronized) receiver is locatedzat
k=01,---.N. _ and measures the phase of the signals emitted frorand

As a final note, we should add that whenis constant s, Due to the periodic nature of the signals, the receiver can
(no dynamics involved), there exists an obvious state-spagily measure these phases modulo some integer multiple of
formulation for z, i.e., the wavelengths. Let; andy., be the measured phases. By

wrar = Ton,  yr = Hizn + Jez + vk simple geometry (assuming no measurement noise)

Thus,Fy, = I,G, = 0,Q = 0, S = OVk, and we can simply To— A1zt = Y1+ 81, To— A2 =y2 + S2
use the recursive formulas derived previously.
or
C. Component-Wise Constraints on the Integer Parameter 1 + 81 1 A 0] [=
. . . _ = |7 |%o— : (39)
In previous sections, the integer parameten (1) or (37) Y2 + 52 1 0 A2z

was assumed to henconstrainedHowever, in many practical

cases (e.g., communications),is bound to lie in a given
; p T

constellationor subset ofZ¢, and therefore, the estimation By measuringy,, it becomes clear that, is located at

glgorithms of Section V need to be modified. Fortunately, thi&stancegl plus an integer multiple ok, from s,. Therefore
is very easy to do when, for example, there are compone[ﬁé possible values far, are points that are at distance

wise constraints orr. apart from each other. Similarly, by measuripg, another

Specifically, suppose that; € 7; for ¢ = 1,---,¢ in . . . .
which T, C % is given. The ML (or MAP) estimate of seF of possible values fog, is achieved that cons_|sts of
S . o ints A, apart from each other. Hence, by combining both
is given by an integer least-squares problem similar to (12?

. . . . easurements; and s, the possible values far, become
but with the additional constraints € T;, where the matrices _ . 51 andin b 0
- . . - ints that are at distanceapart, wherex = m;A; = moXo
7 and G are defined as before. To deal with these addition .
. . . . With my,ms > 1, and (my,ms) = 1 (i.e., m; and ma
constraints, in order to computgyr., the suboptimal algorithm

. o . are relatively prime). Therefore, having two transmitters is
of Section V-B can be modified by mapping tlie component . : . :
of F[G-1j] to its closest element iff?, and the algorithm equivalent to having a single transmitter wigéliger (or equal)

of Section V-C can be modified by replacing the assignme\gr:;vta \ilseliaoncgatthe. dlf?s: Iavrvgi]teh ?nd L\J/\rliehr?z;/i?na Irg:gr:hlg)?i; ofc\ggere
SZH{ZZ,ZZ—I—].,,U,Z}WlthSZH{lZ,lZ—i—l,,U,Z}QTZ 0 Y, y v

Once ' found usina the alobal ootimization algorithm ofbe found with high reliability. If there are more than just
ZZML ) gtheg plmIze 9 two transmitters with different wavelengths, the equivalent
Section V-D with the mentioned modifications,., can be

computed using the exact same formulas yvavele_ngth)\ is increased, and th_erefore, the un(?ertainty
’ in zo is reduced. For example, with three transmitters of

wavelengths\;, A2, and A3, the equivalentA becomesx =

MIAL = MaAy = mg)\g, Where(ml,mg,mg) =1.

o ) ) ) ) ) If A1/Az is irrational, there are no integer numbess and

A. Navigation in One Dimension Using Sinusoidal Beaconsm2 such thatm; A\, = ms). In this case, it can be simply
In this section, we illustrate an example that is the basis wérified that the choice of, satisfying (39) is unique, and

most electromagnetic distance measurement (EDM) equipmbetce,z, can be determineédxactly

As can be clearly seen, this gives us two linear equations in
three unknownsey € R,z € Z, andz; € Z.

VIl. SIMULATIONS
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satellites To

039, » Hooo R P o OqPoo 6992 ] . .
= 2RI, & 9 P00 & ¢ T8 SR 5,979 satellite orbit

receiver

z1

4] 0.1 02 0.3 0.4 0.5 0.6 0.7 08 09
A1/Az

Fig. 7. Simulations in this section are based on a simplified GPS setup in
two dimensions. The radius of the the shaded circle (earth) is 6357 km. Three
satellites are assumed that orbit the earth at an altitude of 20200 km and
period of 12 h.

Fig. 6. P as a function of\{ /A2 for AyA2 =2, ¢ = 0.01, ando, = 10.
Computed points are shown with a."

Now, suppose that theiis measurement noise so that
v+ 51 1 N 0] vy geometry change; with time. In GP$ using carrie_r phase
LJQ + 32} = L}xo - {0 )\J [ } + [ } measur(?ments, thls geometr.y.change is crucial and is caused
by orbiting satellites transmitting RF signals (see the next
wherev;, v ~ N(0,02) andv, andwv, are uncorrelated. In simulation).
addition, we assume that, ~ A(0,02). Using (35), we have

zZ9 U2

AL Aa B. GPS Setup
a= 1 ¢ 2\ ) In general, navigation using phase measurements from si-
= L = = 2 ~ nusoidal signals transmitted from far-away locations in space
Vol +207  \o? 4202 with known coordinates can be cast as an integer parameter

Assuming the values; = 0.5, = 4, 0 = 0.01,0, = 10, estimation problem in a linear model. The GPS is one such
we getP. = 0.158. Now, assuming thak; = /2, A, = v/4, case in which the sinusoidal signals are sent by satellites
o = 0.01, ando, = 10, we get P. = 0.886. (The values orbiting the earth. The phase measurement noise in GPS,
for P. were computed using Monte Carlo witl§> random however, is not completely Gaussian and depends on non-
variates.) Note that although;A> = 2 is equal in both random effects such as receiver/satellite clock bias, residual
cases (and, therefore, so atet G and F. ,;), F. is much atmospheric errors, multipath, etc. In practice, measurements
higher in the second case. The reason is that in the fifsim different satellites and receivers are combined (e.qg.,
case,A1/A\; = 1/8 is rational, whereas in the second caseubtracted) to partially remove these nonrandom effects. Refer
A1/A2 = 1/+/2 is irrational. This is intuitively reasonable byto [10], [11], [16], and [22] for a thorough discussion of such
our discussion for the noiseless case. Without measuremeahniques.
noise,zo can be estimated exactly X, /). is irrational. With The simulations in this section are based on a synthetic
measurement noise;, can be estimated “better” (oF. is 2-D setup similar to GPS (see Fig. 7). We assume that the
relatively higher) when\; /A, is irrational. position of the (GPS) receivet, that is to be determined,
This discussion suggests th&t. is a very complicated can be modeled as a zero-mean Gaussian random variable
function of A\; /A2 (for constant; A2). Roughly speaking, a with variances2 in each dimension. The coordinate axes are
rational \; /A corresponds to a relatively small&%, whereas chosen as in Fig. 7 such that the origin is a point on the
an irrational; /> corresponds to a relatively larg€. Fig. 6 surface of the earth (a point on the periphery of a circle of
shows a plot ofP. as a function ofA; /A, for 200 values, radius equal to that of the earfi. = 6357 km). We suppose
with A1 A2 = 2, ¢ = 0.01, and o, = 10. Even this sampling that there are three visible satellites orbiting the earth with
shows the erratic behavior suggested by the discussion abarealtitude of 20200 km and with a period of 12 h (angular
(Peup = 0.8947 is constant fork; A, = 2). velocity of w = 1/120° s71). The satellites are transmitting
Note that these ideas hold in higher dimensions, and @ncarrier signal of wavelength = 19 cm each, and their
general, P. is a very complicated function of the wavecoordinates are known to the receiver. The receiver, which
vectors of the signals emitted from the transmitters. As wilk assumed to be completely synchronized with the satellites
become clear in the next subsection, the transmitters (ameaning that it can generate the transmitted carrier signals),
receiver) need not be stationary to get a linear model involvimgeasures the phase of tteeeivedcarrier signals every” = 2
integer parameters. In fact, moving transmitters are betterand unwraps them as times goes by. By multiplying these
as far as estimation is concerned because the change(usfwrapped) phase measurements by the wavelendivided
wave vectors of such transmitters has the same effect asbgn2w, the receiver can measure its distance (or range) to
increased number dftationarytransmitters. In other words, each satellite up to some additive noise, which is assumed
we get better estimates when the relative receiver-transmitterbe A(0,0?), and, of course, arnteger multiple of the
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Fig. 8. ExactP. (dash-dotted curve) an. ., (upper bound usinpdet G|;  Fig- 9. Fe.up and P o as a function of time. The gap becomes smaller
solid curve) as a function of time?...;, is a very good approximation tB.. ~ as I increases.

Note that since the Monte Carlo method for findiffg is inexact, this error
P. up — P occasionally becomes negative. The error is relatively small,

especially for low and higtP.s. The maximum error is roughly 0.03. ) USRSV UUUVUDN UUNUNO SO0 AU AOUIS USURHOR SRS
osl . - . . 1
PO R R SRS S |

wavelength. (This integer multiple can be thought as the odb S T A S

number of carrier signal cycles between the receiver and the oo - - Pf,/" ] B .

satellite when the carrier signal is initially phase locked.) By et o

linearizing the range equations, the problem becomes one of t

estimating a real parameter (the coordinates of the receiver (@

) and an integer parameter (the integer multiples of the
wavelengths) in a linear model, as in (1).

In the simulation that follows, the actual location of the
receiver isz? = [-50 100] that will be estimated using
the carrier phase measurements. We assume that the standard
deviation of z is ¢, = 100 m along each coordinate axis. R S S S S S
The satellites make angles of 90, 120, atid with the z; S o
axis initially, and the direction of rotation for all of them is (b)
ClOCkWISe'. The variance of phase me_asuremem nmse n urlyltgs 10. (@)l as a function of time (dash-dotted curve) and times at which
of length is taken agr = 0.01 m. Using the carrier phase e integer parameters are resolved correctly using global optimization (solid
measurements taken over a period of 200 s, the receiver tuese, a high means that the integer parameters are resolved correctly, and

. ; . 2 ; ; low means that they are not). The integer parameters remain resolved for
to find its positionz € R~ (as well as the ambiguous mtegerj‘Dc ~0.8 or after 85 s. (b)z — aur || as a function of time. Note that

. 3 . .
multiples of the wavelengths € Z) as a function of time by a times that the integer parameters are resolved correctly, this error almost
solving for the MAP estimates using the method described drpps to zero.

this paper. The final angles of the satellites (after 200 s) with

respect to ther; axis become 88.3, 118.3, and 43.3 which d is the lower bound om,,;, using the Gram—Schmidt
Fig. 8 shows thexactP. (computed by Monte Carlo using method. Fig. 9 shows.. ,,, andP. )., versus time:. Note that

1500 random variates), anil. .., which is the upper bound althoughP; is a monotonic (and continuous) functiontothis

using |det G|, as a function of timet < 200. As time s not necessarily true for its bounds. For example, &t70,

t is increased,F. and F. . increase and approach unitythere is a jump in the value @ jow. As t is increased, both

Intuitively, this makes sense since the geometry of the problem ,,, and P. ;,,, approach unity, whereas their gap approaches

is changing as a function of time (because of the rotation of thero (cf., Section IV-C2). This is a very good feature as we

satellites), and therefore, we get increasingly more informatiane not too conservative in boundidg when there is high

to estimatez. As can be seenl’. ., is a very sharp bound reliability in our estimates (which could be the only case when

on P.. Note that computingl’; ., is very easy and only we are really interested in our estimates). If we assume a 99%

requires computinglet G (for which analytical closed-form reliability, we can say that our estimate eris unreliable for

expressions are also available for a variety of GPS models ¢; and is reliable fort > ts.

[30]) followed by ax? table lookup. The next two plots (Fig. 10 and 11) show the results of
In practice, it might not be computationally feasible tahe estimation process. Fig. 10 shows the times at which the

compute P. (e.g., in real-time applications), and an easilinteger parameters are estimated correctly, as well as the norm

computable lower bound o is required to complement of the error in the estimated real paramefter— x| as a

the information obtained from the upper bould.,. The function of time. This figure shows that wheR, becomes

lower boundZF. .. in (20) can be used for this purpose, irrelatively high, the integer parameters are resolved as we
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(a)P- as a function of time.kY) Number of inner iterations in the

which the integer parameters are resolved using global optimization. (b) Timglebal optimization algorithm for finding the integer parameter estimates as

at which the integer parameters are resolved using simple rounding (withaufunction of time. For highP., the initial guess for the global minimizer is

the LLL algorithm). Clearly, it takes a longer time for the integer parametguaranteed to be the global minimizer using a very cheaply computed lower

estimates to settle in this case than in the global optimization case (150basind ond,,;, (using the Gram—Schmidt method), which is a byproduct of

compared to 85 s). the verification step. Therefore, the global optimization algorithm becomes
extremely efficient for highP..

would expect. In addition, once the integer parameters are
resolved, the error in theeal parameter estimate become§omputational complexity for finding the maximum likelihood
insignificant. This justifies the use of the probability of correc@stimates. The main computational effort in the estimation step
integer estimation”. as a measure of reliability for the realis the solution to an integer least-squares problem (NP-hard).
parameter as well. Verifying the maximum likelihood estimates is also as hard
Fig. 11 compares the times at whigtis resolved correctly as the estimation problem. The probability of correct integer
using global optimization and when using simple roundingarameter estimatiod”. was used to verify the estimates,
(i.e., zest = [G~1g| without using the LLL algorithm). It which is a quantity that is very difficult to compute numerically
takes a much longer time in the simple rounding method f¢@.g., just bounding?; using d;, iS conjectured to be NP-
the integer parameter estimates to settle (150 as comparetiacd).
85 s.) The estimation and verificatiofi,,,i,,) problems are closely
We have plot the number of inner iterations in the globaklated to solving simultaneous Diophantine equations (non-
optimization algorithm versus time in Fig. 12. A number ohomogeneous and homogeneous, respectively). Methods for
iterations equal tozero means that the initial value for solving simultaneous Diophantine equations (optimal up to a
found in the algorithm (by performing the LLL algorithmfactor ofc?) are chiefly based on a polynomial time algorithm
and rounding off) is guaranteed to be the global minimizejue to Lenstra, Lenstra, and Lasz (LLL algorithm), and
since the error norm is less thalf2 [see (25), wherel is therefore, the LLL algorithm is very useful in finding relatively
the lower bound onl,,;, using the Gram—Schmidt method].efficient algorithms for solving the estimation and verification
It is very interesting to note that for hight. (. >0.9, or problems. It should be noted that there are different alternatives
after 95 s), which is he only case for which we are reall the LLL basis reduction algorithm in the literature (cf., [13]
interested inzyL, this always happens, and therefore, thgng [24]) that (almost arbitrarily) trade off the complexity of
global optimization algorithm becomes extremely efficienthe aigorithm with its performance (i.e., for example, how well
According to the discussion of Section V-B, this makes perfegtcan pe used to approximaté,;,). A more complex basis
sense since ak. gets larger, so does the probability that thgsqyction algorithm can be used to get a better lower bound
suboptimal algorithm gives the optimal solution. Note that tl"[gzn d..;. and, hence, a better lower bound B In addition,
Gram-Schmidt lower bound is very easy to compute and isgch an algorithm can be used to get a better initial guess for
byproduct of the verification step. v, that can possibly result in a better overall efficiency for
Anothgr gxample of the application of the methods d?ﬁe global optimization algorithm of Section V-D.
scribed in this paper for GPS can be found in [S]. In practice, the proposed global optimization algorithm for
solving the estimation problem is very fast and almost instantly
VIII. CONCLUSIONS solves least-squares problems with a few tens of integer vari-
In this paper, we considered parameter estimation aables (larger problem sizes than those typically encountered
verification in linear models subject to additive Gaussian applications such as GPS) on a typical personal computer.
noise when some of the parameters are known to be inMereover, the global optimization algorithm becomes even
gers. The integer nature of these parameters results in highre efficient for highP. or when the estimates become
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reliable® (according to Section V-B, a®. gets larger, then o

so does the probability that the suboptimal algorithm gives the

optimal solution). As for the verification problem, it is possible

to compute bounds oR, very efficiently that become exact as

P, approaches unity, and therefore, we are not too conservative

in bounding F. when the estimates become reliable.
Simulation results show that we will get very poor estimates

if we neglect the integer nature of the parameters, i.e., treat

these parameters as being real, compute the estimates by

solving a standard least-squares problem, and then round them

off to the nearest integers.

Forj=1,2,--.-,q, and giveny, for¢ =1,2,--.,5 — 1,

replaceg; by g; — [15:]9:» where[u;;] is the integer
nearest tq.;;. Update theg’s andyu;;s with the newg;s

according to (21) and (40).

If there is a subscripj violating

* * 3 *
9541 + nG+nigfl? = Zllgfll? (41)

then interchangey, and g;4+; and return to the first

. . ) - otherwi = ...q.]is th
All these observations suggest the following general outline stef; otherwise, stopG = [g, g -+~ g,] s the reduced

. AR . generator matrix of the latticé.
for integer parameter estimation in linear models (e.g., in GPS ) , .
applications): The choice of 3/4 in (41) as the allowed factor of decrease is

General Outline for Integer Parameter Estimation in LineafPitrary; any number k_Jetwegn_ 1/4 and 1 would do just as well.
Models: Under the setup of Section I, do the following. ~ 1he most natural choice (giving a best upper bound on the

 Update G and § after every measurement, say, reculreductllulligz|l - --llgq 1) would be 1 instead of 3/4, but the

sively, as in Section VI-B. polynomiality of the resulting algorithm cannot be guaranteed.

» Compute P, , in (18), which is the upper bound on
P.. This bound is very tight in practice, as seen in
the simulations. WhileP, is small, the reliability in the [1
estimates is low (so it is not necessary to compute lower
bounds onP. or evenzyy). [2

* When F. ., becomes large (say;0.99), compute the
lower boundF; 1w in which the Gram—-Schmidt method
is used to provide a lower bound @h,;y,-

* WhenF, .., becomes high (say0.99), the estimate:.
is reliable, and for practical purposes, it can be assum
that 21, = 2. If only reliable estimates are required,
only at this step, solve foeyy, using the algorithm of
Section V-D. SinceF. is close to unity, the algorithm of
Section V-D for computing:r, is very efficient.

¢ Once the integer parameteris resolved, plug: = zur,
into the equations, and use standard methods to estimqgja
or verify the real parametes (see Section V-E and
Section IV-D).

(3]

(4]

(6]

(7]

(9]

[10]
APPENDIX 1]

LENSTRA, LENSTRA LOVASZ (LLL) A LGORITHM
Suppose a latticé = L(G) with G = [g192 - - - g4] IS given. [12]

A reducedbasis forL can be obtained as follows [6].

e Perform theGram—-Schmidt orthogonalizatioprocedure 13]
on the vectorsy, g2, -, g,, i.€., cOmpute the vectors
g%, 95, g; through the recursion (24g5, g5, -, g5} 14
will be an orthogonal basis for the subspace spanned Bg]
91,92, 4q. From (21), it is trivial that any vectoy;
can be expressed as a linear combination of the vecttﬁ%

91593, ;94 @S
7 . [18]
9j = ;Njigi (40) (19]
where 1i;; = g7gt/||g7||? for i = 1,2,---,j — 1, and 120!

pyj = 1.

5This . . . o L }1;21]
property is specially useful in communications applications where the
system is always designed to achieve high In such cases, the suboptimal
methods of Section V-B for computing the least-squares solution would yield
zmL (with high probability), which can be checked using (25) (cf., [20]).
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