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Integer Parameter Estimation in Linear
Models with Applications to GPS

Arash Hassibi and Stephen Boyd

Abstract—We consider parameter estimation in linear models
when some of the parameters are known to be integers. Such
problems arise, for example, in positioning using carrier phase
measurements in the global positioning system (GPS), where the
unknown integers enter the equations as the number of carrier
signal cycles between the receiver and the satellites when the
carrier signal is initially phase locked.

Given a linear model, we address two problems: 1) the problem
of estimating the parameters and 2) the problem ofverifying
the parameter estimates. We show that with additive Gaussian
measurement noise

• the maximum likelihood estimates of the parameters are
given by solving an integer least-squares problem. The-
oretically, this problem is very difficult computationally
(NP-hard);

• verifying the parameter estimates (computing the probabil-
ity of estimating the integer parameters correctly) requires
computing the integral of a Gaussian probability density
function over the Voronoi cell of a lattice. This problem is
also very difficult computationally.

However, by using a polynomial-time algorithm due to Lenstra,
Lenstra, and Lovász (LLL algorithm)

• the integer least-squares problem associated with estimating
the parameters can be solved efficiently in practice;

• sharp upper and lower bounds can be found on the proba-
bility of correct integer parameter estimation.

We conclude the paper with simulation results that are based on
a synthetic GPS setup.

Index Terms—GPS, integer least-squares, integer parameter
estimation, linear model.

I. PROBLEM STATEMENT

T HROUGHOUT this paper, we assume that the observa-
tion depends on the unknown vectors

(real) and (integer) through the linear relationship

(1)

where (full column rank) and (full
column rank) are known matrices. The measurement noise

is assumed to be Gaussian with known mean and
covariance matrix. Without any loss of generality, we consider
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the case where the mean is zero and the covariance matrix is
identity, i.e., (we can always rescale equation (1)
by the square root of the covariance matrix and remove the
mean). The more general setup, includinga priori knowledge
on the distribution of and with component-wise constraints
on , is treated in Section VI-A.

Given and our goal is tofind andverify estimates
of the unknown parametersand Therefore, two problems
are addressed in this paper: first, the problem ofestimatingthe
parameters and second, the problem ofverifying the parameter
estimates.

A. Estimation Problem

In order to obtain reasonable estimates forand , we need
a suitable estimation criterion. Here, we consider maximum
likelihood (ML) estimation. By definition, the ML estimates

and of and , respectively, are found by maximiz-
ing the probability of observing , i.e.,

(2)

B. Verification Problem

Since is an integer-valued vector, we have the chance
of estimating (or detecting) it exactly. Thus, for verifying the
estimate of , a reasonable choice is to compute the probability
of estimating correctly, i.e.,

(3)

Clearly, the larger this value, the higher the reliability on the
estimate Another reliability measure that is associated
with the real parameter, is given by

(4)

where denotes the Euclidean norm. This gives the
probability of lying in a Euclidean ball of radius of
its actual value. A combined reliability measure is

(5)

In practical cases, is “close” to only if and,
therefore, for “small” , (4) and (5) are “almost” equal. We
will focus on reliability measures (3) and (5) in this paper.
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II. BRIEF OVERVIEW

Recently, there has been a growing research interest in
integer parameter estimation in linear models due to its ap-
plication in the global positioning system (GPS), which is
a navigation system that enables quick, accurate, and in-
expensive positioning anywhere on the globe at any time.
Roughly speaking, a GPS user calculates its position through
triangulation by measuring its range (or distance) to satellites
orbiting the earth using electromagnetic signals [9]–[11], [22].
A special feature of GPS, which initially was not generally
understood, is the ability to create extremely precise ranging
signals by reproducing and tracking the RF carriers of the
satellites. Because the carriers have a wavelength of 19 cm,
tracking them to 1/100th of a wavelength provides a precision
of 2 mm. Although modern receivers can attain these tracking
precisions, we must still determine which carrier cycle is being
tracked (e.g., relative to the start of modulation). In other
words, carrier cycle resolution is vital for centimeter level
accuracy in positioning. Using this carrier tracking method, the
range measurement can be well approximated to be linear
in the position of the user and the ambiguous cycles of the
carrier signals , as given in (1).

Computing the ML estimates of and by observing
can be reduced to solving a least-squares problem inand

If there were no integer parameters , we could
compute explicitly as However,
because is an integer vector, the least-squares becomes very
difficult to solve, at least in theory. In terms of computational
complexity, the problem is at least as hard as a wide variety
of other problems for which no polynomial-time algorithm is
known or thought to exist. One purpose of this paper is to
show that although this problem istheoreticallydifficult, it is
possible to solve it efficiently in practical cases such as GPS.

A good overview of different approaches to the estimation
problem can be found in [11], [15], and references therein.
In our opinion, Teunissen [25]–[27] was the first to address
the estimation problem rigorously. Teunissen’s approach, as
noted in [27], is based on ideas from Lenstra [17] and
eventually resulted in the least-squares ambiguity decorrelation
adjustment (LAMBDA) method (see, e.g., [12] and [23]).
Lenstra’s work in [17] was modified a year later and led
to the discovery of the LLL algorithm [18], [19], which
can be thought of as an algorithm to approximate a set
of real numbers by rational numbers with a common small
denominator (simultaneous Diophantine approximation). We
will show that the LLL algorithm (or its variations) can be
used as a tool for a practically efficient method for solving the
estimation problem (see, also [7], [8], and [23]). Two nice
features of the LLL algorithm that enable such a method
are its practical efficiency and its guaranteed performance.
It is not clear whether Teunissen’s “ambiguity decorrelation
adjustment” method of [27] has any guaranteed performance
or polynomial complexity, although it is reported to work well
in practice.

The problem of verifying the ML estimates is also made
computationally difficult because of the presence of the integer
parameters. It turns out that the verification problem can also

be approached using the LLL algorithm to speed up the
algorithms for computing and bounding as a measure of
reliability. As far as we know, prior to our earlier publications
[7], [8], there had not been a sound theoretical treatment
for the verification problem, although the (heuristic) methods
frequently used in GPS applications had been reported to
work well in practice [11], [27]. Some of these methods, for
example, those in [30] and [31], use tests and the notion of
the shortest lattice vector as we do, but a precise mathematical
justification is lacking, and there is no apparent connection
between the reliability measures in these verification methods
and

To summarize, in this paper, we will show that by using
the LLL algorithm, it is possible to solve the estimation and
verification problems efficiently in practical cases such as GPS,
although both of these problems are theoretically difficult.
In Section III, we formulate the estimation and verification
problems more explicitly. In Section IV, we introduce the
LLL algorithm, and it is shown how it can be used to help
solve the verification problem. In Section V, the solution to
the estimation problem is addressed, where again, the LLL
algorithm plays a major role. Extensions to model (1) are
considered in Section VI, simulation results (based on GPS)
are given in Section VII, and the paper is concluded in
Section VIII.

Finally, it should be noted that although most recent ap-
plications in integer parameter estimation have been in GPS,
there are many other fields in which these results could have
an impact. These include, for example, radar imaging, MRI,
and communications (especially for multi-input/multi-output
channels).

III. PROBLEM FORMULATION

Since , the probability distribution of given
and is or

and therefore, from (2)

Using completion-of-squares arguments, it can be shown that

(6)

where

(7)

and is a positive definite matrix that only depends onand
Note that our underlying assumption is that the inverses in

(7) exist.
In (6), the term is constant and does not affect

and Since is positive definite, the first term in (6) is
always non-negative, and therefore, its minimizer for a given
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is with a minimum value of zero. The second
term in (6) does not depend on, and its minimum can be
found by minimizing over alone. Therefore, is simply
the minimizer of the second term, and In other
words

(8)

Clearly, (and therefore ) is given by the solution to
a least-squares problem involving integer variables. Ifwere
in , then, of course, we would have A simple
approach is toround (each component of) to the nearest
integer vector. This simple approach does yield when the
matrix is diagonal or nearly diagonal. In the general case
(and in practice), however, rounding will give an integer
vector that is very far from optimal. The problem of computing

is known to be NP-hard [3], [6].
In order to calculate the measures of reliability and

, we need to know the
probability distributions of our estimates. Note that we can
easily read the covariance matrices ofand from (6) as

and Since and are linear
functions of a Gaussian random variable ,
they are Gaussian random variables themselves, and we have

(9)

The probability distribution of suggests that , where

Multiplying both sides by (which

is the whitening matrix of ) and by defining , we get

(10)

In addition, (8) can be written in terms of and in the
equivalent form

(11)

The set is a lattice in Equation (11) states
that is found by computing the closest lattice point to
the vector In addition, according to (10), is off from
by Therefore, as long as is small enough, such that
remains closest to than any other point in the lattice, the
estimate of is correct (i.e., This is equivalent to

remaining inside theVoronoi cell of the lattice point
, i.e., the set of all points closer to than any other point

in the lattice. Because of the periodic structure of the lattice,
the Voronoi cell of is the translation of the Voronoi cell of
the origin by the vector , and therefore, we can write

where (12)

Therefore, is equal to the probability of a-dimensional
normal random variable falling inside the Voronoi cell

According to (9), , where , and
if , we have

which is equal to the probability of a-dimensional normal
random variable falling inside the ellipsoid
From (5), we finally get

(13)
Formulas (8) and (11)–(13) give the estimates and their

measures of reliability and will be used in later sections to
solve the estimation and verification problems.

IV. V ERIFICATION PROBLEM

As noted in Section I, the probability of detecting the integer
parameter correctly [ in (12)] can be used to verify the ML
estimates. The reliability measure given in (13) also requires
the calculation of Therefore, an essential step in verifying

and is the calculation of
As noted in the previous section, is given by the integral

of a normal probability distribution over the Voronoi cell of
the origin in the lattice It turns out that the
problem of finding the Voronoi cell of a lattice and performing
the integration is a very challenging one computationally [7].
Therefore, we are motivated to find fast ways to approximate

that, for example, would enable real-time reliability tests
instead. In fact, easily computable upper and lower bounds on

exist, which become tight as approaches unity. This is
a very fortunate property since, in practice, we are mostly
interested in our estimates when the probability of correct
integer parameter estimation is close to one (high reliability)
when the bounds are good.

In Section IV-A, we will see that the choice of for a
given lattice is highly nonunique. As a matter of fact, for

, there exists infinitely many matrices and with
such that

Although only depends on the lattice and not on the
specific choice of , this is not necessarily true for the
upper and lower bounds on Therefore, we can sharpen
these bounds by optimizing over the family of admissible
matrix representations for the lattice. In the next section, we
introduce the LLL algorithm that is an extremely useful tool
for sharpening the bounds on , and as will become clear
later, it is also useful for improving the efficiency of the
algorithm for solving the integer least-squares problem for
computing

A. Lattices and Basis Reduction

Let us denote the lattice generated by the matrix
by

The set of vectors is called basis for
since all lattice points are integer linear combinations of these
vectors. The same lattice can be generated by other bases as
well. For example, let be anyunimodular matrix, i.e., a
matrix such that the elements ofand its inverse are all
integers (or equivalently, the elements ofare integers and
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). Then, the mapping from to is one to one
and onto from the integer lattice into itself. It follows that
and generate the same lattice. Conversely,all bases of a
lattice arise by transformation via unimodular matrices. Thus

for some unimodular matrix

In other words, the set of unimodular matrices characterize
the set of bases for a given lattice.

Of the many possible bases of a lattice, we would like to
select one that is in some sense nice or simple orreduced.
There are many different notions of reduced bases in the
literature; one of them consists of requiring that all its vectors
be short in the sense that the product is
minimum. This problem is known as theminimum basis
problemand has been proved to be NP-hard [6].

Although the minimum basis problem is NP-hard, there is
a polynomial timealgorithm that given any lattice
with having rational elements, computes a new basis for

that is in some sensereduced. (In practice, always has
rational elements due to finite precision computation, but it
should be noted that the algorithm still terminates in a finite
number of steps if has irrational elements.) This algorithm
is due to Lenstra, Lenstra, Jr., and Lov´asz (LLL) and is very
efficient in practice (cf., [6]). Given a lattice generator matrix

, the LLL algorithm produces a new lattice generator matrix
(with unimodular) such that has two nice

properties. Roughly speaking, these are 1) the columns of
(the basis vectors) are “almost orthogonal,” and 2) the norm
of the columns of (the length of the basis vectors) are not
“arbitrarily large.”

More specifically, if the columns of are ,
then

in which for , and is
an orthogonal basis found by performing the Gram–Schmidt
orthogonalization procedure on The fact that is
at least twice as large as for shows that the basis
vectors are “almost orthogonal.” Moreover, we have

(14)

and

(15)

(16)

which show that the length of the basis vectors cannot be
“arbitrarily large” (note that is constant for any rep-
resentation of the lattice since all bases of a lattice arise by
transformation via unimodular matrices that have a determi-
nant of ). Although the bounds obtained from (14)–(16)
appear to be very loose for moderately large values of, the
LLL algorithm performs substantially better in practice [21].

Refer to [6, ch. 5] and references therein for a more
complete discussion of basis reduction in lattices. In fact, there

Fig. 1. Voronoi cells of the lattice points are translations ofV0:

are other polynomial time algorithms for basis reduction in
lattices that give better worst-case bounds than those given
here but have higher worst-case complexity [13], [24]. The
LLL algorithm is described in the Appendix.

B. Calculating

Computing as given in (12) requires the knowledge
of , which is the Voronoi cell of the origin in the lattice
generated by The Voronoi cell of a point is the set of
all points in that are closer to than any other point in
the lattice. When the Euclidean norm is our distance measure,
the Voronoi cells of the lattice points become polytopic, i.e.,
an intersection of half spaces in By definition

(17)

The shape of the Voronoi cells are similar and are translated
versions of (Fig. 1). In addition, note that is symmetric
with respect to the origin.

as defined in (17) is an intersection of infinitely many
half spaces. Such a description is not practical to perform
a (numerical) integration to compute , and therefore, we
should eliminate the redundant half spaces to obtain a finite
description for Although this is theoretically possible
and the use of the LLL algorithm speeds up the method
(cf. [7]), it might not be possible in, for example, real-
time applications. Adding to this the computational cost and
deficiencies of the numerical algorithm to perform the integral
of the Gaussian probability density function over, we
conclude that although computing is possible, it requires
extensive computation that might be infeasible in practice or
not worthwhile. Therefore, finding easily computable bounds
on is practically important.

C. Computing Upper and Lower Bounds on

1) Upper Bound Using : The volume of the paral-
lelepiped formed by the basis vectors of a nondegenerate
lattice is given by Since the Voronoi cells of the lattice
points partition the space with the same density (cells per unit
volume) as the parallelepiped cells, it follows that the volume
of the Voronoi cells are also equal to Therefore,

is the volume of the region for integrating the noise
probability density function and is related to the probability of
correct integer parameter estimation. Roughly speaking, the
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Fig. 2. Ball centered at the origin and of radiusdmin=2 lies inside the
Voronoi cell of the origin. The probability of noise falling in this ball gives
a lower bound onPc:

larger this value, the larger the probability of correct integer
estimation. Of course, the shape of the Voronoi cell is also a
major factor in We can, however, develop an upper bound
on that is based on , which is the volume of a
Voronoi cell. Among all regions with a given volume, the one
that maximizes the probability (under a normal distribution) is
a Euclidean ball (simply because the sublevel sets of a normal
distribution are Euclidean balls). Therefore, the probability of
a Euclidean ball of volume equal to is larger than

A -dimensional Euclidean ball of radius has volume
with , where is the Gamma

function for positive integer ). Therefore,
the radius of a -dimensional Euclidean ball of volume
is , and an upper bound on becomes

with

The sum of squares of independent zero-mean, unit variance
normally distributed random variables is a distribution with

degrees of freedom (cf., [14]). Thus, is with
degrees of freedom, and we get

(18)

where is the cumulative distribution function of a
random variable with degrees of freedom. This bound

is a very cheap one computationally since it only requires the
determinant of followed by a cumulative distribution
function table lookup. In practice, turns out to be a
very good approximation to Simulations in Section VII
illustrate this fact. Let us note that there are many other
methods to compute upper bounds on; see [7].

2) Lower Bound Based on : Given the lattice
with , the shortest lattice vectoror the

minimum distanceof the lattice is defined by

(19)

is actually the distance between the origin and its closest
neighbor in the lattice. A ball of radius is the largest
ball centered at the origin that lies in (see Fig. 2).

Clearly, the probability of noise falling in a ball centered
at the origin and of radius , where , gives us a

lower bound on This lower bound is given by

where and

or in terms of the cumulative distribution function

where (20)

Obviously, this lower bound is best when
In practice, we usually only care for being exact when
is close to unity. It can be shown that as approaches

unity, with becomes tight,1 and therefore,
we will not be too conservative in accepting when, say,

[7].
3) Computing and Lower Bounds on : Thus far,

we have not discussed how to compute Unfortunately,
computing is conjectured to be NP-hard, and no
polynomial-time algorithm has been found to compute
A generic algorithm for finding is given in [7]. It is
important to note that if the columns of are a reduced
basis in the sense of the LLL algorithm, the efficiency of this
algorithm is much better. However, we have no guarantee that
this algorithm will stop in polynomial time. Therefore, it is
desirable to find methods for computinglower boundson
instead that have very low computational complexity. These
bounds can be used in (20) to get very fast lower bounds on

One of the many methods (cf., [7]) for computing a lower
bound on is suggested in [6] and is as follows.

Gram–Schmidt Method Lower Bound on : Suppose
, and is the Gram–Schmidt

orthogonalization of so that , and

for (21)

Then, a lower bound on is

(22)

If the columns of are a reduced basis in the sense of the LLL
algorithm, this lower bound is guaranteed not to be arbitrarily
far from (i.e., there is a bound in terms ofon how large

can be [6]). Therefore, the LLL algorithm can be
used to sharpen this lower bound, which, in effect, sharpens
the lower bound

D. Verifying the Real Parameter Estimate

Until now, we have mainly discussed the issue of calculating
(or bounding) the probability of correct integer estimation

, i.e., the measure of reliability for the integer parameter
estimate. Once the calculation of or its bounds sug-
gest that the integer parameters are resolved correctly, the
covariance matrix is known as
given in Section III, and we can verify thereal parameter

1It can be shown that the lower bound error(Pc � Pc;low) is largest
when V0 is a slab. In this case, it is easy to verify that asPc ! 1,
(Pc � Pc;low)! 0 (cf. [7]).
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estimate For example, since the distribution of
is zero-mean Gaussian, has a

distribution with degrees of freedom, and therefore,
ellipsoidal confidence regions can be found on , using

distribution table lookups (cf., [14]).

V. ESTIMATION PROBLEM

A. Nearest Lattice Vector Problem

The main computational task of the estimation step is
the solution to an integer least-squares problem that gives
the maximum likelihood estimate of the integer parameter.
According to Section III

(23)

or equivalently

(24)

where , and
Equation (23) can be interpreted as finding the closest lattice

point in to This problem is known as thenearest
lattice vector problemand is NP-hard [3], [6]. However, in
practice, there are reasonably efficient ways to solve this
problem, which is the main topic of this section.

Note that if in (24) is a vector with integer coordinates,
can be found immediately as , which would give

a minimum value of zero for the quadratic
This only happens when the noise level is zero so that the
observed is one of the lattice points. When is diagonal,

can be simply found by rounding the components ofto
the nearest integer since the integer variables are separable as

A diagonal corresponds to a generator with orthogonal
columns. This observation suggests that ifis “almost” diago-
nal, or equivalently, the columns of are “almost” orthogonal,
rounding in (24) would give a close approximation to

Since we can replace by , where is any unimodular
matrix, we can use the LLL algorithm to find an almost
orthogonal basis for a given lattice Rounding can
then be applied to get a hopefully good approximation for

This approximation can serve as a good initial guess for
in any algorithm for solving the optimization problems

(23) or (24).

B. Suboptimal Polynomial-Time Algorithms

In this subsection, we describe a suboptimal polynomial-
time algorithm for calculating the minimum of
or over the integer lattice. Suboptimal
algorithms of this kind are important for a few reasons. First,
they can be performed efficiently with a guaranteed low worst-
case complexity. Second, suboptimal algorithms provide a
relatively good initial guess or relatively tight upper bound for
any global optimization algorithm. Finally, these suboptimal

Fig. 3. If k~y � Gzsubk � dmin=2, then it is guaranteed thatzsub is
the global minimizerzML: dmin or any lower bound ondmin is usually
a byproduct of the verification step and can be used without any additional
computation.

algorithms might find the global optimum as they often do in
practice. If or any lower bound is known, a
sufficient condition for the suboptimal minimizer to be
the global minimizer is simply given by

(25)

as there is only one lattice point in a ball centered at
and with radius (see Fig. 3).

Suboptimal Algorithm for Finding an Approximately Nearest
Lattice Point Based on Rounding:Suppose that
and are given. A suboptimal solution in
the sense that

(26)

exists that can be found as follows [2].

• Perform the LLL algorithm on the initially given basis
vectors, which are the columns of This results in a new
lattice generator matrix , which is almost orthogonal and
a unimodular matrix such that

• , where is the component-wise
rounding operation to the nearest integer.

• If , where is the minimum
distance of is theglobal minimizerof
for

Clearly, the reason why component-wise rounding gives a
good suboptimal solution is the fact thatis almost orthogo-
nal because of the use of the LLL algorithm. Another heuristic
to get a suboptimal solution is to perform the component-wise
rounding recursively, i.e., round only one of the components
of (e.g., the one closest to an integer) at a time, then fix
that component in the least-squares problem, and repeat.

Another suboptimal polynomial time algorithm for finding
an “approximately” nearest lattice point is due to Babai [2],
[6]. In this method, is found by recursively computing
the closest point in sublattices of to The provable worst-
case bound we get is better than (26) with the price of some
additional computation. As reported in [21] and from our own
experience, it should be noted that these suboptimal algorithms
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work much better in practice than what the worst-case bounds
suggest.

Using the worst-case performance bounds of these sub-
optimal algorithms, it is possible to find a lower bound on
the probability that given , i.e., the
probability that the suboptimal estimate is correct given the
optimal estimate, is correct. Suppose that the known worst-
case suboptimality factor of the suboptimal algorithm is
[e.g., in (26), ] so that

We have

If , then so that
However, can be (lower)

bounded by as , where is
the inverse function of the function (the probability of the
tail of the Gaussian PDF).2 Therefore, if , we have

, or equivalently

Now, if , then is with degrees of
freedom, and we finally get

(27)
The interesting point about (27) is that as gets larger, the
bound on the probability gets larger, which means that the
suboptimal algorithm is guaranteed to perform better. In other
words, for large enough or when the reliability on the
integer estimate is high, these suboptimal algorithms have a
guarantee on their performance. Again, we must note that,
in practice, the performance is much better than what the
worst-case bound suggests.

C. Searching for Integer Points Inside an Ellipsoid

Once a suboptimal solution to the integer least-squares
problem has been found, we need to check whether any
better solution exists or not. This problem is equivalent to
checking whether an ellipsoid contains any points with integer
coordinates. We consider this problem in this subsection.

Suppose that the ellipsoid is given by either of the two
equivalent descriptions

or

(28)

where , , and Our
goal is to find at least one integer point in or prove that
no such point exists. In other words, we would like to find,

2The reason is simply that a slab of widthdmin covers the Voronoi cell;
see [7].

Fig. 4. Minimum volume box covering the ellipsoid(x � ẑ)T

��1(x � ẑ)<r2 is related to the diagonal entries of� andr:

if any, a such that or, equivalently,

We can easily bound the integer points
satisfying by bounding in each
dimension, i.e., to bound for This is equivalent
to finding theminimum volume boxcovering an ellipsoid (see
Fig. 4). The result is

(29)

for , where and are the rounding up
and rounding below operations, respectively. Clearly, (29)
gives anexplicit outer approximation for integer points that
lie inside the ellipsoid. However, this outer approximation can
be very bad (i.e., contain many more integer points than the
ellipsoid) if the minimum volume box approximation is not
good. Therefore, in such cases, checking whether the ellipsoid
contains an integer point by searching over the integer point
candidates (29) is very inefficient.

The minimum volume box approximation is best when the
axes of the ellipsoid are parallel to the coordinate axes, or
equivalently, is diagonal. Therefore, if we perform the LLL
algorithm on the originally given basis vectors so that we are
guaranteed to get an “almost” orthogonalor diagonal ,
the minimum volume box covering the ellipsoid is hopefully a
good approximation to the ellipsoid and contains fewer integer
points satisfying (29). Now, by checking whether any of these
integer points satisfy the inequality ,
we can determine whether there is an integer point inside the
ellipsoid or not.

Even if is diagonal, the volume of the minimum volume
box is larger than the volume of the ellipsoid by a factor of

This factor is still very large for even
moderate values of, and therefore, the set of integer vectors

satisfying (29) could be much larger than the set of integer
points inside the ellipsoid. Hence, the method just explained
for finding an integer point inside the ellipsoid could still be
inefficient in practice.

A more efficient method for searching for integer points
inside an ellipsoid is to bound recursivelyfor
This can be easily done whenis lower triangular as follows.
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Suppose that

...
...

...

is lower triangular. Then, gives

and therefore

and so on. Thus, , which is the th element of , satisfies
the inequality

(30)

with

sgn
and

sgn
(31)

in which

for (32)

and

for (33)

Note that the upper bound might become less than the
lower bound as a result of lower and upper rounding. In this
case, there is no integer point in the ellipsoid with the values
chosen for the coordinates , and therefore, we
need to choose other values for and continue.
Whenever, for all possible values of, satisfying

, we get an upper bound that is less than the lower bound for
one of the coordinates, it can be concluded that no point with
integer coordinates exists inside the ellipsoid. This suggests
the following search method.

Searching for Integer Points Inside an Ellipsoid:Suppose
and are given. In order to find a

point satisfying or prove that no such
point exists, do the following.

• Find unitary transformation such that is lower
triangular.

• ;
• while 1

a) Compute and from (31)–(33);
;

b) while
• if no integer point exists in ellipsoid;stop.
•

c) end
d) Pick as the element in that is closest to

the average of the largest and smallest elements in
;

e) if , then is an integer point
inside the ellipsoid;stop.

f)

• end
Note that in the above search method, gives the set of
possible values for at each iteration. is taken as the
element in that is closest to the average of its largest
and smallest elements. For example, if , then

, and is chosen. For ,
the average of the largest and smallest elements is
, and therefore, we should pick The reason for

choosing like this is that intuitively, the points closer to the
midpoint of the interval of possible values forcorrespond to
the “fatter” region of the ellipsoid that is more likely to contain
an integer point. In addition, these points correspond to the
center of the ellipsoid and will hopefully result in lower values
of This is especially important in the algorithm for
finding the global minimum of

D. Global Optimization Algorithm

Now, we have all the tools to describe a global optimization
method to solve theinteger least-squaresor nearest lattice
vector problem to find in (23) or (24).

Global Optimization Algorithm for Finding : Suppose
and are given. Furthermore, let be the

minimum distance or a lower bound on the minimum distance
in the lattice , which is the minimizer of

for , can be obtained as follows.

• Compute a suboptimal solution to the integer least-
squares problem using the method of
Section V-B.

• if , then stop.
• ;
• while 1

a) Search for an integer point inside the ellipsoid
using the method in Section V-C;if no such

point exists,then stop.
b) Let be the integer point found in the previous

step; ;
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c) if , then stop.

• end
Note that in the first step, we perform a suboptimal polynomial
time algorithm to find a good initial integer parameter estimate

If we are lucky, , but even if this is not true,
we will hopefully get a small initial and, therefore, a small
search space. The algorithm stops at the second step whenever

as it is guaranteed that no integer point lies inside the
ellipsoid. The algorithm still works without any knowledge of

as we can simply take in such cases. However, a
that is reasonably close to may reduce the number of

outer iterations by one.
In practice, simulations show that this global optimization

method is very efficient for problems with a few ten integer
variables, although the worst-case complexity is not polyno-
mial. Such problems can be solved almost instantly on a typical
personal computer3.

E. Computing the Real Parameter Estimate

Once is found by the global optimization algorithm in
Section V-D, the maximum likelihood estimate of, which is
the real parameter, is straightforward. is simply given as
in Section III using (7) and (8).

VI. EXTENSIONS

In this section, we consider extensions to model (1). We first
consider the more general case in whicha priori knowledge
on the statistics of is assumed and then a special case in
which has state-space structure. Finally, we show how to
modify the estimation algorithms to deal with the case in which
component-wise constraints are added on

A. Maximum a priori (MAP) Estimates

When there isa priori knowledge on the distribution of the
parameters, an alternative to maximum likelihood estimation
is maximum a posteriori(MAP) estimation. In this case, the
estimates are found as to maximize the probability ofand
having observed In other words

(34)

If we assume that the noise is and is known a
priori to be , MAP estimates for and can be
found similarly by solving a least-squares problem. Equation
(6) still holds but with a different definition for and

It can be shown that these definitions should be

(35)

[Obviously, (7) can be recovered from (35) by setting
and ] The inverses in (35) always exist when

3Contact the authors for an implementation of this global optimization
algorithm in Matlab.

are full column rank and are nonsingular. The equations
for etc. are as before but using these new values
for and and are given by similar
formulas to (8) with the ML subscript replaced by MAP.

B. State-Space Structure

Roughly speaking, in the case of observations ,
calculating and using (7) or (35)
requires operations to compute the various matrix
inversions involved, which is a substantial amount of work
for large Usually, , and therefore, calculatingand

can be even more computationally intensive than solving the
integer least-squares problem. Moreover, in many applications,
the data comes in sequentially, and it is desirable to findand

for sequentially increasing values of without requiring
any data storage. Whenhas finite-dimensional (state-space)
structure, it is possible to compute and recursively
and with a (significantly) smaller number of floating-point
operations.

Assume a finite-dimensional (state-space) structure for
as

(36)

and suppose that the observationdepends on and
through the linear relationship

(37)

where4 are known matrices, and
are zero-mean (jointly) Gaussian random variables such that

The goal is to compute the MAP estimate of(and ) given
Using the connection between the standard least-

squares problem and the Kalman filter, it is possible to derive
formulas for updating and recursively and, therefore, to
compute from (11).

More specifically, it can be shown that (cf., [7]) the MAP
estimate of , given , is given by

where

and and can be recursively computed through

4For example, (36) might describe the dynamics of a structure and (37)
might be the linearized equations for the pseudo-ranges obtained from GPS
sensors mounted on the structure. As another example, these equations might
describe the GPS pseudoranges obtained in a surveying scenario [7].
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in which and are found by theinversesystem with
inputs and , respectively, i.e.,

and

with and

(38)

for Moreover, the probability of correctly
estimating at time is given by the integral of
a -dimensional normal random variable over the Voronoi cell
of the origin in the lattice

Once is calculated, standard Kalman filter-based meth-
ods (e.g., thetwo-pass smoothingalgorithm in [1]) can be
used to estimate given the observations for

As a final note, we should add that whenis constant
(no dynamics involved), there exists an obvious state-space
formulation for , i.e.,

Thus, , and we can simply
use the recursive formulas derived previously.

C. Component-Wise Constraints on the Integer Parameter

In previous sections, the integer parameterin (1) or (37)
was assumed to beunconstrained. However, in many practical
cases (e.g., communications), is bound to lie in a given
constellationor subset of , and therefore, the estimation
algorithms of Section V need to be modified. Fortunately, this
is very easy to do when, for example, there are component-
wise constraints on

Specifically, suppose that for in
which is given. The ML (or MAP) estimate of
is given by an integer least-squares problem similar to (11)
but with the additional constraints , where the matrices

and are defined as before. To deal with these additional
constraints, in order to compute , the suboptimal algorithm
of Section V-B can be modified by mapping theth component
of to its closest element in , and the algorithm
of Section V-C can be modified by replacing the assignment

with
Once is found using the global optimization algorithm of
Section V-D with the mentioned modifications, can be
computed using the exact same formulas.

VII. SIMULATIONS

A. Navigation in One Dimension Using Sinusoidal Beacons

In this section, we illustrate an example that is the basis of
most electromagnetic distance measurement (EDM) equipment

Fig. 5. Beacons at pointss1 ands2 transmit sinusoidal signals of wavelength
�1 and�2, respectively. The (synchronized) receiver atx0 locates itself by
measuring the phase of the signals emitted from the beacons. Estimatingx0

can be cast as estimating integer variables in a linear model.

used by surveyors and geodesists [4]. For simplicity, we
consider a 1-D case. The goal is to estimate an unknown
position using sinusoidal signals sent by two beacons
(transmitters) located at known positions and (see
Fig. 5).

Specifically, the (synchronized) receiver is located at
and measures the phase of the signals emitted fromand

Due to the periodic nature of the signals, the receiver can
only measure these phases modulo some integer multiple of
the wavelengths. Let and be the measured phases. By
simple geometry (assuming no measurement noise)

or

(39)

As can be clearly seen, this gives us two linear equations in
three unknowns and

By measuring , it becomes clear that is located at
distance plus an integer multiple of from Therefore,
the possible values for are points that are at distance
apart from each other. Similarly, by measuring, another
set of possible values for is achieved that consists of
points apart from each other. Hence, by combining both
measurements and , the possible values for become
points that are at distanceapart, where
with , and (i.e., and
are relatively prime). Therefore, having two transmitters is
equivalent to having a single transmitter withlarger (or equal)
wavelength. If is large and we have a rough idea of where

is located (say, with an uncertainty less than can
be found with high reliability. If there are more than just
two transmitters with different wavelengths, the equivalent
wavelength is increased, and therefore, the uncertainty
in is reduced. For example, with three transmitters of
wavelengths and , the equivalent becomes

, where
If is irrational, there are no integer numbers and

such that In this case, it can be simply
verified that the choice of satisfying (39) is unique, and
hence, can be determinedexactly.
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Fig. 6. Pc as a function of�1=�2 for �1�2 = 2; � = 0:01; and�x = 10:
Computed points are shown with a “�.”

Now, suppose that thereis measurement noise so that

where and and are uncorrelated. In
addition, we assume that Using (35), we have

Assuming the values
we get Now, assuming that

and , we get (The values
for were computed using Monte Carlo with random
variates.) Note that although is equal in both
cases (and, therefore, so are and ), is much
higher in the second case. The reason is that in the first
case, is rational, whereas in the second case,

is irrational. This is intuitively reasonable by
our discussion for the noiseless case. Without measurement
noise, can be estimated exactly if is irrational. With
measurement noise, can be estimated “better” (or is
relatively higher) when is irrational.

This discussion suggests that is a very complicated
function of (for constant ). Roughly speaking, a
rational corresponds to a relatively smaller, whereas
an irrational corresponds to a relatively larger Fig. 6
shows a plot of as a function of for 200 values,
with and Even this sampling
shows the erratic behavior suggested by the discussion above.

is constant for
Note that these ideas hold in higher dimensions, and in

general, is a very complicated function of the wave
vectors of the signals emitted from the transmitters. As will
become clear in the next subsection, the transmitters (or
receiver) need not be stationary to get a linear model involving
integer parameters. In fact, moving transmitters are better
as far as estimation is concerned because the change of
wave vectors of such transmitters has the same effect as an
increased number ofstationary transmitters. In other words,
we get better estimates when the relative receiver-transmitter

Fig. 7. Simulations in this section are based on a simplified GPS setup in
two dimensions. The radius of the the shaded circle (earth) is 6357 km. Three
satellites are assumed that orbit the earth at an altitude of 20 200 km and
period of 12 h.

geometry changes with time. In GPS using carrier phase
measurements, this geometry change is crucial and is caused
by orbiting satellites transmitting RF signals (see the next
simulation).

B. GPS Setup

In general, navigation using phase measurements from si-
nusoidal signals transmitted from far-away locations in space
with known coordinates can be cast as an integer parameter
estimation problem in a linear model. The GPS is one such
case in which the sinusoidal signals are sent by satellites
orbiting the earth. The phase measurement noise in GPS,
however, is not completely Gaussian and depends on non-
random effects such as receiver/satellite clock bias, residual
atmospheric errors, multipath, etc. In practice, measurements
from different satellites and receivers are combined (e.g.,
subtracted) to partially remove these nonrandom effects. Refer
to [10], [11], [16], and [22] for a thorough discussion of such
techniques.

The simulations in this section are based on a synthetic
2-D setup similar to GPS (see Fig. 7). We assume that the
position of the (GPS) receiver, that is to be determined,
can be modeled as a zero-mean Gaussian random variable
with variance in each dimension. The coordinate axes are
chosen as in Fig. 7 such that the origin is a point on the
surface of the earth (a point on the periphery of a circle of
radius equal to that of the earth km). We suppose
that there are three visible satellites orbiting the earth with
an altitude of 20 200 km and with a period of 12 h (angular
velocity of s The satellites are transmitting
a carrier signal of wavelength cm each, and their
coordinates are known to the receiver. The receiver, which
is assumed to be completely synchronized with the satellites
(meaning that it can generate the transmitted carrier signals),
measures the phase of thereceivedcarrier signals every
s and unwraps them as times goes by. By multiplying these
(unwrapped) phase measurements by the wavelengthdivided
by , the receiver can measure its distance (or range) to
each satellite up to some additive noise, which is assumed
to be and, of course, aninteger multiple of the
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Fig. 8. ExactPc (dash-dotted curve) andPc;up (upper bound usingj detGj;
solid curve) as a function of time.Pc;up is a very good approximation toPc:
Note that since the Monte Carlo method for findingPc is inexact, this error
Pc;up � Pc occasionally becomes negative. The error is relatively small,
especially for low and highPcs. The maximum error is roughly 0.03.

wavelength. (This integer multiple can be thought as the
number of carrier signal cycles between the receiver and the
satellite when the carrier signal is initially phase locked.) By
linearizing the range equations, the problem becomes one of
estimating a real parameter (the coordinates of the receiver

) and an integer parameter (the integer multiples of the
wavelengths) in a linear model, as in (1).

In the simulation that follows, the actual location of the
receiver is that will be estimated using
the carrier phase measurements. We assume that the standard
deviation of is m along each coordinate axis.
The satellites make angles of 90, 120, and with the
axis initially, and the direction of rotation for all of them is
clockwise. The variance of phase measurement noise in units
of length is taken as m. Using the carrier phase
measurements taken over a period of 200 s, the receiver tries
to find its position (as well as the ambiguous integer
multiples of the wavelengths ) as a function of time by
solving for the MAP estimates using the method described in
this paper. The final angles of the satellites (after 200 s) with
respect to the axis become 88.3, 118.3, and 43.3.

Fig. 8 shows theexact (computed by Monte Carlo using
1500 random variates), and , which is the upper bound
using , as a function of time As time

is increased, and increase and approach unity.
Intuitively, this makes sense since the geometry of the problem
is changing as a function of time (because of the rotation of the
satellites), and therefore, we get increasingly more information
to estimate As can be seen, is a very sharp bound
on Note that computing is very easy and only
requires computing (for which analytical closed-form
expressions are also available for a variety of GPS models
[30]) followed by a table lookup.

In practice, it might not be computationally feasible to
compute (e.g., in real-time applications), and an easily
computable lower bound on is required to complement
the information obtained from the upper bound The
lower bound in (20) can be used for this purpose, in

Fig. 9. Pc;up andPc;low as a function of time. The gap becomes smaller
as Pc increases.

(a)

(b)

Fig. 10. (a)Pc as a function of time (dash-dotted curve) and times at which
the integer parameters are resolved correctly using global optimization (solid
curve, a high means that the integer parameters are resolved correctly, and
a low means that they are not). The integer parameters remain resolved for
Pc > 0:8 or after 85 s. (b)kx � xMLk as a function of time. Note that
at times that the integer parameters are resolved correctly, this error almost
drops to zero.

which is the lower bound on using the Gram–Schmidt
method. Fig. 9 shows and versus time Note that
although is a monotonic (and continuous) function of, this
is not necessarily true for its bounds. For example, at ,
there is a jump in the value of As is increased, both

and approach unity, whereas their gap approaches
zero (cf., Section IV-C2). This is a very good feature as we
are not too conservative in bounding when there is high
reliability in our estimates (which could be the only case when
we are really interested in our estimates). If we assume a 99%
reliability, we can say that our estimate onis unreliable for

and is reliable for
The next two plots (Fig. 10 and 11) show the results of

the estimation process. Fig. 10 shows the times at which the
integer parameters are estimated correctly, as well as the norm
of the error in the estimated real parameter as a
function of time. This figure shows that when becomes
relatively high, the integer parameters are resolved as we
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(a)

(b)

Fig. 11. (a) Same as Fig. 10; repeated here for convenience. The times at
which the integer parameters are resolved using global optimization. (b) Times
at which the integer parameters are resolved using simple rounding (without
the LLL algorithm). Clearly, it takes a longer time for the integer parameter
estimates to settle in this case than in the global optimization case (150 as
compared to 85 s).

would expect. In addition, once the integer parameters are
resolved, the error in thereal parameter estimate becomes
insignificant. This justifies the use of the probability of correct
integer estimation as a measure of reliability for the real
parameter as well.

Fig. 11 compares the times at whichis resolved correctly
using global optimization and when using simple rounding
(i.e., without using the LLL algorithm). It
takes a much longer time in the simple rounding method for
the integer parameter estimates to settle (150 as compared to
85 s.)

We have plot the number of inner iterations in the global
optimization algorithm versus time in Fig. 12. A number of
iterations equal tozero means that the initial value for
found in the algorithm (by performing the LLL algorithm
and rounding off) is guaranteed to be the global minimizer
since the error norm is less than [see (25), where is
the lower bound on using the Gram–Schmidt method].
It is very interesting to note that for high ( or
after 95 s), which is he only case for which we are really
interested in , this always happens, and therefore, the
global optimization algorithm becomes extremely efficient.
According to the discussion of Section V-B, this makes perfect
sense since as gets larger, so does the probability that the
suboptimal algorithm gives the optimal solution. Note that the
Gram–Schmidt lower bound is very easy to compute and is a
byproduct of the verification step.

Another example of the application of the methods de-
scribed in this paper for GPS can be found in [5].

VIII. C ONCLUSIONS

In this paper, we considered parameter estimation and
verification in linear models subject to additive Gaussian
noise when some of the parameters are known to be inte-
gers. The integer nature of these parameters results in high

(a)

(b)

Fig. 12. (a)Pc as a function of time. (b) Number of inner iterations in the
global optimization algorithm for finding the integer parameter estimates as
a function of time. For highPc, the initial guess for the global minimizer is
guaranteed to be the global minimizer using a very cheaply computed lower
bound ondmin (using the Gram–Schmidt method), which is a byproduct of
the verification step. Therefore, the global optimization algorithm becomes
extremely efficient for highPc:

computational complexity for finding the maximum likelihood
estimates. The main computational effort in the estimation step
is the solution to an integer least-squares problem (NP-hard).
Verifying the maximum likelihood estimates is also as hard
as the estimation problem. The probability of correct integer
parameter estimation was used to verify the estimates,
which is a quantity that is very difficult to compute numerically
(e.g., just bounding using is conjectured to be NP-
hard).

The estimation and verification problems are closely
related to solving simultaneous Diophantine equations (non-
homogeneous and homogeneous, respectively). Methods for
solving simultaneous Diophantine equations (optimal up to a
factor of ) are chiefly based on a polynomial time algorithm
due to Lenstra, Lenstra, and Lovász (LLL algorithm), and
therefore, the LLL algorithm is very useful in finding relatively
efficient algorithms for solving the estimation and verification
problems. It should be noted that there are different alternatives
to the LLL basis reduction algorithm in the literature (cf., [13]
and [24]) that (almost arbitrarily) trade off the complexity of
the algorithm with its performance (i.e., for example, how well
it can be used to approximate ). A more complex basis
reduction algorithm can be used to get a better lower bound
on and, hence, a better lower bound on In addition,
such an algorithm can be used to get a better initial guess for

that can possibly result in a better overall efficiency for
the global optimization algorithm of Section V-D.

In practice, the proposed global optimization algorithm for
solving the estimation problem is very fast and almost instantly
solves least-squares problems with a few tens of integer vari-
ables (larger problem sizes than those typically encountered
in applications such as GPS) on a typical personal computer.
Moreover, the global optimization algorithm becomes even
more efficient for high or when the estimates become
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reliable5 (according to Section V-B, as gets larger, then
so does the probability that the suboptimal algorithm gives the
optimal solution). As for the verification problem, it is possible
to compute bounds on very efficiently that become exact as

approaches unity, and therefore, we are not too conservative
in bounding when the estimates become reliable.

Simulation results show that we will get very poor estimates
if we neglect the integer nature of the parameters, i.e., treat
these parameters as being real, compute the estimates by
solving a standard least-squares problem, and then round them
off to the nearest integers.

All these observations suggest the following general outline
for integer parameter estimation in linear models (e.g., in GPS
applications):

General Outline for Integer Parameter Estimation in Linear
Models: Under the setup of Section I, do the following.

• Update and after every measurement, say, recur-
sively, as in Section VI-B.

• Compute in (18), which is the upper bound on
This bound is very tight in practice, as seen in

the simulations. While is small, the reliability in the
estimates is low (so it is not necessary to compute lower
bounds on or even ).

• When becomes large (say, ), compute the
lower bound in which the Gram–Schmidt method
is used to provide a lower bound on

• When becomes high (say ), the estimate
is reliable, and for practical purposes, it can be assumed
that If only reliable estimates are required,
only at this step, solve for using the algorithm of
Section V-D. Since is close to unity, the algorithm of
Section V-D for computing is very efficient.

• Once the integer parameteris resolved, plug
into the equations, and use standard methods to estimate
or verify the real parameter (see Section V-E and
Section IV-D).

APPENDIX

LENSTRA, LENSTRA, LOVÁSZ (LLL) A LGORITHM

Suppose a lattice with is given.
A reducedbasis for can be obtained as follows [6].

• Perform theGram–Schmidt orthogonalizationprocedure
on the vectors i.e., compute the vectors

through the recursion (21).
will be an orthogonal basis for the subspace spanned by

From (21), it is trivial that any vector
can be expressed as a linear combination of the vectors

as

(40)

where for , and

5This property is specially useful in communications applications where the
system is always designed to achieve highPc. In such cases, the suboptimal
methods of Section V-B for computing the least-squares solution would yield
zML (with high probability), which can be checked using (25) (cf., [20]).

• For and given for ,
replace by , where is the integer
nearest to Update the s and s with the new s
according to (21) and (40).

• If there is a subscript violating

(41)

then interchange and and return to the first
step6; otherwise, stop. is the reduced
generator matrix of the lattice

The choice of 3/4 in (41) as the allowed factor of decrease is
arbitrary; any number between 1/4 and 1 would do just as well.
The most natural choice (giving a best upper bound on the
product ) would be 1 instead of 3/4, but the
polynomiality of the resulting algorithm cannot be guaranteed.
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