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Abstract

We consider parameter estimation in linear models
when some of the parameters are known to be integers.
Such problems arise, for example, in positioning using
phase measurements in the global positioning system
(GPS.) Given a linear model, we address two problems:

1. The problem of estimating the parameters.

2. The problem of verifying the parameter esti-
mates.

Under Gaussian measurement noise:

� Maximum likelihood estimates of the parameters
are given by solving an integer least-squares prob-
lem. Theoretically, this problem is very di�cult
to solve (NP-hard.)

� Verifying the parameter estimates (computing
the probability of correct integer parameter es-
timation) is related to computing the integral of
a Gaussian PDF over the Voronoi cell of a lattice.
This problem is also very di�cult computation-
ally.

However, by using a polynomial-time algorithm due to
Lenstra, Lenstra, and Lov�asz (LLL algorithm):

� The integer least-squares problem associated
with estimating the parameters can be solved ef-
�ciently in practice.

� Sharp upper and lower bounds can be found on
the probability of correct integer parameter esti-
mation.

We conclude the paper with simulation results that are
based on a GPS setup.
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1 Problem Statement

1.1 Setup

Throughout this paper, we assume that the observation
y 2 Rn is related to the unknown vectors x 2 Rp (real)
and z 2 Zq (integer) through

y = Ax+Bz + v; (1)

where A 2 Rn�p (full column rank) and B 2 Rn�q

are known matrices. The measurement noise v 2 Rn is
assumed to be Gaussian with zero-mean and covari-
ance matrix identity, i.e., N(0; In�n). This can be
assumed without loss of generality, as we can always
rescale equation (1) by the square root of the covari-
ance matrix of v. Given y, A, and B, our goal is to �nd

and verify estimates of the unknown parameters x and
z. Some previous results are given in [6] and [7] and
references therein.

1.2 Estimation problem

We consider maximum likelihood (ML) estimates xML

and zML for x and z respectively that maximize the
probability of observing y, i.e.,

(xML; zML) = argmax

(x; z) 2 Rp�Zq

�
pY jX;Z(yjx; z)

	
: (2)

1.3 Veri�cation problem

Since z is an integer-valued vector, we have the chance
of estimating (or detecting) it exactly. As a result,
for the veri�cation step, we compute the probability of
estimating z correctly, i.e.,

Pc = Prob(zML = z); (3)

Clearly, the larger this value the higher the reliabil-
ity on the estimates xML and zML. Another reliability
measure can be

Prob(kx� xMLk < �); (4)

where k � k denotes the 2-norm. This gives us the prob-
ability of the real parameter estimate lying in a ball



of radius � of its actual value. A combined reliability
measure is

Prob(kx� xMLk < � & zML = z) =
Prob(kx� xMLk < � j zML = z) �Prob(zML = z):

(5)
In practical cases, � is small only if zML = z, and there-
fore, (4) and (5) are almost equal.

2 Problem formulation

Since v is Gaussian we get

(xML; zML) = argmin

(x; z) 2 Rp�Zq
ky �Ax�Bzk2;

Using completion of squares arguments it can be shown
that

(xML; zML) = argmin

(x; z) 2 Rp�Zq

n�
x� x̂jz

�T
��1

�
x� x̂jz

�
+

(z � ẑ)T��1(z � ẑ) + yT�y
	
;

(6)
where
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�
I �A�AT

�
B
��1

;

x̂jz = �AT (y �Bz);
ẑ = �BT

�
I �A�AT

�
y;

(7)

and � > 0 is a constant matrix. Clearly, from (6)

zML = argmin

z 2 Zq

�
(z � ẑ)T��1(z � ẑ)

	
; (8)

xML = x̂jzML
: (9)

As a result, zML (and therefore xML) is given by the
solution to a least-squares problem involving integer
variables. Because of the integer nature of z, comput-
ing zML is very di�cult and is known to be NP-hard
(cf. [1].)

In order to calculate the measures of reliability Pc and
Prob(kx � x̂k < � j z = zML) we need to know the
probability distributions of our estimates. Note that
we can easily read the covariance matrices of ẑ and x̂jz
from (6) as

cov(ẑ) = � and cov
�
x̂jz
�
= �:

Therefore

ẑ � N(z;�) and x̂jz � N(x;�); (10)

so for example ẑ = z+u where u � N(0;�). Multiply-
ing both sides by G := ��1=2 (the whitening matrix of
u) and by de�ning ~y := Gẑ we get

~y = Gz + �u; where �u � N(0; Iq�q): (11)

Also, (8) can be written in terms of G and ~y in the
following equivalent form

zML = argmin

z 2 Zq
k~y �Gzk2: (12)

The set fGz j z 2 Zqg is a lattice in Rq. Equation (12)
states that zML is found by computing the closest lattice
point to the vector ~y. In addition, according to (11),
~y is o� from Gz by �u. Therefore, as long as �u is small
enough such that ~y remains closer to Gz than anyother
point in the lattice, the estimate of z is correct (i.e.,
zML = z.) This is equivalent to Gz+�u remaining inside
the Voronoi cell of the lattice point Gz1. Thus

Pc = Prob(�u 2 V0) where �u � N(0; Iq�q); (13)

and V0 is the Voronoi cell of the origin. According
to (10), x̂jz = x+w where w � N(0;�), and if z = zML

we have

Prob(kx� xMLk < � j z = zML) = Prob(k�1=2wk < �);
(14)

which is equal to the probability of w falling inside the
ellipsoid k�1=2xk � �.

Formulas (8), (9), (12), (13), and (14) give the esti-
mates and their measures of reliability.

3 Veri�cation Problem

As noted in x1, the probability of detecting the integer
parameter z correctly, Pc in (13), can be used to verify
the ML estimates. The reliability measure given in (5)
also requires the calculation of Pc. Therefore, an es-
sential step in verifying xML and zML is the calculation
of Pc.

It turns out that computing Pc is very di�cult compu-
tationally and therefore we are motivated to �nd fast
ways to approximate Pc that enable real-time reliability
tests instead. In fact, as we will see, easily computable
upper and lower bounds on Pc exist which become tight
as Pc approaches unity.

In x3.1 we see that the choice of G for a given lattice
is highly nonunique. Although Pc only depends on the
lattice and not on the speci�c choice of G, this is not
true for the upper and lower bounds on Pc. There-
fore, we can sharpen these bounds by optimizing over
the family of admissible matrix representations for the
lattice. We introduce the LLL algorithm that is an ex-
tremely useful tool for sharpening bounds on Pc, and as
will become clear later, it is also useful for improving
the e�ciency of the algorithm for solving the integer
least-squares problem for computing zML.

1The Voronoi cell of a point Gz in a lattice, is the set of all

points in space that are closer to Gz than anyother point in the

lattice.



3.1 Lattice Bases

Let us denote a lattice L 2 Rq generated by the matrix
G = [g1 g2 � � � gq] 2 Rq�q by

L = L(G) = fGz j z 2 Zqg :

The set of vectors fg1; g2; : : : ; gqg is called `a' basis for L
since all lattice points are linear combinations of integer
multiples of these vectors. We say `a' and not `the' be-
cause a lattice L has in�nitely many bases. The lattice
generated by the matrix GF , where F is any unimodu-

lar matrix, and that of G are identical. Such matrices
F have the property that the elements of F and F�1

are integers (or equivalently, the elements of F are in-
tegers and detF = �1.)

Of the many possible bases of a lattice, one would like
to select one that is in some sense nice or simple, or
reduced. There are many di�erent notions of reduced
bases in the literature; one of them consists of requir-
ing that all its vectors be short in the sense that the
product kg1k kg2k � � � kgqk is minimum. This problem
is known as the minimum basis problem and has been
proved to be NP-hard (cf. [1].)

Although theminimum basis problem isNP-hard there
exists a polynomial-time algorithm for computing a ba-
sis for a given lattice that is in some sense reduced.
This algorithm is due to A. K. Lenstra, H. W. Lenstra,
Jr., and L. Lov�asz (LLL) and is very e�cient in prac-
tice. Given a lattice generator matrix G, the LLL al-
gorithm gives a new lattice generator matrix GF with
F unimodular such that GF has two nice properties.
Roughly speaking these are:

� The columns of GF (the new basis vectors) are
almost orthogonal.

� The 2�norm of the columns of GF (the length of
the new basis vectors) are not arbitrarily large.

For an exact discussion of these properties refer to
Chapter 5 of [1]. The LLL algorithm is described in
the appendix.

3.2 Calculating Pc
Computing Pc as given in (13) requires the calculation
of a suitable description of V0 the Voronoi cell of the
origin in the lattice generated by G. This is possible of
course, but it is very di�cult computationally (cf. [8].)
Adding to this the computational cost of the numeri-
cal algorithm to perform the integral of the Gaussian
probability density function over V0, we conclude that,
although the exact calculation of Pc is possible, it re-
quires extensive computation that might be infeasible
in practice or not worthwhile. Therefore, �nding easily
computable bounds on Pc become of practical impor-
tance.

3.3 Computing upper and lower bounds on Pc
3.3.1 Upper bound using jdetGj: A well-

known result of multi-dimensional geometry is that the
volume of the parallelopiped formed by the basis vec-
tors of a (nondegenerate) lattice is given by jdetGj.
Since the Voronoi cells of the lattice points partition
the space with the same density (cells per unit volume)
as the parallelopiped cells, it follows that the volume of
the Voronoi cells are also equal to jdetGj. Therefore,
jdetGj which is the volume of the region for integrat-
ing the noise probability density function, gives an idea
of Pc, and, roughly speaking, the larger this value, the
larger the probability of correct integer estimation. Of
course, the shape of the Voronoi cell is also a major fac-
tor in Pc, however, when the variance of noise in every
dimension is equal, an upper bound for Pc is found if
we assume the Voronoi cell is a q-dimensional sphere.

The volume of a q-dimensional sphere of radius � is
�q�

q where �q = �q=2=�(q=2 + 1) (�(�) is the Gamma
function.) Therefore, the radius of a q-dimensional
sphere with volume jdetGj is � = q

p
jdetGj=�q and

an upper bound on Pc becomes

Pc,up = Prob

�
kvk < q

q
jdetGj=�q

�
;

with v � N(0; Iq�q). The sum of squares of q inde-
pendent zero-mean, unit variance normally distributed
random variables is a �2 distribution with q degrees
of freedom. If we denote the cumulative distribution
function (CDF) of a �2 random variable with q degress
of freedom by F�2(�

2; q) we get

Pc,up = F�2
�
(jdetGj=�q)

2=q
; q
�
: (15)

This bound is a very cheap one computationally since
it only requires the determinant of G followed by a �2

CDF table lookup.

3.3.2 Lower bound based on dmin: Given
the lattice L = L(G) with G 2 Rq�q, the shortest

lattice vector or the minimum distance of the lattice
dmin is de�ned by

dmin = min

z 2 Zq ; z 6= 0
kGzk: (16)

dmin is actually the distance between the origin and its
closest neighbor in the lattice. A ball of radius dmin=2
is the largest ball centered at the origin that lies in V0.

Clearly, the probability of noise falling in a ball cen-
tered at the origin and of radius d=2 where d � dmin

gives us a lower bound on Pc. This lower bound is given
by

Pc,low = F�2

�
d2

4
; q

�
where d � dmin: (17)



So far we haven't discussed how to compute dmin. Un-
fortunately, computing dmin is conjectured to be NP-
hard, and to date, no polynomial-time algorithm has
been found to compute dmin. Therefore, methods are
preferred that compute bounds on dmin that have very
low computational complexity. These bounds can be
used in (17) to get very fast bounds on Pc. There are
many ways to bound dmin as given in [8]. One method
is the following.

Gram-Schmidt method lower bound on dmin.

Suppose G = [g1 g2 � � � gq] and (g�
1
; g�

2
; : : : ; g�q ) is the

Gram-Schmidt orthogonalization of (g1; g2; : : : ; gq) as
de�ned in (22). Then

dmin � d =min(kg�1k; kg
�

2
k; : : : ; kg�qk): (18)

Re-de�ning G by �nding a reduced basis for the lat-
tice using the LLL algorithm would result in a tighter
bound since the basis vectors (and hence the g�i s) will
become shorter.

4 Estimation Problem

4.1 Nearest Lattice Vector Problem

The main computational task of the estimation step is
the solution to the integer least-squares problems (8)
or (12). Problem (12) is known as the nearest lattice

vector problem and is NP-hard (cf. [1].) However, in
practice, there are reasonably e�cient ways to solve
this problem which is the main topic of this section.

When � � 0 in (8) is diagonal, zML can be simply found
by rounding the components of ẑ to the nearest integer
since the integer variables are seperable as

(z � ẑ)T��1(z � ẑ) =

qX
i=1

(zi � ẑi)
2=�ii;

where �ii is the ith diagonal entry of �. A diagonal
� corresponds to a G with orthogonal columns. In-
tuitively, this observation suggests that if � is almost
diagonal, or equivalently, the columns of G are almost
orthogonal, rounding o� ẑ in (8) would give a close ap-
proximation to zML. However, G is not always initially
given as almost orthogonal even if the lattice L = L(G)
is orthogonal.

As noted before, the LLL algorithm is a useful tool
for �nding an almost orthogonal basis for a given lat-
tice L = L(G). Rounding can then be applied to ẑ

to get a hopefully good approximation for zML. This
approximation can serve as a good initial guess for zML

in any algorithm for solving the global optimization
problems (8) or (12). A similar idea can be found in [6]
and [7].

4.2 Suboptimal Polynomial-Time Algorithms

In this subsection, we address suboptimal polynomial-
time algorithms for calculating the minimum of k~y �
Gzk over the integer lattice. These suboptimal algo-
rithms are important for a few reasons. First, they can
be performed e�ciently with a guaranteed low worst
case complexity. Secondly, suboptimal algorithms pro-
vide a relatively good initial guess or relatively tight
upper bound for any global optimization algorithm.
Finally, these suboptimal algorithms might �nd the
global optimum as they often do in practice. If any
lower bound d on dmin (d � dmin) is known, a su�cient
condition for the suboptimal minimizer zsub to be the
global minimizer zML is simply given by

k~y �Gzsubk �
d

2
=) zsub = zML; (19)

as there is only one lattice point in a ball centered at
Gzsub and with radius dmin=2. Note that d is usu-
ally a byproduct of the veri�cation step, and therefore,
condition (19) can be checked without any additional
computation for �nding d.

One suboptimal polynomial-time algorithm is the fol-
lowing (cf. [4].)

Suboptimal algorithm for �nding an approxi-

mately nearest lattice point based on rounding.

Suppose G 2 Rq�q and ~y 2 Rq are given. A subopti-
mal solution zsub 2 Zq in the sense that

k~y �Gzsubk �
�
1 + 2q (4:5)

q=2
�

min

z 2 Zq
k~y �Gzk;

(20)
exists and is given by2 zsub = F d �G�1~yc where �G is
the lattice generator matrix after performing the LLL
algorithm on G and �G = GF .

Note that although the worst case bound in (20) ap-
pears to be loose, this suboptimal algorithm works
much better in practice as reported in the literature
(cf. [5].)

Another suboptimal polynomial-time algorithm for
�nding an approximately nearest lattice point is due
to Babai (1986) (cf. [1], [4] and [8].)

4.3 Searching for Integral Points Inside an El-

lipsoid

Once a candidate (or guess) z = �z to the minimizer of
k~y�Gzk is found, we need to check whether there exists
anyother z 2 Zq satisfying k~y�Gzk < k~y�G�zk. If no
such z exists then �z is the global minimizer, otherwise,
we can �nd a better candidate for the minimum of k~y�
Gzk that we need to check for its global minimality as
well and so on. Therefore, an important step in �nding

2d�c is the componentwise rounding operation to the nearest

integer.



the minimum of k~y�Gzk is searching for integral points
(points with integer coordinates z) inside an ellipsoid
k~y�Gzk < r. Refer to [8] for a method to perform this
exhaustive search. It is shown that by putting G into a
lower triangular form using a unitary transformation,
this search can be performed more e�ciently.

4.4 Global Optimization Algorithm

Basically, the global optimization algorithm for �nding
the minimizer of k~y � Gzk consists of a good initial
guess (using suboptimal algorithms of x4.2) followed
by an e�cient exhaustive search (x4.3.) Refer to [8] for
details.

4.5 Summary

In this section we sketched a method for solving the in-
teger least-squares problem for resolving the integer pa-
rameters in the linear model. In practice, this method
is very e�cient for problems with a few ten integer vari-
ables. The success of this method mainly relies on a
guaranteed reasonably good initial guess for the mini-
mizer by using the LLL algorithm.

After z is estimated by the global optimization algo-
rithm in x4.4, the maximum likelihood estimate of x,
the real parameter, is straightforward. xML can be
found as in (9).

5 Extensions

In this section we point out extensions to model (1).
If there is a priori knowledge on the distribution of x,
similar formulas as in x2 can be given for the (maximum

a posteriori) estimates (cf. [8].) Now suppose that we
assume a state-space structure for the real parameter
xT = [xT0 � � �xTN ] as

�
�k+1 = Fk�k +Gkuk; �(0) = �0;

xk = Hk�k + vk for k = 0; 1; 2; : : : ; N

and the observation yk is assumed to depend on the
unknowns xk 2 Rp and z 2 Rq through the linear
relationship

yk = Akxk + Jkz + wk

in which �0, uk, vk and wk are Gaussian variables. In
this case, the matrices G and ~y in (12) can be updated
recursively such that

z
(k)
ML = argmin

z 2 Zq
k~y(k) �G(k)zk; k = 1; : : : ; N: (21)

This recursive method (similar to the Kalman �lter)
has many numerical advantages and reduces data stor-
age for applications in which the data comes in se-
quentially (e.g., GPS surveying.) A standard two-pass

smoothing algorithm (cf. [3]) can be used to �nd the

estimates of xi for i = 1; : : : ; k once z
(k)
ML is computed

from (21). Refer to [8] for details.

6 Simulations

The simulations in this section are based on a setup
similar to the global positioning system (GPS) but in
two dimensions (Figure 1.) In general, navigation us-
ing phase measurements from sinusoidal signals trans-
mitted from far away locations in space with known
coordinates can always be cast as an integer parameter
estimation problem in a linear model. The unknown in-
tegers enter the equations as the number of carrier sig-
nal cycles between the receiver and the satellites when
the carrier signal is initially phase locked.

Satellites

x1

x2

Earth

Receiver

Satellite Orbit

Figure 1: Simulations in this section are based on a simpli�ed

GPS setup in two dimensions. The radius of the the

shaded circle (earth) is 6357km. Three satellites

are assumed that orbit the earth at an altitude of

20200km and period of 12 hours.

In our simulation, we have assumed a constant receiver
located at xT = [�50 100] (of course this is not known
a priori.) However, x is known to be Gaussian with
mean zero and variance �x = 100m in both the x1 and
x2 directions. The wavelength of the carrier signal and
angular velocity for all three satellites is � = 0:19m and
! = 1=120osec�1 respectively. The satellites make an-
gles of 90o, 120o and 45o with the x1 axis initially and
the direction of rotation for all of them is clockwise.
The variance of phase measurement noise in units of
length is taken as � = 0:01m. The receiver measures
the (sinusoidal) carrier signal phase from each of these
satellites every T = 2 seconds for a period of 200 sec-
onds. Refer to [2] and [8] for details.

Figure 2 gives the exact Pc (computed using Monte
Carlo with 1500 random variates), and the upper and
lower bounds Pc,up and Pc,low (lower bound using
Gram-Schmidt method lower bound on dmin) as a func-



tion of time. Clearly, the upper bound Pc,up appears
to be a very good approximation to Pc and as Pc ! 1,
the lower bound Pc,low becomes exact as well. This is a
very good feature as we are not conservative in bound-
ing Pc when Pc is high and there is high reliability in
our estimates.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pc =0.99

Figure 2: Pc (dash-dot curve), Pc,up (upper bound using

jdetGj; upper solid curve), Pc,low (lower bound

using lower bound on dmin using Gram-Schmidt

method; lower solid curve) as a function of time.

In practice we might never compute the exact Pc and
we have to live with (the inexact but much more easily
computable) bounds. Given these bounds as in Fig-
ure 2, we can conclude that Pc is not greater than 0:99
after 132 seconds, so with a con�dence level of 99%, our
reliability on zML is low. We have to wait for another
30 seconds until the lower bound hits the Pc = 0:99
line. From hereon, it is guaranteed that Pc > 0:99 and
therefore zML is reliable.

We have plot the number of inner iterations in the
global optimization algorithm to compute zML vs. time
in Figure 3. A number of iterations equal to zero

means that the initial value for z found in the algo-
rithm (by performing the LLL algorithm and rounding
o�) is guaranteed to be the global minimizer accord-
ing to (19) where d is the lower bound found on dmin

using the Gram-Schmidt method in x3.3.2. Note the
low number of iterations (cf. [8] for details.) In fact,
the global optimization algorithm is very e�cient in
practice and can be solved instantly by a computer.

It is very interesting to note that for high Pc (Pc > 0:9
or after 95 seconds), the only case for which we are
really interested in zML because of high reliability, the
number of inner iterations is zero and therefore the
global optimization algorithm is extremely e�cient. In
general this is true, and the e�ciency of the global
optimization algorithm is greatly enhanced as Pc ! 1.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

(a)

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

(b)

Figure 3: (a) Pc as a function of time. (b) Number of in-

ner iterations in the global optimization algorithm

for �nding zML as a function of time. For high Pc,

the initial guess for the global minimizer is guaran-

teed to be the global minimizer using a very cheaply

computed lower bound on dmin (using the Gram-

Schmidt method.) Therefore, the global optimiza-

tion algorithm becomes extremely e�cient for high

Pc.

Figure 4 shows Pc as a function of time and the times at
which the integer parameter z is resolved correctly us-
ing global optimization and the times at which it is re-
solved correctly using rounding o� (i.e., zest = dG�1~yc;
without using the LLL algorithm of course.) The re-
sults clearly show that simple rounding shouldn't be
used in practice since even after 200 seconds we are
still not able to resolve z by this method. On the other
hand, using global optimization, z is resolved after 90
seconds or when Pc > 0:8.

7 Conclusions

In this paper we considered parameter estimation in
linear models when some of the parameters are known
to be integers. Simulation results show that if we ne-
glect the integer nature of the parameters (treat these
parameters as being real and then round o�), we get
very inexact estimates in practice. The main compu-
tational e�ort in the estimation step turns out to be
the solution to an integer least-squares problem which
is in fact NP-hard. Verifying the maximum likelihood
estimates seems to be a problem as hard as the esti-

mation step (conjectured to be NP-hard.) The prob-
ability of correct integer parameter estimation Pc was
chosen as a useful reliability measure for our estimates.
A polynomial-time algorithm due to Lenstra, Lenstra
and Lov�asz (LLL algorithm) found to be very useful in
the estimation and veri�cation problems.

Very easily computable bounds can be found on Pc and
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Figure 4: Simulation result when xT = [0 0]. (a) Pc (dash-dot

curve) and the times at which z is resolved correctly

using global optimization (solid curve, a highmeans

that z is resolved correctly or zML = z, while a low

means that it is not) as a function of time. (b) Pc
and the times at which z is resolved correctly using

simple rounding as a function of time.

these bounds become exact as Pc is close to one; the
only case that we are really interested in our param-
eter estimates because of their high reliability. The
global optimization algorithm for solving the integer
least-squares problem works very well for problem sizes
of a few tens of variables which is typical in applica-
tions such as GPS. Moreover, the global optimization
algorithm becomes even more e�cient for high Pc.

These observations suggest the following general out-
line for integer parameter estimation in linear models.

General outline for integer parameter estima-

tion in linear models. Under the setup of x1:

� Update G after every measurement, say recur-
sively, as noted in x5.

� Compute Pc,up in (15) which is the upper bound
based on the determinant of G. In practice, this
bound is very close to Pc as demonstarted in the
simulations.

� When Pc,up is large enough (say Pc,up > 0:99),
compute the lower bound Pc,low in which the
Gram-Schmidt method is used to provide a lower
bound on dmin (apply the LLL algorithm on G to
get a tighter bound.)

� When Pc,low is high (say Pc,low > 0:99), we can
assume that z = zML. Therefore, only at this step
eventually solve the global optimization prob-
lem (12). Since Pc is close to unity, the algorithm
for solving (12) would be extremely e�cient.

� Once z = zML has been resolved, there is no in-
teger parameter to worry about. Use standard

methods to estimate the real parameter x (e.g.,
two-pass smoothing algorithm.)
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Appendix: Lenstra, Lenstra, Lov�asz (LLL)

Algorithm

Suppose a lattice L = L(G) with G = [g1 g2 � � � gq] is given. A

reduced basis for L can be obtained as follows,

� Perform the Gram-Schmidt orthogonalization procedure

on the vectors g1; g2; : : : ; gq, i.e., compute the vectors

g�1 ; g
�

2 ; : : : ; g
�

q through the recursion

g�j = gj �

j�1X
i=1

gT
j
g�
i

kg�
j
k2

g�i for j = 1; 2; : : : ; q: (22)

�
g�1 ; g

�

2 ; : : : ; g
�

q

	
will be an orthogonal basis for the sub-

space spanned by g1; g2; : : : ; gq. From the de�nition (22),

it is trivial that any vector gj can be expressed as a linear

combination of the vectors g�1 ; g
�

2 ; : : : ; g
�

q as

gj =

jX
i=1

�jig
�

i ; (23)

where �ji = gTj g
�

i =kg
�

j k
2 for i = 1; 2; : : : ; j � 1 and with

�jj = 1.

� For j = 1; 2; : : : ; q; and, given j, for i = 1; 2; : : : ; j � 1, re-

place gj by gj�d�jicgi, where d�jic is the integer nearest
to �ji. Update the g�

j
's and �ji's.

� If there is a subscript j violating

kg�j+1 + �(j+1)jg
�

j k
2 �

3

4
kg�j k

2; (24)

then interchange gj and gj+1 and return to the �rst step,

otherwise, stop. G = [g1 g2 � � � gq] is the reduced generator

matrix of the lattice L.

The choice of 3=4 in (24) as the allowed factor of decrease is arbi-

trary: any number between 1=4 and 1 would do just as well. The

most natural choice (giving a best upper bound on the product

kg1kkg2k � � � kgqk) would be 1 instead of 3=4; but the polynomi-

ality of the resulting algorithm cannot be guaranteed.


