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Abstract We consider the NP-hard problem of minimizing a convex quadratic func-
tion over the integer lattice Zn . We present a simple semidefinite programming (SDP)
relaxation for obtaining a nontrivial lower bound on the optimal value of the problem.
By interpreting the solution to the SDP relaxation probabilistically, we obtain a ran-
domized algorithm for finding good suboptimal solutions, and thus an upper bound
on the optimal value. The effectiveness of the method is shown for numerical problem
instances of various sizes.

Keywords Convex optimization · Integer quadratic programming · Mixed-integer
programming · Semidefinite relaxation · Branch-and-bound

1 Introduction

We consider the NP-hard problem

minimize f (x) = xT Px + 2qT x
subject to x ∈ Zn,

(1)

with variable x , where P ∈ Rn×n is nonzero, symmetric, and positive semidefinite,
and q ∈ Rn .
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A number of other problems can be reduced to the form of (1). The integer least
squares problem,

minimize ‖Ax − b‖22
subject to x ∈ Zn,

(2)

with variable x and data A ∈ Rm×n and b ∈ Rm , is easily reduced to the form of (1) by
expanding out the objective function. Themixed-integer version of the problem,where
some components of x are allowed to be real numbers, also reduces to an equivalent
problem with integer variables only. This transformation uses the Schur complement
to explicitly minimize over the noninteger variables [5, §A.5.5]. Another equivalent
formulation of (1) is the closest vector problem,

minimize ‖v − z‖22
subject to z ∈ {Bx | x ∈ Zn},

in the variable z ∈ Rm . Typically, the columns of B are linearly independent. Although
not equivalent to (1), the shortest vector problem is also a closely related problem,
which in fact, is reducible to solving the closest vector problem:

minimize ‖z‖22
subject to z ∈ {Bx | x ∈ Zn}

z �= 0.

Problem (1) arises in several applications. For example, in position estimation using
the Global Positioning System (GPS), resolving the integer ambiguities of the phase
data is posed as amixed-integer least squares problem [18]. Inmultiple-inputmultiple-
output (MIMO) wireless communication systems, maximum likelihood detection of
(vector) Booleanmessages involves solving an integer least squares problem [19]. The
mixed-integer version of the least squares problem appears in data fitting applications,
where some parameters are integer-valued (See, e.g., [26]). The closest vector problem
and shortest vector problem have numerous application areas in cryptanalysis of public
key cryptosystem such as RSA [24]. The spectral test, which is used to check the
quality of linear congruential random number generators, is an application of the
shortest vector problem [20, §3.3.4].

1.1 Previous work

Several hardness results are known for the integer least squares problem (2). Given
an instance of the integer least squares problem, define the approximation factor of a
point x to be ‖Ax − b‖22/‖Ax� − b‖22, where x� is the global (integer) solution of (2).
Finding a constant factor approximation is an NP-hard problem [2]. In fact, finding
an approximation still remains NP-hard even when the target approximation factor is
relaxed to nc/ log log n , where c > 0 is some constant [11].

Standard methods for finding the global optimum of (1), in the case of positive defi-
nite P , work by enumerating all integer points within a suitably chosen box or ellipsoid
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[6,13]. The worst case running time of these methods is exponential in n, making it
impractical for problems of large size. Algorithms such as Lenstra–Lenstra–Lovász
lattice reduction algorithm [21,25] can be used to find an approximate solution in poly-
nomial time, but the approximation factor guarantee is exponential in n [17, §5.3].

A simple lower bound on f �, the optimal value of (1), can be obtained in O(n3)
time, by removing the integer constraint. If q ∈ R(P), whereR(P) denotes the range
of P , then this continuous relaxation has a solution xcts = −P†q, with objective value
f cts = −qT P†q, where P† denotes theMoore–Penrose pseudoinverse of P (When P
is positive definite, the continuous solution reduces to xcts = −P−1q). If q /∈ R(P),
then the objective function is unbounded below and f � = −∞.

There exist different approaches for obtaining tighter lower bounds than f cts. The
strongest bounds to date are based on semidefinite programming (SDP) relaxation
[6–8]. The primary drawback of the SDP-based methods is their running time. In par-
ticular, if thesemethods are applied to branch-and-bound type enumerationmethods to
prune the search tree, the benefit of having a stronger lower bound is overshadowed by
the additional computational cost it incurs, for all small- to medium-sized problems.
Enumeration methods still take exponential time in the number of variables, whereas
solving SDPs can be done (practically) in O(n3) time. Thus, for very large problems,
SDP-based lower bounds are expected to reduce the total running time of the enu-
meration methods. However, such problems would be too big to have any practical
implication. On the other hand, there exist weaker bounds that are quicker to com-
pute; in [7], for example, these bounds are obtained by finding a quadratic function f̃
that is a global underestimator of f , that has the additional property that the integer
point minimizing f̃ can be found simply by rounding xcts to the nearest integer point.
Another approach is given by [3], which is to minimize f outside an ellipsoid that
can be shown to contain no integer point. Standard results on the S-procedure state
that optimizing a quadratic function outside an ellipsoid, despite being a nonconvex
problem, can be done exactly and efficiently [4].

A simple upper bound on f � can be obtained by observing some properties of the
problem. First of all, x = 0 gives a trivial upper bound of f (0) = 0, which immedi-
ately gives f � ≤ 0. Another simple approximate solution can be obtained by rounding
each entry of xcts to the nearest integer point, x rnd. Let f rnd = f (x rnd). Assuming
that q ∈ R(P), we can get a bound on f rnd as follows. Start by rewriting the objective
function as

f (x) = (x − xcts)T P(x − xcts) + f cts.

Since rounding changes each coordinate by at most 1/2, we have

‖x rnd − xcts‖22 =
n∑

i=1

(x rndi − xctsi )2 ≤ n/4.

It follows that

f rnd − f cts = (x rnd − xcts)T P(x rnd − xcts) ≤ sup
‖v‖2≤√

n/2
vT Pv = (n/4)ωmax, (3)

123



J. Park, S. Boyd

where ωmax is the largest eigenvalue of P . Since f cts is a lower bound on f �, this
inequality bounds the suboptimality of x rnd. We note that in the special case of diag-
onal P , the objective function is separable, and thus the rounded solution is optimal.
However, in general, x rnd is not optimal, and in fact, f rnd can be positive, which is
even worse than the trivial upper bound f (0) = 0.

We are not aware of any efficient method of finding a strong upper bound on f �,
other than performing a local search or similar heuristics on x rnd. However, the well-
known result by [14] gives provable lower and upper bounds on the optimal value of
the NP-hard maximum cut problem, which, after a simple reformulation, can be cast
as a Boolean nonconvex quadratic problem in the following form:

maximize xT Wx
subject to x2i = 1, i = 1, . . . , n.

(4)

These bounds were obtained by solving an SDP relaxation of (4), and subsequently
running a randomized algorithm using the solution of the relaxation. The expected
approximation factor of the randomized algorithm is approximately 0.878. There exist
many extensions of the Goemans–Williamson SDP relaxation [22]. In particular, [8]
generalizes this idea to a more general domain D1 × · · · × Dn , where each Di is any
closed subset of R.

1.2 Our contribution

Our aim is to present a simple but powerful method of producing both lower and
upper bounds on the optimal value f � of (1). Our SDP relaxation is an adaptation
of [14], but can also be recovered by appropriately using the method in [8]. By con-
sidering the binary expansion of the integer variables as a Boolean variable, we can
reformulate (1) as a Boolean problem and directly apply the method of [14]. This
reformulation, however, increases the size of the problem and incurs additional com-
putational cost. To avoid this, we work with the formulation (1), at the expense of
slightly looser SDP-based bound. We show that our lower bound still consistently
outperforms other lower bounds shown in [6,7]. In particular, the new bound is
better than the best axis-parallel ellipsoidal bound, which also requires solving an
SDP.

Using the solution of the SDP relaxation, we construct a randomized algorithm that
finds good feasible points. In addition, we present a simple local search heuristic that
can be applied to every point generated by the randomized algorithm. Evaluating the
objective at these points gives an upper bound on the optimal value. This upper bound
provides a good starting point for enumeration methods, and can save a significant
amount of time during the search process. We show this by comparing the running
time of an enumeration method, when different initial upper bounds on the optimal
value were given. Also, we empirically verify that this upper bound is much stronger
than simply rounding a fractional solution to the nearest integer point, and in fact, is
near-optimal for randomly generated problem instances.
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2 Lagrange duality

In this section, we discuss a Lagrangian relaxation for obtaining a nontrivial lower
bound on f �.Wemake three assumptionswithout loss of generality. Firstly, we assume
that q ∈ R(P), so that the optimal value f � is not unbounded below. Secondly, we
assume that xcts /∈ Zn , otherwise xcts is already the global solution. Lastly, we assume
that xcts is in the box [0, 1]n . For any arbitrary problem instance, we can translate the
coordinates in the following way to satisfy this assumption. Note that for any v ∈ Zn ,
the problem below is equivalent to (1):

minimize (x − v)T P(x − v) + 2(Pv + q)T (x − v) + f (v)

subject to x ∈ Zn .

By renaming x − v to x and ignoring the constant term f (v), the problem can be
rewritten in the form of (1). Clearly, this has different solutions and optimal value
from the original problem, but the two problems are related by a simple change of
coordinates: point x in the new problem corresponds to x + v in the original problem.
To translate the coordinates, find xcts = −P†q, and take elementwise floor to xcts to
get xflr. Then, substitute xflr in place of v above.

We note a simple fact that every integer point x satisfies either xi ≤ 0 or xi ≥ 1 for
all i . Equivalently, this condition can be written as xi (xi − 1) ≥ 0 for all i . Using this,
we relax the integer constraint x ∈ Zn into a set of nonconvex quadratic constraints:
xi (xi − 1) ≥ 0 for all i . The following nonconvex problem is then a relaxation of (1):

minimize xT Px + 2qT x
subject to xi (xi − 1) ≥ 0, i = 1, . . . , n.

(5)

It is easy to see that the optimal value of (5) is greater than or equal to f cts, because xcts

is not a feasible point, due to the two assumptions that xcts /∈ Zn and xcts ∈ [0, 1]n .
Note that the second assumption was necessary, for otherwise xcts is the global opti-
mum of (5), and the Lagrangian relaxation described belowwould not produce a lower
bound that is better than f cts.

The Lagrangian of (5) is given by

L(x, λ)= xT Px+2qT x−
n∑

i=1

λi xi (xi − 1)= xT (P − diag(λ))x+2(q + (1/2)λ)T x,

whereλ ∈ Rn is the vector of dual variables.Define q̃(λ) = q+(1/2)λ. Byminimizing
the Lagrangian over x , we get the Lagrangian dual function

g(λ) =
{ −q̃(λ)T (P − diag(λ))† q̃(λ) if P − diag(λ) 	 0 and q̃(λ) ∈ R(P − diag(λ))

−∞ otherwise,
(6)

where the inequality	 iswith respect to the positive semidefinite cone. TheLagrangian
dual problem is then

maximize g(λ)

subject to λ ≥ 0,
(7)
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in the variable λ ∈ Rn , or equivalently,

maximize −q̃(λ)T (P − diag(λ))† q̃(λ)

subject to P − diag(λ) 	 0
q̃(λ) ∈ R(P − diag(λ))

λ ≥ 0.

By using the Schur complements, the problem can be reformulated into an SDP:

maximize −γ

subject to

[
P − diag(λ) q + (1/2)λ

(q + (1/2)λ)T γ

]
	 0

λ ≥ 0,

(8)

in the variables λ ∈ Rn and γ ∈ R. We note that while (8) is derived from a nonconvex
problem (5), it is convex and thus can be solved in polynomial time.

2.1 Comparison to simple lower bound

Due to weak duality, we have g(λ) ≤ f � for any λ ≥ 0, where g(λ) is defined by (6).
Using this property, we show a provable bound on the Lagrangian lower bound. Let
f cts = −qT P†q be the simple lower bound on f �, and f sdp = supλ≥0 g(λ) be the
lower bound obtained by solving the Lagrangian dual. Also, let ω1 ≥ · · · ≥ ωn be the
eigenvalues of P . For clarity of notation,we useωmax andωmin to denote the largest and
smallest eigenvalues of P , namelyω1 andωn . Let 1 represent a vector of an appropriate
length with all components equal to one. Then, we have the following result.

Theorem 1 The lower bounds satisfy

f sdp − f cts ≥ nω2
min

4ωmax

(
1 −

∥∥xcts − (1/2)1
∥∥2
2

n/4

)2

. (9)

Proof When ωmin = 0, the right-hand side of (9) is zero, and there is nothing else to
show. Thus, without loss of generality, we assume that ωmin > 0, i.e., P 
 0.

Let P = Q diag(ω)QT be the eigenvalue decomposition of P , where ω =
(ω1, . . . , ωn). We consider λ of the form λ = α1, and rewrite the dual function
in terms of α, where α is restricted to the range α ∈ [0, ωmin):
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g(α) = −(q + (1/2)α1)T (P − α I )−1 (q + (1/2)α1).

We note that g(0) = −qT P−1q = f cts, so it is enough to show the same lower bound
on g(α) − g(0) for any particular value of α.

Let s = QT 1, and q̃ = QTq. By expanding out g(α) in terms of s, q̃ , andω, we get

g(α) − g(0) = −
n∑

i=1

q̃2i + αsi q̃i + (1/4)α2s2i
ωi − α

+
n∑

i=1

q̃2i
ωi

= −
n∑

i=1

(α/ωi )(q̃i + (1/2)ωi si )2 − (1/4)αs2i (ωi − α)

ωi − α

= α

4

n∑

i=1

s2i −
n∑

i=1

α(q̃i + (1/2)ωi si )2

ωi (ωi − α)

= αn

4
− α

n∑

i=1

(
1 − α

ωi

) (
q̃i + (1/2)ωi si

ωi − α

)2

.

By differentiating the expression above with respect to α, we get

g′(α) = n

4
−

n∑

i=1

(
q̃i + (1/2)ωi si

ωi − α

)2

.

We note that g′ is a decreasing function in α in the interval [0, ωmin). Also, at α = 0,
we have

g′(0) = n

4
−

n∑

i=1

(q̃i/ωi + (1/2)si )
2

= n

4
−

∥∥∥diag(ω)−1QTq + (1/2)QT 1
∥∥∥
2

2

= n

4
−

∥∥∥−Q diag(ω)−1QTq − (1/2)QQT 1
∥∥∥
2

2

= n

4
−

∥∥∥−P−1q − (1/2)1
∥∥∥
2

2

= n

4
− ∥∥xcts − (1/2)1

∥∥2
2 ≥ 0.

The last line used the fact that xcts is in the box [0, 1]n .
Now, we distinguish two cases depending on whether the equation g′(α) = 0 has

a solution in the interval [0, ωmin).
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1. Suppose that g′(α�) = 0 for some α� ∈ [0, ωmin). Then, we have

g(α�) − g(0) = α�n

4
− α�

n∑

i=1

(
1 − α�

ωi

)(
q̃i + (1/2)ωi si

ωi − α�

)2

= α�

(
n

4
−

n∑

i=1

(
q̃i + (1/2)ωi si

ωi − α�

)2
)

+
n∑

i=1

α�2

ωi

(
q̃i + (1/2)ωi si

ωi − α�

)2

=
n∑

i=1

α�2

ωi

(
q̃i + (1/2)ωi si

ωi − α�

)2

≥ α�2

ωmax

n∑

i=1

(
q̃i + (1/2)ωi si

ωi − α�

)2

= nα�2

4ωmax
.

Using this, we go back to the equation g′(α�) = 0 and establish a lower bound on
α�:

n

4
=

n∑

i=1

(
q̃i + (1/2)ωi si

ωi − α�

)2

=
n∑

i=1

ωi

ωi − α�
(q̃i/ωi + (1/2)si )

2

≤ ωmin

ωmin − α�

n∑

i=1

(q̃i/ωi + (1/2)si )
2

= ωmin

ωmin − α�

∥∥xcts − (1/2)1
∥∥2
2 .

From this inequality, we have

α� ≥ ωmin

(
1 − ‖xcts − (1/2)1‖22

n/4

)
.

Plugging in this lower bound on α� gives

f sdp − g(0) ≥ g(α�) − g(0) ≥ nω2
min

4ωmax

(
1 − ‖xcts − (1/2)1‖22

n/4

)2

.
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2. If g′(α) �= 0 for all α ∈ [0, ωmin), then by continuity of g′, it must be the case that
g′(α) ≥ 0 on the range [0, ωmin). Then, for all α ∈ [0, ωmin),

f sdp − g(0) ≥ g(α) − g(0)

= αn

4
− α

n∑

i=1

(
1 − α

ωi

) (
q̃i + (1/2)ωi si

ωi − α

)2

≥ αn

4
− α

(
1 − α

ωmax

) n∑

i=1

(
q̃i + (1/2)ωi si

ωi − α

)2

≥ αn

4
− α

(
1 − α

ωmax

)
n

4

= nα2

4ωmax
,

and thus,

f sdp − g(0) ≥ lim
α→ωmin

nα2

4ωmax
= nω2

min

4ωmax
.

Therefore, in both cases, the increase in the lower bound is guaranteed to be at least

nω2
min

4ωmax

(
1 − ‖xcts − (1/2)1‖22

n/4

)2

,

as claimed. 
�
Nowwediscuss several implications of Theorem1. First,we note that the right-hand

side of (9) is always nonnegative, and ismonotonically decreasing in
∥∥xcts − (1/2)1

∥∥
2.

In particular, when xcts is an integer point, then we must have f cts = f sdp = f �.
Indeed, for xcts ∈ {0, 1}n , we have ∥∥xcts − (1/2)1

∥∥2
2 = n/4, and the right-hand side

of (9) is zero. Also, when P is positive definite, i.e., ωmin > 0, then (9) implies that
f sdp > f cts.
In order to obtain the bound on f sdp, we only considered vectors λ of the form α1.

Interestingly, solving (7) with this additional restriction is equivalent to solving the
following problem:

minimize xT Px + 2qT x
subject to ‖x − (1/2)1‖22 ≥ n/4.

(10)

The nonconvex constraint enforces that x lies outside the n-dimensional sphere cen-
tered at (1/2)1 that has every lattice point {0, 1}n on its boundary. Even if (10) is
not a convex problem, it can be solved exactly; the S-lemma implies that the SDP
relaxation of (10) is tight (see, e.g., [4]). For completeness, we give the dual of the
SDP relaxation [which has the same optimal value as (10)] below, which is exactly
what we used to prove Theorem 1:
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maximize −γ

subject to

[
P − α I q + (α/2)1

(q + (α/2)1)T γ

]
	 0

α ≥ 0.

3 Semidefinite relaxation

In this section, we show another convex relaxation of (5) that is equivalent to (8), but
with a different form. By introducing a new variable X = xxT , we can reformulate (5)
as:

minimize Tr(PX) + 2qT x
subject to diag(X) ≥ x

X = xxT ,

in the variables X ∈ Rn×n and x ∈ Rn . Observe that the constraint diag(X) ≥ x ,
along with X = xxT , is a rewriting of the constraint xi (xi − 1) ≥ 0 in (5).

Then, we relax the nonconvex constraint X = xxT into X 	 xxT , and rewrite it
using the Schur complement to obtain a convex relaxation:

minimize Tr(PX) + 2qT x
subject to diag(X) ≥ x[

X x
xT 1

]
	 0.

(11)

The optimal value of problem (11) is a lower bound on f �, just as the Lagrangian
relaxation (8) gives a lower bound f sdp on f �. In fact, problems (8) and (11) are duals
of each other, and they yield the same lower bound f sdp [27].

3.1 Randomized algorithm

The semidefinite relaxation (11) has a natural probabilistic interpretation, which can
be used to construct a simple randomized algorithm for obtaining good suboptimal
solutions, i.e., feasible points with low objective value. Let (X�, x�) be any solution
to (11). Suppose z ∈ Rn is a Gaussian random variable with mean μ and covariance
matrix Σ . Then, μ = x� and Σ = X� − x�x�T solve the following problem of
minimizing the expected value of a quadratic form, subject to quadratic inequalities:

minimize E(zT Pz + 2qT z)
subject to E(zi (zi − 1)) ≥ 0, i = 1, . . . , n,

in variables μ ∈ Rn and Σ ∈ Rn×n . Intuitively, this distribution N (μ,Σ) has mean
close to xcts so that the expected objective value is low, but each diagonal entry of Σ

is large enough so that when z is sampled from the distribution, zi (zi − 1) ≥ 0 holds
in expectation. While sampling z from N (μ,Σ) does not give a feasible point to (1)
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immediately, we can simply round it to the nearest integer point to get a feasible point.
Using these observations, we present the following randomized algorithm.

Algorithm 3.1 Randomized algorithm for suboptimal solution to (1).

given number of iterations K .

1. Solve SDP. Solve (11) to get X� and x�.
2. Form covariance matrix. Σ := X� − x�x�T , and find Cholesky factorization LLT = Σ .
3. Initialize best point. xbest := 0 and f best := 0.
for k = 1, 2, . . . , K

4. Random sampling. z(k) := x� + Lw, where w ∼ N (0, I ). (Same as z(k) ∼ N (x�, Σ).)
5. Round to nearest integer. x(k) := round(z(k)).
6. Update best point. If f best > f (x(k)), then set xbest := x(k) and f best := f (x(k)) .

The SDP in step 1 takes O(n3) time to solve, assuming that the number of iterations
required by an interior point method is constant. Step 2 is dominated by the computa-
tion of Cholesky factorization, which uses roughly n3/3 flops. Steps 4 through 6 can be
done in O(n2) time. The overall time complexity of the method is then O(n2(K +n)).
By choosing K = O(n), the time complexity can be made O(n3).

4 Greedy algorithm for obtaining a 1-opt solution

Here we discuss a simple greedy descent algorithm that starts from an integer point,
and iteratively moves to another integer point that has a lower objective value. This
method can be applied to the simple suboptimal point x rnd, or every x (k) found in
Algorithm 3.1, to yield better suboptimal points.

We say that x ∈ Zn is 1-opt if the objective value at x does not improve by chang-
ing a single coordinate, i.e., f (x + cei ) ≥ f (x) for all indices i and integers c. The
difference in the function values at x and x + cei can be written as

f (x + cei ) − f (x) = c2Pii + cgi = Pii (c + gi/(2Pii ))
2 − g2i /(4Pii ),

where g = 2(Px + q) is the gradient of f at x . It is easily seen that given i , the
expression above is minimized when c = round(−gi/(2Pii )). For x to be optimal
with respect to xi , then c must be 0, which is the case if and only if Pii ≥ |gi |. Thus,
x is 1-opt if and only if diag(P) ≥ |g|, where the absolute value on the right-hand
side is taken elementwise.

Also, observe that

P(x + cei ) + q = (Px + q) + cPi ,

where Pi is the i th column of P . Thus, when x changes by a single coordinate, the
value of g can be updated just by referencing a single column of P . These observations
suggest a simple and quick greedy algorithm for finding a 1-opt point from any given
integer point x .
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Algorithm 4.1 Greedy descent algorithm for obtaining 1-opt point.

given an initial point x ∈ Zn .

1. Compute initial gradient. g = 2(Px + q).
repeat

2. Stopping criterion. quit if diag(P) ≥ |g|.
3. Find descent direction. Find index i and integer c minimizing c2Pii + cgi .
4. Update x. xi := xi + c.
5. Update gradient. g := g + 2cPi .

Initializing g takes O(n2)flops, but each subsequent iteration only takes O(n)flops.
This is because steps 2 and 3 only refer to the diagonal elements of P , and step 5 only
uses a single column of P . Though we do not give an upper bound on the total number
of iterations, we show, using numerical examples, that the average number of iterations
until convergence is roughly 0.14n, when the initial points are sampled according to
the probability distribution given in Sect. 3.1. The overall time complexity of Algo-
rithm 4.1 is then O(n2) on average. Thus, we can run the greedy 1-opt descent on every
x (k) in Algorithm 3.1, without changing its overall time complexity O(n2(K + n)).

5 Examples

In this section, we consider numerical examples to show the performance of the SDP-
based lower bound and randomized algorithm, developed in previous sections.

5.1 Method

We combine the techniques developed in previous sections to find lower and upper
bounds on f �, as well as suboptimal solutions to the problem. By solving the simple
relaxation and rounding the solution, we immediately get a lower bound f cts and an
upper bound f rnd = f (x rnd). We also run Algorithm 4.1 on x rnd to get a 1-opt point,
namely x̂ rnd. This gives another upper bound f̂ rnd = f (x̂ rnd).

Then, we solve the semidefinite relaxation (11) to get a lower bound f sdp. Using
the solution to the SDP, we run Algorithm 3.1 to obtain suboptimal solutions, and
keep the best suboptimal solution xbest. In addition, we run Algorithm 4.1 on every
feasible point considered in step 4 of Algorithm 3.1, and find the best 1-opt suboptimal
solution x̂best. The randomized algorithm thus yields two additional upper bounds on
f �, namely f best = f (xbest) and f̂ best = f (x̂best).
The total number of iterations K in Algorithm 3.1 is set to K = 3n, so that the

overall time complexity of the algorithm, not counting the running time of the 1-opt
greedy descent algorithm, is O(n3). We note that the process of sampling points and
running Algorithm 4.1 trivially parallelizes.

5.2 Numerical examples

We use random instances of the integer least squares problem (2) generated in the fol-
lowing way. First, the entries of A ∈ Rm×n are sampled independently fromN (0, 1).
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The dimensions are set as m = 2n. We set q = −Pxcts, where P = AT A, and xcts is
randomly drawn from the box [0, 1]n . The problem is then scaled so that the simple
lower bound is −1, i.e., f cts = −qT P†q = −1.

There are other ways to generate random problem instances. For example, the
eigenspectrum of P is controlled by the magnitude of m relative to n. We note that
P becomes a near-diagonal matrix as m diverges to infinity, because the columns of
A are uncorrelated. This makes the integer least squares problem easier to solve. On
the contrary, smaller m makes the problem harder to solve. Another way of generat-
ing random problem instances is to construct P from a predetermined eigenspectrum
ω1, . . . , ωn , as P = Q diag(ω)QT , where Q is a random rotation matrix. This makes
it easy to generate a matrix with a desired condition number. Our method showed
the same qualitative behavior on data generated in these different ways, for larger or
smaller m, and also for different eigenspectra.

The SDP (11) was solved using CVX [15,16] with the MOSEK 7.1 solver [23],
on a 3.40 GHz Intel Xeon machine. For problems of relatively small size n ≤ 70,
we found the optimal point using MILES [10], a branch-and-bound algorithm for
mixed-integer least squares problems, implemented in MATLAB. MILES solves (1)
by enumerating lattice points in a suitably chosen ellipsoid. The enumeration method
is based on various algorithms developed in [1,9,13,25].

5.3 Results

Lower bounds We compare various lower bounds on f �. In [7], three lower bounds on
f � are shown,whichwe denote by f axp, f qax, and f qrd, respectively. These bounds are
constructed from underestimators of f that have a strong rounding property, i.e., the
integer point minimizing the function is obtained by rounding the continuous solution.
We denote the lower bound obtained by solving the following trust region problem in
[3] by f tr:

minimize xT Px + 2qT x
subject to ‖x − xcts‖22 ≥ ‖xcts − x rnd‖22.

To the best of our knowledge, there is no standard benchmark test set for the integer
least squares problem. Thus, we compared the lower bounds on randomly generated
problem instances; for eachproblemsize,wegenerated 100 randomproblem instances.
In Table 1, we compare the lower bounds averaged over the random problem instances.
Note that in all instances, the simple lower bound was f cts = −1. We found not only
that our method found a tighter lower bound on average, but also that our method per-
formed consistently better, i.e., in all problem instances, the SDP based lower bound
was higher than any other lower bound. We found that the pairs of lower bounds
( f axp, f qax) and ( f qrd, f tr)werepractically equal, although the results of [7] show that
they can be all different.We conjecture that this disparity comes fromdifferent problem
sizes and eigenspectra of the random problem instances. The solution f � was not com-
puted for n > 70 as MILES was unable to find it within a reasonable amount of time.
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Table 1 Average lower bound by number of variables

n f � f sdp f axp f qax f qrd f tr

50 −0.8357 −0.9162 −0.9434 −0.9434 −0.9736 −0.9736

60 −0.8421 −0.9202 −0.9459 −0.9459 −0.9740 −0.9740

70 −0.8415 −0.9212 −0.9471 −0.9471 −0.9747 −0.9747

100 N/A −0.9268 −0.9509 −0.9509 −0.9755 −0.9755

500 N/A −0.9401 −0.9606 −0.9606 −0.9777 −0.9777

1000 N/A −0.9435 −0.9630 −0.9630 −0.9781 −0.9781
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10
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30

f� − f cts

f� − f sdp

Fig. 1 Histograms of the gap between the optimal value f � and the two lower bounds f cts and f sdp, for
100 random problem instances of size n = 60

To see how tight f sdp compared to the simple lower bound is, we focus on the set
of 100 random problem instances of size n = 60, and show, in Fig. 1, the distribution
of the gap between f � and the lower bounds.

Upper bounds Algorithm 3.1 gives a better suboptimal solution as the number of sam-
ples K grows. To test the relationship between the number of samples and the quality
of suboptimal solutions, we considered a specific problem instance of size n = 500
and sampled K = 50n points. The result suggested that K = 3n is a large enough
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Table 2 Average upper bound by number of variables

n f � f̂ best f best f̂ rnd f rnd Optimal

50 −0.8357 −0.8353 −0.8240 −0.8186 −0.7365 90%

60 −0.8421 −0.8420 −0.8268 −0.8221 −0.7397 94%

70 −0.8415 −0.8412 −0.8240 −0.8235 −0.7408 89%

100 N/A −0.8465 −0.8235 −0.8296 −0.7488 N/A

500 N/A −0.8456 −0.7991 −0.8341 −0.7466 N/A

1000 N/A −0.8445 −0.7924 −0.8379 −0.7510 N/A

number of samples for most problems; in order to decrease f̂ best further, many more
samples were necessary. All subsequent experiments discussed below used K = 3n
as the number of sample points.

In Table 2, we compare different upper bounds on f � using the same set of test data
considered above. We found that Algorithm 3.1 combined with the 1-opt heuristic
gives a feasible point whose objective value is, on average, within 5 × 10−3 from
the optimal value. The last column of Table 2 indicates the percentage of the prob-
lem instances for which f̂ best = f � held; we not only found near-optimal solutions,
but for most problems, the randomized algorithm actually terminated with the global
solution. We expect the same for larger problems, but have no evidence since there is
no efficient way to verify optimality.

In Fig. 2, we take the same test data used to produce Fig. 1, and show histograms of
the suboptimality of x rnd, x̂ rnd, xbest, and x̂best. The mean suboptimality of x rnd was
0.1025, and simply finding a 1-opt point from x rnd improved the mean suboptimality
to 0.0200. Algorithm 3.1 itself, without 1-opt refinement, produced suboptimal points
of mean suboptimality 0.0153, and running Algorithm 4.1 on top of it reduced the
suboptimality to 0.0002.

Finally, we take problems of size n = 1000, where all existing global methods run
too slowly. As the optimal value is unobtainable, we consider the gap given by the
difference between the upper and lower bounds. Figure 3 shows histograms of the four
optimality gaps obtained fromourmethod, namely f rnd− f cts, f̂ rnd− f cts, f best− f sdp,
and f̂ best− f sdp. Themean value of these quantities were: 0.2490, 0.1621, 0.1511, and
0.0989. As seen in Table 2, we believe that the best upper bound f̂ best is very close to
the optimal value,whereas the lower bound f sdp is farther away from the optimal value.

Running time In Table 3, we compare the running time of our method and that of
MILES for problems of various sizes. The running time of MILES varied depending
on particular problem instances. For example, for n = 70, the running time varied
from 6.6 s to 25 min. Our method showed more consistent running time, and termi-
nated within 3 min for every problem instance of the biggest size n = 1000. It should
be noted that MILES always terminates with a global optimum, whereas our method
does not have such a guarantee, even though the experimental results suggest that the
best suboptimal point found is close to optimal. From the breakdown of the running
time of ourmethod, we see that none of the three parts of ourmethod clearly dominates
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Fig. 2 Histograms of the suboptimality of f rnd, f̂ rnd, f best , and f̂ best , for 100 random problem instances
of size n = 60

Table 3 Average running time of MILES and our method in seconds (left), and breakdown of the running
time of our method (right)

n Total running time Breakdown of running time

MILES Our method SDP Random sampling Greedy 1-opt

50 3.069 0.397 0.296 0.065 0.036

60 28.71 0.336 0.201 0.084 0.051

70 378.2 0.402 0.249 0.094 0.058

100 N/A 0.690 0.380 0.193 0.117

500 N/A 20.99 12.24 4.709 4.045

1000 N/A 135.1 82.38 28.64 24.07

the total running time. We also note that the total running time grows subcubically,
despite the theoretical running time of O(n3).

In a practical setting, if a near-optimal solution is good enough, then running Algo-
rithm 3.1 is more effective than enumeration algorithms. Algorithm 3.1 is particularly
useful if the problem size is 60 or more; this is the range where branch-and-bound
type algorithms become unviable due to their exponential running time. In practice,
one may run an enumeration algorithm (such as MILES) and terminate after a cer-
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Fig. 3 Histograms of the four optimality gaps for 100 random problem instances of large size n = 1000

tain amount of time and use the best found point as an approximation. To show that
Algorithm 3.1 is a better approach of obtaining a good suboptimal solution, we com-
pare our method against MILES in the following way. First, we compute f̂ best via
Algorithm 3.1, and record the running time T . Then, we run MILES on the same
problem instance, but with time limit T , i.e., we terminate MILES when its running
time exceeds T , and record the best suboptimal point found. Let f miles be the objective
value of this suboptimal point. Table 4 shows the average value of f miles − f̂ best and
the percentage of problem instances for which f̂ best ≤ f miles held. The experiment
was performed on 100 random problem instances of each size. We observe that on
every problem instance of size n ≥ 100, our method produced a better point than
MILES, when alloted the same running time.

There is no simple bound for the number of iterations that Algorithm 4.1 takes, as
it depends on both P and q, as well as the initial point. In Table 5, we give the average
number of iterations for Algorithm 4.1 to terminate at a 1-opt point, when the initial
points are sampled from the distribution found in Sect. 3.1. We see that the number
of iterations when n ≤ 1000 is roughly 0.14n. Although the asymptotic growth in
the number of iterations appears to be slightly superlinear, as far as practical applica-
tions are concerned, the number of iterations is effectively linear. This is because the
SDP (11) cannot be solved when the problem becomes much larger (e.g., n > 105).
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Table 4 Comparison of the best
suboptimal point found by our
method and by MILES, when
alloted the same running time

n f miles − f̂ best f̂ best ≤ f miles (%)

50 0.0117 98

60 0.0179 99

70 0.0230 99

100 0.0251 100

500 0.0330 100

1000 0.0307 100

Table 5 Average number of
iterations of Algorithm 4.1

n Iterations

50 6.06

60 7.35

70 8.59

100 11.93

500 65.89

1000 141.1

Branch-and-bound method The results of Table 4 suggest that enumeration methods
that solve (1) globally can utilize Algorithm 3.1 by taking the suboptimal solution x̂best

and using its objective value f̂ best as the initial bound on the optimal value. In Table 6,
we show the average running time of MILES versus n, when different initial bounds
were provided to the algorithm: 0, f rnd, f̂ rnd, f̂ best, and f �. For a fair comparison, we
included the running time of computing the respective upper bounds in the total exe-
cution time, except in the case of f �. We found that when n = 70, if we start with f̂ best

as the initial upper bound of MILES, the total running time until the global solution
is found is roughly 24% lower than running MILES with the trivial upper bound of 0.
Even when f � is provided as the initial bound, branch-and-bound methods will still
traverse a search tree to look for a better point (though it will eventually fail to do so).
This running time, thus, can be thought as the baseline performance. If we compare
the running time of the methods with respect to this baseline running time, the effect of
startingwith a tight upper bound becomesmore apparent.When 0 is given as the initial
upper bound, MILES spends roughly 3 more minutes traversing the nodes that would
have been pruned if it started with f � as the initial upper bound. However, if the initial
bound is f̂ best, then the additional time spent is only 10 s, as opposed to 3 min. Finally,
we note that the baseline running time accounts for more than 70% of the total running
time evenwhen the trivial upper bound of zero is given; this suggests that the core diffi-
culty in the problem liesmore in proving the optimality than in finding an optimal point
itself. In our experiments, the simple lower bound f cts was used to prune the search tree.
If tighter lower bounds are used instead, this baseline running time changes, depending
on how easy it is to evaluate the lower bound, and how tight the lower bound is.

Directly using the SDP-based lower bound to improve the performance of branch-
and-bound methods is more challenging, due to the overhead of solving the SDP. The
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Table 6 Average running time
of MILES, given different initial
upper bounds

n Initial upper bound

0 f rnd f̂ rnd f̂ best f �

50 3.046 3.039 2.941 2.900 2.537

60 29.02 29.09 28.14 24.07 23.56

70 379.6 379.4 361.1 290.0 280.6

results by [7] suggest that in order for a branch-and-bound scheme to achieve faster
running time, quickly evaluating a lower bound is more important than the quality of
the lower bound itself. Even if our SDP-based lower bound is superior to any other
lower bound shown in related works, solving an SDP at every node in the branch-and-
bound search tree is computationally too costly. Indeed, the SDP-based axis-parallel
ellipsoidal bound in [7] fails to improve the overall running time of a branch-and-
bound algorithm when applied to every node in the search tree. An outstanding open
problem is to find an alternative to f sdp that is quicker to compute. One possible
approach would be to look for (easy-to-find) feasible points to (7); as noted in Sect 2,
it is not necessary to solve (7) optimally in order to compute a lower bound, since any
feasible point of it yields a lower bound on f �. (See, e.g., [12].)
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