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Abstraect

A number of problems in the analysis and design of
control systems may be reformulated as the problem
of minimizing the largest generalized eigenvalue of
a pair of symmetric matrices which depend affinely
on the decision variables, subject to constraints that
are linear matrix inequalities. For these generalized
eigenvalue problems, there exist numerical algorithms
that are guaranteed to be globally convergent, have
polynomial worst-case complexity, and stopping crite-
ria that guarantee desired accuracy. In this paper, we
show how a number of important interpolation prob-
lems in control may be solved via generalized eigen-
value minimization.

1. Introduction

R denotes the set of real numbers. C denotes the
set of complex numbers. C; denotes the set of com-
plex numbers with positive real part. For ¢ € C,
Rc is the real part of c. The set of p X ¢ matrices
with complex entries is denoted CP*9. P* stands for
the complex conjugate transpose of P. I denotes the
identity matrix, with size determined from context.
[|P|] denotes the spectral norm (maximum singular
value) of P € CP*?, defined as the square-root of the
maximum eigenvalue of P*P. The matrix inequali-
ties A > B and A > B mean A and B are square,
Hermitian, and that A — B is positive definite and
positive semi-definite, respectively.

A linear matrix inequality or an LMI is a matrix
inequality of the form D(z) = Do + Y1, z:D; > 0,
where D; are given real symmetric matrices, and the
z;s are the decision variables. We will use the term
EVP (GEVP) for the optimization problem of mini-
mizing the largest eigenvalue (generalized eigenvalue)
of a symmetric matrix (pair of symmetric matrices)
that depends affinely on the decision variables, sub-
ject to linear matrix inequality constraints. EVPs
(GEVPs) are convex {quasiconvex) nondifferentiable
optimization problems; therefore there exist readily
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derived necessary and sufficient optimality conditions
and a well-developed duality theory. Moreover, the
fundamental computational complexity of these prob-
lems is low, in particular, polynomial-time. Thus
EVPs and GEVPs are tractable.

There exist a number of general algorithms such as
the ellipsoid method that are guaranteed to work for
EVPs and GEVPs. More recently, a number of very
efficient interior point methods have been proposed
for these problems. We refer the reader to [1, 2] for
more details.

Several important problems in the analysis and de-
sign of control systems may be reformulated as EVPs
and GEVPs (see [3] and the references therein). In
this paper, we will show how a number of important
interpolation problems in control are equivalent to
generalized eigenvalue minimization over linear ma-
trix inequalities. ‘

2. Tangential Nevanlinna-Pick problem

Given M,..., A, with A; € Cy4, uy,...,t4m, with
u; € C? and vy,...,v,, withv; e CP, i = 1,...,m,
and M > 0, the tangential Nevanlinna-Pick problem
is to find, if possible, a function H : C — CP*9 which
is analytic in C,, and satisfies

H(A,-)u.- =v, t=1,...,m with "H”,,o <M.

(IH|loc denotes the Hy-norm of H, which is defined
as sup_ R ||H(jw)||.) This problem, which arises in
multi-input multi-output H,-control theory [4], has
a solution if and only if there exist Gi, > 0 and Gou¢ >

0 such that the following equations and inequality
hold.

A*Gin +GinA-U*U = 0,
A* Gout + GoutA -Vv = 0, (1)
) MzGin — Gout > 0,
where A = diag(A1,...,Am), U = [1y u,,] and

V=[v, - - vn). Finding the smallest M such that
there exist G;, > 0 and Gy > 0 satisfying (1) is a
GEVP with variables G;, and Goy. In fact, it is a
simple generalized eigenvalue calculation.



3. Nevanlinna-Pick problem with sealing

Given A1,...,Am With A; € Cy4, u1,...,Uy, with
u; € C? and vq,...,0, Withv; € C?, i =1,...,m,
the problem is to find

H analytic in C,
. D=D">0
Yopt = inf { | DHD 71| DeD ,
H)u = v;
i=1....m

where D is typically the set of diagonal or block- -

diagonal matrices.

This problem corresponds to finding the smallest
scaled H,, norm of all interpolants. This problem
arises in multi-input multi-output H.,-control syn-
thesis for systems with structured perturbations 5].

With a change of variables P = D*D, vop may
be determined as the smallest positive M such that
there exist P > 0, P € D, Gin > 0 and G,u¢ > 0 such
that the following equations and inequality hold.

A'G + G A-UPU
A'Gout + GoA = VPV =
MzGin - Go-t 2 0,

i
L

where A = diag(A1,...,Am), U =[tqh +++ uy] and
=[vy ::+ vn)]. Thisis a GEVP with variables P,
Gin and Gout- '

4. Frequency response identification

Consider the problem of identifying the transfer
function H of a single-input single-output linear sys-
tem from noisy measurements of its frequency re-
sponse at a list of frequencies [6]: Given w; and
fi = H(jwi) + n;, i = 1,...,m, where n; are the
(unknown) noise values, the problem is to identify
H(s).

H may be required to satisfy some constraints,
which may arise from information about the system
known a priori, or may reflect properties desired of
the identified system, consistent with measurements,
such as

1. H is analytic in Rs > —a with a > 0.

2. The a-shifted Ho, norm of H, defined as
A .
l{lﬂ"&,m = supg,s_ o ||H(8)|| does not exceed

3. The noise values satisfy ||n]| < e.
(Or [[nfloo £ maxigigm [mil < €)

From Nevanlinna-Pick theory, there exist H and n
with H(w;) = f; + n; satisfying conditions (1-3) if
and only if there exist n satisfying (3), Gia > 0 and
Gout > 0 such that

(A+al)’Gia + Gin (A+al) —e®e =0,

(A +al)’ Gout +Gout (A+ aI)—(f +n)*(f+n) =0,
M*Giy — Gout 20,

where A = diag(jwi,...,jwm), e =1 --- 1], f=

[fl ces f”] and n = [n1 ces n,.]. It can be shown

that these conditions are equivalent to

M?Gia — Gout 20
(A+al)’ Gia+Gin(A+al)—e"e <0
(A+al)" Gout +Gout (A+al)=(f+n)(f+n) 20
with n*n < € (or n;] <¢, i=1,...,m).

With this observation, we may answer a number of
interesting questions in frequency response identifica-
tion by solving EVPs and GEVPs.

For fized a and ¢, minimize M. Solving this GEVP
answers the question “Given a and a bound on the
noise values, what is the smallest possible a-shifted
H,., norm of the system consistent with the measure-
ments of the frequency response?”

For fized a and M, minimize €. Solving this EVP
answers the question “Given a and a bound on a-
shifted H,, norm of the system, what is the “small-
est” possible noise consistent with the measurements
of the frequency response?”
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