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Abstract: In the photonic design problem, a scientist or engineer chooses the physical parameters
of a device to best match some desired device behavior. Many instances of the photonic design
problem can be naturally stated as a mathematical optimization problem that is computationally
difficult to solve globally. Because of this, several heuristic methods have been developed to
approximately solve such problems. These methods often produce very good designs, and, in
many practical applications, easily outperform ‘traditional’ designs that rely on human intuition.
Yet, because these heuristic methods do not guarantee that the approximate solution found is
globally optimal, the question remains of just how much better a designer might hope to do.
This question is addressed by performance bounds or impossibility results, which determine a
performance level that no design can achieve. We focus on algorithmic performance bounds,
which involve substantial computation to determine. We illustrate a variety of both heuristic
methods and performance bounds on two examples. In these examples (and many others not
reported here) the performance bounds show that the heuristic designs are nearly optimal, and
can be considered globally optimal in practice. This review serves to clearly set up the photonic
design problem and unify existing approaches for calculating performance bounds, while also
providing some natural generalizations and properties.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

An important part of photonics, and many other scientific and engineering fields, is the design and
construction of physical devices. A ‘physical device’, as used in this paper, includes anything as
simple as a spherical lens, where a scientist can easily find an optimal lens for a given application
by using basic algebra and ray optics, all the way to potentially very complicated devices and
applications such as range detection and mapping using LiDAR [1], where building an ‘optimal’
device, in nearly any practically useful sense, is an open research problem. Though the two
examples we give are in the field of photonics (and this is, indeed, the focus of our review), the
term refers to any device that can, at least theoretically, be built, and whose desired behavior can
be mathematically specified.

Traditionally, the design of physical devices was done by an engineer or scientist, whom we
will generally call a designer, for a specific application. The designer would have a library, either
physically or through experience, of well-understood components or materials, each performing
a specific function. These components would then be carefully pieced together, often with a good
amount of ingenuity, in order to perform the desired task. In many cases, the resulting designs
could then be modified in part or in whole, or combined with other designs, in order to perform
even more complicated functions. This procedure, while effective in practice, is time consuming
and sometimes even tangential to the final application of the design itself.

A second approach to constructing physical devices was initially explored in the early 1960s
within the field of electrical engineering, originally for the purpose of recognizing printed letters
[2] and has since been extended to many other fields [3–24], with sometimes very surprising
results [25]. In this approach, the designer specifies a mathematical objective function which,
given a design, outputs a number representing how well the input design matches the desired
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specifications; the lower this number is, the better the design. This function is then fed into an
optimization algorithm, which attempts to minimize this objective function by finding a design
that is good in the sense specified by the designer. In almost all practical cases, the algorithm
will fail to find the best possible design, and, except in very specific scenarios, may never do
so even when left to run for a very long time. But, in many applications, the resulting designs
found often have much better performance than any design found by humans. This approach
can be seen as a declarative approach to design: the user specifies what they want, while ceding
control of how it should be done to the optimization algorithm. This idea has many names in
different fields, with field-specific connotations and denotations; these include ‘automated design’,
‘computational design’, ‘inverse design’ (in photonics and aerospace engineering), ‘shape design’
and ‘generative design’ (in mechanical engineering), ‘topology design’ (in several fields), or
‘synthesis’ (in hardware design), among many others. We will simply call this optimization
problem the ‘physical design problem’, with the understanding that many, if not all, of the
previously mentioned problems are instances of the physical design problem.

2. Physical design problem

The usual physical design problem can be formally stated in many ways. In this review, we focus
on a simple but general formulation, which, as we show in this section, includes many important
problems in photonic design.

2.1. Physics

The design problem starts with a physical theory that describes the behavior of the field (which
we will write as z) under some excitation (which we will write as b). The field z and excitation
b are vectors in some (typically infinite dimensional) vector space. We focus here on the case
when the physical theory is linear, in which case we can write the physics equation as

Az = b, (1)

where A is a linear operator. Problems in physical design are governed by physics equations
such as Maxwell’s equations, Helmholtz’s equation, the heat equation, the Schrödinger equation,
among many others, which are linear in many important applications, and therefore of the form
of (1).

Electromagnetic wave equation. For example, a common way of writing the electromagnetic
(EM) wave equation in terms of the electric field E and the currents J, for a monochromatic wave
with angular frequency ω is [26, §2],

−∇ × ∇ × E + ω2µ0εE = −iωµ0J,

where ε denotes the permittivities at each point in space and µ0 is the magnetic permeability,
which we assume to be constant throughout space, in this example. We can then make the
following correspondences:

(−∇ × ∇ × · + ω2µ0ε)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
A

E⏞⏟⏟⏞
z

= −iωµ0J⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
b

, (2)

which naturally leads to an equation of the form of (1).
Discretization. We will work with an appropriate discretization of the field, excitation, and

physics Eq. (1). We will overload notation to use the same symbols for their discretized versions.
In the sequel, the field z will be a vector in Rn, the excitation b will be a vector in Rm, and the
linear operator A will be a matrix in Rm×n. The physics Eq. (1) is then a set of m linear equations
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in n scalar variables. Complex fields and excitations can be reduced to the real case by separating
them into their real and imaginary parts.

Solutions and simulations. For a fixed A and excitation b, we will call any z which satisfies (1)
a solution of the physics equation. In general there can be a unique solution, many solutions,
or no solution. We will focus on the case when there is a unique solution, i.e., m = n and A is
invertible, so z = A−1b.

We refer to computing the field z = A−1b, given A and b, as a simulation. There are many
simulation methods, including generic methods for solving linear equations such as sparse-direct
methods [27,28] or iterative methods [29,30], and custom methods crafted specifically for the
particular physics equations [31–33]. We note that, in practical photonic design, the resulting
linear systems can be very large, with the number of variables, n, often in the millions or tens of
millions. Solving systems in the upper end of this range often requires the use of large-scale
linear solvers [34].

Approximate solutions and physics residual. Some of the methods we will see work with
approximate solutions of the physics equation. For any field vector z and excitation b, we define
the physics residual as rphys = Az− b. A reasonable numerical measure of the size of the residual
is ∥Ax−b∥/∥b∥, where ∥ · ∥ is a norm, typically the Euclidean norm ∥ · ∥2. Simulations, especially
those that use iterative methods, produce fields with small physics residuals.

Modes. A simple trick can be used to represent the modes of a system as a solution to (1).
Suppose the original (discretized) physics equation is Hz = λz, where λ is the eigenvalue and z
is an associated mode. Directly expressing this as Az = b with A = H − λI and b = 0 yield a
physics equation that is not invertible and has multiple solutions (including, of course, z = 0). To
fix a unique solution, we use a linear normalization and insist that cTz = 1, where c ∈ Rn is some
nonzero vector. We then represent the mode equation and normalization as Az = b with

A =
⎡⎢⎢⎢⎢⎣
H − λI

cT

⎤⎥⎥⎥⎥⎦ , b =
⎡⎢⎢⎢⎢⎣
0n

1

⎤⎥⎥⎥⎥⎦ . (3)

This has a unique solution, provided c is not an eigenvector of H with eigenvalue λ and that λ is
a simple eigenvalue. Note that the linear normalization in (3) differs from the usual choice of
normalization, ∥z∥2 = 1, where ∥ · ∥2 is the Euclidean norm.

2.2. Design parameters

In physical design, the designer is able to change the system physics Eq. (1), by choosing some
parameters that affect the physics, i.e., A and b. Thus A and b depend on some design parameters
θ ∈ Rd. For example, in photonic design, θ is generally a variable that controls the permittivities
inside of the device. We can then write the physics Eq. (1) with explicit dependence on the
design parameters as

A(θ)z = b(θ). (4)

When A(θ) is invertible we have z(θ) = A(θ)−1b(θ); i.e., the field also depends (implicitly) on the
design parameters θ.

Affine physics design. In many practical cases (and in all of the examples we will show), A
and b are affine functions of the design parameters; i.e.,

A(θ) = A0 +

d∑︂
i=1
θiAi, b(θ) = b0 +

d∑︂
i=1
θibi,

where Ai ∈ Rm×n and bi ∈ Rm. These Ai are usually sparse matrices and vectors; that is, each
design parameter θi affects just a few entries of A and b. Because Eq. (4) is affine in θ when
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holding z fixed, and affine in z when holding θ fixed, this type of equation is sometimes called
‘bi-affine’ or ‘multilinear’ in θ and z.

Diagonal physics design. A common and useful special case of (4) is when b(θ) is a constant,
b(θ) = b0, and A(θ) can be written as

A(θ) = A0 + diag(θ), (5)

where diag(θ) is a matrix whose diagonal entries contain the elements of the vector θ and is zero
elsewhere. In other words, Ai = Eii, where Eii is the matrix with only one nonzero entry (which
is one), in the i, i entry. We will call this special case of (4) the diagonal physics equation.

EM wave equation in diagonal form. A specific example of a diagonal physics equation are
Maxwell’s Eqs. (2), whenever a designer is allowed to vary the permittivities. In this case, we
can define θ to be proportional to the permittivities (with proportionality constant µ0ω

2) such
that the following correspondences can be made:

(−∇ × ∇ × ·⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞
A0

+ µ0ω
2ε⏞ˉ⏟⏟ˉ⏞

diag(θ)

) E⏞⏟⏟⏞
z

= −iωµ0J⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
b

.

This correspondence results in an equation of the form of (5). (We can also similarly write the
more general case where the designer is allowed to vary both the permittivities and permeabilities,
in this form. See, e.g., the appendix in [35].)

Low-rank updates. Whenever A(θ) is sparse (which is very common in practice), it is often
possible to compute an explicit factorization of A(θ) (e.g., the sparse Cholesky factorization,
when A(θ) is positive semidefinite) which makes evaluating A(θ)−1b(θ) inexpensive, after the
factorization. Additionally, whenever the matrices Ai are also low rank (as in the diagonal
case (5), for example), updates to the factorization of A(θ) can be efficiently computed [28]. This
implies that we can also efficiently evaluate A(θ ′)−1b(θ ′), when only a small number of entries of
θ ′ differ from those of θ, given the factorization for A(θ).

Parameter constraints. In general, a designer has constraints on the parameters that can be
chosen. Because of this, we will define the feasible parameter set, Θ ⊆ Rd, such that only design
parameters satisfying θ ∈ Θ are feasible or valid. In many applications, Θ is a hyperrectangle (or
box) indicating that each component of θ must lie in some interval given by θmin, θmax ∈ Rd, i.e.,

Θ = {θ ∈ Rd | θmin ≤ θ ≤ θmax},

where the inequalities are elementwise.
In photonic design, it is often not possible to vary the permittivities along an interval but are

instead allowed to be one of two possible values. This leads to another common set of parameter
constraints, where each component of θ is constrained to be exactly one of two elements (we will
call this class of constraints Boolean constraints):

Θ = {θ ∈ Rd | θi ∈ {θmin
i , θmax

i } for i = 1, . . . , d}.

In this class of constraints, the total number of parameters that are feasible is |Θ| = 2d. The
feasible parameter set Θ can also include fabrication constraints such as minimum possible
feature sizes, among other possibilities [36], but we will focus on the common cases of box or
Boolean constraints.

Normalization. We can re-parametrize the design parameters to lie between −1 and 1 (or any
other limits). So, without loss of generality, we can always consider the upper and lower bounds
to be θmin = −1 and θmax = 1, where 1 is the vector with all entries equal to one. To do this, we
introduce a new parameter δ ∈ Rd and define

θ = θ̄ + ρ ◦ δ,

where θ̄ = (θmax + θmin)/2 is the parameter midpoint, while ρ = (θmax − θmin)/2 is the parameter
radius, and ◦ denotes the elementwise (Hadamard) product. The constraint θ ∈ Θ becomes
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−1 ≤ δ ≤ 1, where the inequalities are elementwise, in the box-constrained case, or δ ∈ {−1, 1}d

in the Boolean case. We then have A(θ) = Ã(δ), b(θ) = b̃(δ), with Ã and b̃ affine, and

Ã0 = A(θ̄), b̃0 = b(θ̄),

while
Ãi = ρiAi, b̃i = ρibi, i = 1, . . . , d.

2.3. Optimization problem

The design objective is often written as a function of the fields, specifying how well the resulting
field matches the desired objective. This objective function could specify the power in a given
direction, the field overlap (i.e., the inner product between the current field and a desired one), or
the total energy, all of which can be written as functions depending only on the field, that the
designer may wish to optimize. For example, the designer may wish to maximize the power
transmitted through a specific port of a device at a given frequency [37], or to maximize the
focusing efficiency of a lens within a specific region [38,39]. Finding a device that best matches
this objective can be directly phrased as a mathematical optimization problem.

Objective function. In other words, we seek to find a design whose field optimizes an
objective function f : Rn → R ∪ {+∞}. The function’s input is a field z (generated by some
design θ ∈ Θ) and its output is a number that specifies how good or bad this field is, or how well
the field matches the designer’s specification. Without loss of generality, we will assume that a
higher number is worse (i.e., a designer wishes to minimize f ), but we can just as well maximize
f by, equivalently, minimizing its negative, −f . We allow the objective function f to take on
infinite values to denote hard constraints on the desired field: if f (z) = +∞ for some field z, then
z is not a feasible field.

Problem statement. We can then compactly write the problem that a designer wishes to solve
(or approximately solve), which we will call the physical design problem:

minimize f (z)

subject to A(θ)z = b(θ)

θ ∈ Θ,

(6)

where the problem variables are the fields z ∈ Rn and design parameters θ ∈ Rd, while the
problem data include the matrix A(θ) ∈ Rm×n, the excitation b(θ) ∈ Rm, and the parameter
constraint set Θ ⊆ Rd. We will call the special case of (6) where the physics equation is the
diagonal physics Eq. (5) the diagonal physical design problem. (As a reminder, in photonic
design, θ is usually proportional to the permittivities, while A(θ) is the operator corresponding to
the electromagnetic wave Eq. (2).)

Problem attributes. Problem (6) has several important properties. In many practical cases,
the function f is a convex function and the set Θ is a convex set, which implies that problem (6)
is a convex problem in the variable z, when holding θ fixed, and is a convex problem in θ,
when holding z fixed. This property leads to some useful heuristics for approximately solving
problem (6); cf., [40,41]. Additionally, problem (6) often has a smooth (differentiable) objective
function f , while Θ can almost always be represented as a number of smooth equality and
inequality constraints, which happens in many practical applications and all examples presented
in this review. In this case, we can apply general nonlinear optimization solvers such as IPOPT
[42] directly to problem (6).

Computational hardness. On the other hand, it is not difficult to show that even finding a
feasible design and field for problem (6) is, in general, a computationally difficult problem (i.e., it
is NP-hard) even when the design parameters θ are unconstrained; that is, even if Θ = Rn. To do



Review Vol. 29, No. 2 / 18 January 2021 / Optics Express 2832

this, we will reduce the subset sum problem [43], a problem known to be NP-hard, to an instance
of (4). This would imply that, if we could efficiently solve problem (4), then we could efficiently
solve the subset sum problem, which is widely believed to be computationally hard to solve. (See,
e.g., [44] for a good overview of P vs. NP and its implications.)

The subset sum problem asks: given c ∈ Rn, is there a nonzero binary vector x ∈ {0, 1}n such
that cTx = 0? We will show that, given c, we can answer this question by finding a field z and
a design θ that satisfy the constraints of (6), which will imply that, in general, problem (6) is
computationally difficult.

First, note that we can write the following conditions on z and θ,

cTz = 0, θn+11Tz = 1, θi(zi − 1) = 0, zi = θi, i = 1, . . . , n,

as an instance of (4), by appropriately stacking the conditions into a matrix form. Now, the last
two conditions are true if, and only if, zi(zi − 1) = 0, which also happens only when zi ∈ {0, 1}
for i = 1, . . . , n. The second condition implies that 1Tz ≠ 0, and, when combined with the first
condition, this statement is true if, and only if, there exists a nonzero solution to the subset sum
problem, with the provided vector c. This, in turn, shows that finding a feasible design θ and
field z such that the constraints of (6) are satisfied must, in general, be a problem that is at least as
hard as the subset sum problem.

Because problem (6) is likely to be computationally difficult to solve exactly when the number
of parameters is large, we will focus on heuristics which approximately solve the problem for the
remainder of this paper.

Multi-scenario design. A common design task is to find a single device that has good
performance across many different scenarios. For example, the device might need to be robust
against temperature variations, or the device might be required to filter out a number of specific
wavelengths, while allowing others through. In this case, we will assume that the device satisfies
S instances of the physics Eq. (1), where the design parameters θ are held fixed across the S
instances, but the physics equation or the excitation, is allowed to vary:

As(θ)zs = bs(θ), s = 1, . . . , S.

Here As(θ) ∈ Rms×ns , bs(θ) ∈ Rms and zs ∈ Rns for s = 1, . . . , S. This leads to the multi-scenario
physical design problem:

minimize f (z1, . . . , zS)

subject to As(θ)zs = bs(θ), s = 1, . . . , S

θ ∈ Θ,

(7)

where the variables are the fields zs ∈ Rns in each of the s = 1, . . . , S scenarios and the design
parameters θ ∈ Rd, while the objective function f : Rn1 × · · · × RnS → R can depend on the
fields at any of the S scenarios.

In fact, it turns out that we can write any instance of the multi-scenario physical design
problem (7) as an instance of (6). To do this, we collect all of the individual physical equations
into a single constraint by placing all of the As(θ) along the diagonal of a lager matrix A(θ), and
stacking the excitations bs(θ) and fields zs. More specifically, define

A(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1(θ) 0 . . . 0

0 A2(θ) . . . 0
...

...
. . .

...

0 0 . . . AS(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(θ)

b2(θ)

...

bS(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

...

zS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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So we can write the S distinct physical equations, As(θ)zs = bs(θ) for scenarios s = 1, . . . , S,
as the single equation, A(θ)z = b(θ), with dimensions A(θ) ∈ Rm×n, z ∈ Rn, and b(θ) ∈ Rm,
where m = m1 + · · · + mS and n = n1 + · · · + nS. Overloading notation slightly, such that
f (z) = f (z1, . . . , zS), then reduces problem (7) to one of the form of (6). In other words, it suffices
to only consider a problem of the form of (6).

Eliminating the field variables. A simple (and relatively common) equivalent formulation
of problem (6) is to note that, because we have assumed A(θ) is invertible, we can write it as
a problem that depends only on the design variables; i.e., since z = A(θ)−1b(θ), we can write
problem (6) as the following optimization problem over θ ∈ Rd:

minimize f (A(θ)−1b(θ))

subject to θ ∈ Θ.
(8)

When the function f is differentiable, we can easily compute its derivatives with respect to each
component of θ:

∂

∂θi
f (A(θ)−1b(θ)) = (∇f (z))TA(θ)−1Aiz,

where z = A(θ)−1b(θ) is the solution to (4) for design parameters θ. We can write this in a slightly
more compact form by defining y = A(θ)−T (∇f (z)), such that

∂

∂θi
f (A(θ)−1b(θ)) = yTAiz. (9)

Note that, to find z and y, we only need to solve two systems of linear equations, one over A(θ),
and one over A(θ)T . This observation can be used to efficiently compute the gradient of the
objective with respect to the design variables and is called the adjoint method, dating back to
the control theory literature of the 1970s [45,46]. Other methods of computing the derivative
when, for example, the matrix A(θ) is not invertible include automatic differentiation through the
simulation (as in [47–49]), among many others.

Eliminating the design variables. In the case of diagonal design, and for some choices of
the parameter constraint set Θ, it is also possible to eliminate the corresponding design variables
[50]. For example, in the case where the parameter constraint set Θ is a box, −1 ≤ θi ≤ 1, then,
given a field z, there exist design parameters θ satisfying

(A0 + diag(θ))z = b0,

(i.e., z satisfies the diagonal physics Eq. (5) with parameters θ) if, and only if the field z satisfies

|A0z − b0 | ≤ |z|,

where the absolute value | · | is taken elementwise.
To see this, note that, from (5), we can write

A0z − b0 = −diag(θ)z,

and, since we are free to choose any −1 ≤ θ ≤ 1, we have that such a θ exists, if, and only if,

|A0z − b0 | ≤ |z|.

This lets us write the diagonal physical design problem in the following equivalent way:

minimize f (z)

subject to |A0z − b0 | ≤ |z|,
(10)

where the only problem variable is the field z ∈ Rn. We will call this formulation of the diagonal
physical design problem, as in [50], the absolute-upper-bound formulation.
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This rewriting also shows an interesting property of the physical design problem, whenever f
is convex: if you know the signs of any optimal field, then the design problem becomes convex
and therefore easy to solve globally. That is, if we know s = sign(z⋆), where sign is the signum
function

sign(z⋆)i =

{︄
1 z⋆i ≥ 0
−1 z⋆i <0,

and where z⋆ is optimal for (10), then any solution to the convex optimization problem

minimize f (z)

subject to |A0z − b0 | ≤ diag(s)z,
(11)

with variable z ∈ Rn is a solution to (10) with the same optimal value as z⋆. This follows from
two basic facts. First, any z that is feasible for (11) is feasible for (10) with the same objective
value because

|A0z − b0 | ≤ diag(s)z ≤ |z|.

And, second, that z⋆ is feasible for (11) since

diag(s)z⋆ = |z⋆ |,

and, by definition, z⋆ is feasible for (10) and so satisfies |A0z⋆ − b0 | ≤ |z⋆ |. This observation also
leads to an optimization algorithm which iteratively updates the signs and yields a sequence of
feasible fields with decreasing objective value [50, §3], called sign-flip descent or SFD for short.
We compare its performance against other basic solvers in §4.

A similar analysis holds when Θ = {−1, 1}n, i.e., θ is constrained to be Boolean. In this case,
we have that, given some field z, there exists a Boolean design θ ∈ {−1, 1}n such that θ and z
satisfy the diagonal physics equation if, and only if, z satisfies

|A0z − b0 | = |z|. (12)

We note that, in photonics, the box-constrained formulation sometimes leads to designs that
cannot be practically implemented because the resulting designs may have permittivities that
lie along an interval (i.e., θi may lie anywhere in [−1, 1]), while most fabrication methods only
allow the use of two possible permittivities (i.e., we must have θi ∈ {−1, 1}). Despite this, the
box-constrained formulation is often used as a good initialization for current inverse design
algorithms, which then approximately solve the Boolean case [34].

Approximate solution methods. There are many practical methods for approximately
solving (6). For example, many of the earliest solution methods approximately solve the physical
design problem by applying zeroth order (or ‘derivative free’) optimization algorithms after
eliminating the field variable, as shown in problem (8) [51–57]. Such methods are easy to
implement in practice, as they only require the ability to perform a basic simulation; i.e., to solve
the physics Eq. (4) for a given θ ∈ Θ. Zeroth order optimization methods include hill-climbing,
genetic algorithms [58], simulated annealing [59], Nelder-Mead [60], and adaptive coordinate
descent [61], among many others [62]. While effective at finding designs with moderate to good
performance, zeroth order optimization methods scale poorly and suffer from slow convergence
when compared to higher-order methods. (See [63] and [64] for more information on zeroth
order optimization methods.)

A second important family of optimization algorithms, which include the algorithms most
used in practice, are the first order optimization algorithms, which are also almost always applied
to problem (8). In these cases, such methods additionally make use of gradient information (9),
leading to better computational performance and faster convergence times, at the expense of



Review Vol. 29, No. 2 / 18 January 2021 / Optics Express 2835

higher implementation complexity, as these methods require additional information from the
simulator. Examples of first order optimization algorithms used in practive include L-BFGS-B
[65], proximal gradient methods [66], and the method of moving asymptotes [67], among many
others. (See [68–70] for a comprehensive overview.)

We compare a few different methods in §4.1 in terms of computational performance and
resulting design performance.

3. Performance limits

Any approximate optimization method for the physical design problem (6) can be used to generate
approximately optimal designs. In other words, if we let p⋆ be the optimal value for (6), these
procedures generate a design and field that satisfy the physics Eq. (1) whose objective value, say
p, satisfies p ≥ p⋆. In general, because problem (6) is hard to solve, it is hard to know how far
away our designs are from the true optimal value p⋆. For example, once we have approximately
optimized (6) and received some design with objective value p, it is not clear if this design is
close to optimal (and no design can do significantly better) or if there are designs that have much
better performance than the one we’ve found.

It is an old tradition in physics to then ask: what is the best possible value that we can hope to
achieve? More specifically: is there some lower bound d such that we can guarantee that the
optimal value of problem (6), p⋆, is never smaller than this bound; i.e., p⋆ ≥ d? Such a bound
can be interpreted in many ways. For example, it can be interpreted as an ‘impossibility result’,
which states that no device that satisfies the physics Eq. (4) and the parameter constraints, θ ∈ Θ
can have objective value smaller than d. We can also interpret is as a ‘certificate of optimality’:
given some design with objective value p, if p is close to d, then p must also be close to the
optimal objective value, p⋆, since p ≥ p⋆ ≥ d. Of course the best performance bound is p⋆, but
computing this is intractable, and we seek bounds that can be computed at reasonable cost.

Additionally, performance bounds can be very important in speeding up the design process.
For example, it is often not clear how large a design needs to be in order to achieve reasonable
performance. This often results in designers having to experiment with the total device size
in order to find a design which has at least the desired performance. Lower bounds on these
values, if they are efficiently computable, would give an indication of how large a design needs to
be in order to achieve the designer’s goals without additional (potentially very computationally
expensive) experimentation.

Methods. Roughly speaking, there are two main approaches to the problem of finding lower
bounds to the optimal objective value of problem (6). The first, and likely the earliest of the
methods, is to make basic physical assumptions about the system (for example, that the system
size is substantially smaller than the wavelength of the excitation [71,72]) and derive bounds
on the corresponding quantities [73–77]. While these methods are historically important and
yield good rule-of-thumb heuristics for design, many of the bounds derived in this way require
assumptions that are not satisfied by the devices found by inverse design, or result in weak bounds.
The second approach, which has become relatively popular recently (see, e.g., [35,38,78–89]),
essentially uses basic properties of the constraints and objective function of problem (6) to
derive bounds on the best possible performance of the problem. Such approaches include
algebraic manipulations of the physics Eq. (1) combined with the parameter constraints θ ∈ Θ,
and applications of Lagrange duality to problem (6). The resulting bounds often do not have
analytical forms, but can be numerically evaluated by an efficient algorithm and are therefore
called computational bounds. We will discuss such bounds in this section.
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3.1. Lagrange duality

The basic tool in a number of these bounds is the use of Lagrange duality. The idea is as follows.
Given the optimization problem

minimize f (x)

subject to h(x) ≤ 0,
(13)

for some objective function f : Rn → R, constraint function h : Rn → Rm, and optimization
variable x ∈ Rn, we form the Lagrangian:

L(x, λ) = f (x) + λTh(x),

where λ ∈ Rm, with λ ≥ 0 is a Lagrange multiplier or dual variable. This lets us define the
Lagrange dual function g : Rm → R, given by

g(λ) = inf
x

L(x, λ) = inf
x

(︂
f (x) + λTh(x)

)︂
.

See, e.g., [90, §5] for more information on Lagrange dual functions.
Lower bound property. The function g has a few interesting properties. First, for any λ ≥ 0,

g(λ) is always smaller than p⋆, the optimal value of (13), and is therefore a performance bound.
More specifically, we have

g(λ) = inf
x

(︂
f (x) + λTh(x)

)︂
≤ inf

h(x)≤0

(︂
f (x) + λTh(x)

)︂
≤ inf

h(x)≤0
f (x) = p⋆.

The first inequality follows from the fact that the set of x which satisfy h(x) ≤ 0 is no larger than
the set of all x ∈ Rn, and the second follows from the fact that, because h(x) ≤ 0 and λ ≥ 0, then
λTh(x) ≤ 0. Thus the Lagrange dual function gives us a performance bound, parametrized by λ.
(Depending on the problem and choice of λ, it can give the trivial lower bound −∞.)

Concavity. Since g(λ) is a performance bound for any λ ≥ 0, it is then natural to ask, what is
the best possible performance bound? In other words, what is the largest possible value of g(λ)
over the possible values of λ? This problem is called the dual problem and can be written as

maximize g(λ)

subject to λ ≥ 0.
(14)

In general, evaluating g(λ) at some λ ≥ 0 is at least as hard as solving the original problem (13).
On the other hand, when it is possible to efficiently evaluate g(λ), it is almost always possible to
efficiently find the optimal value of the dual problem (14) because the function g is always a
concave function, even when the objective function f and constraints h in the original problem
are not convex [90, §5.1.2].

Initializations. A solution to the dual problem (14) often suggests a good initialization for
heuristics which attempt to minimize problem (13). Given some dual variable λ⋆ that is optimal
for (14), there exists some x0 which minimizes the Lagrangian at this choice of dual variable

x0 ∈ argmin
x

L(x, λ⋆),

under some basic assumptions on the objective function f and constraints h. In practice, x0 is
generally close to a reasonable design (see, e.g., [35]) even if it is not feasible; i.e., it need not
satisfy h(x0) ≤ 0, except in some special scenarios such as when the functions f and h are both
convex, in which case x0 is globally optimal [90, §5.2]. Because it is often true that x0 is easy to
evaluate whenever g(λ⋆) is easy to evaluate, this initialization can be seen as a by-product of
finding a solution to (14).
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3.2. Local power conservation

The first approach to constructing bounds for (6) was presented originally in some generality in
[78] and then [86] and later extended and fully clarified in [83,89,91] and subsequently fully
generalized in [84] and [88] in the case where the parameters are Boolean (i.e., Θ = {−1, 1}n).
We will present a further generalization to the case where the parameters are box-constrained
(Θ = [−1, 1]n), by a slightly different proof that considers a relaxation of the absolute-upper-bound
formulation (10). (The Boolean case follows from an identical argument by considering (12),
instead.) Bounds of this form are essentially power conservation laws over a given subdomain,
which, in photonics, are often included under the name ‘optical theorem’ [92].

Power inequalities. Starting with the absolute-upper-bound formulation given in (10), we can
square both sides of the inequality constraint to receive an equivalent formulation,

minimize f (z)

subject to (aT
i z − (b0)i)

2 ≤ z2
i , i = 1, . . . , n.

(15)

In other words, a field z is feasible (i.e., there exists a design θ ∈ Θ such that z and θ satisfy the
diagonal physics Eq. (5)) if, and only if the following quadratic inequalities are all satisfied:

(aT
i z − (b0)i)

2 ≤ z2
i , i = 1, . . . , n. (16)

We can, of course, multiply these inequalities by a nonnegative value λi ≥ 0 for i = 1, . . . , n and
add any number of them together to get another valid, quadratic inequality,

n∑︂
i=1
λi(aT

i z − (b0)i)
2 ≤

n∑︂
i=1
λiz2

i ,

where aT
i is the ith row of A0. This can be more compactly expressed as

(A0z − b0)
TD(A0z − b0) ≤ zTDz, (17)

where D = diag(λ) and has nonnegative entries along the diagonal.
The family of inequalities (17), parametrized by the nonnegative diagonal matrices D is the

same as the family given in [84,88], except in the case where Θ specifies a box constraint, instead
of a Boolean one. Additionally, because z satisfies (16) if, and only if, it satisfies (17) for all
diagonal matrices D with nonnegative diagonals, then it follows that the family of quadratic
inequalities in [84,88] is tight, in the following sense: any field z which satisfies these power
conservation laws for all nonnegative diagonal matrices D must also have a corresponding design
θ ∈ Θ such that z and θ simultaneously satisfy the diagonal physics Eq. (5). (The inequalities
in (17) are of a slightly different form than those presented in [84,88]. We show their equivalence
in appendix 8.)

Relaxed formulation. Because any feasible field z satisfies (17) for any nonnegative diagonal
matrix D, we can relax the family of inequalities (17) from all nonnegative diagonal matrices D
to a finite number of them, which we will write as Dj for j = 1, . . . , N. The following problem
can then be seen as a relaxation of (15):

minimize f (z)

subject to (A0z − b0)
TDj(A0z − b0) ≤ zTDjz, j = 1, . . . , N,

(18)

with the field z ∈ Rn as the only variable and problem data A0 ∈ Rn×n, the excitation b0 ∈ Rn, and
the diagonal matrices Dj ∈ Rn×n with nonnegative entries along the diagonal, for j = 1, . . . , N.
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Note that, if Dj = Ejj for j = 1, . . . , n, where Ejj is the matrix with a single nonzero in the j, j entry
(which is one) and is zero elsewhere, we recover the original problem (15). Additionally, while
this problem is a relaxation of the original, it is still likely to be computationally hard to solve.

Quadratic objective. In general, finding lower bounds to the relaxed formulation (18) also
need not be easy, except in some important special cases. For example, when the objective
function f is a quadratic,

f (z) =
1
2

zTPz + qTz + r,

for some symmetric matrix P ∈ Sn, vector q ∈ Rn, and r ∈ R, then problem (18) is a quadratically
constrained quadratic program (QCQP, see [93]), and the dual function g corresponding to this
problem has a closed form solution. In fact, the dual problem of (18) is, in general, a convex
semidefinite program (SDP) which can be solved in practice for moderate values of n and N [90,
§1], allowing us to find a lower bound to (18) and therefore to (6) efficiently.

Dual problem. To find the dual problem, we first formulate the Lagrangian of (18):

L(z, λ) =
1
2

zTPz + qTz + r +
1
2

N∑︂
j=1
λj((A0z − b0)

TDj(A0z − b0) − zTDjz)

=
1
2

zTT(λ)z + v(λ)Tz + u(λ),

where λ ∈ RN
+ and we have defined

T(λ) = P +
N∑︂

j=1
λj(AT

0 DjA0 − Dj), v(λ) = q −

N∑︂
j=1
λj(AT

0 Djb0), u(λ) =
1
2

N∑︂
j=1
λjbT

0 Djb0 + r,

such that T(λ) ∈ Sn and v(λ) ∈ Rn, for notational convenience. (This follows from expanding the
expression and collecting the quadratic, linear, and constant terms in the variable z.)

It is not hard to show that the dual function is, for λ ≥ 0,

g(λ) = inf
z

L(y, λ) =

{︄
u(λ) − 1

2v(λ)TT(λ)+v(λ) T(λ) ≥ 0, v(λ) ∈ R(T(λ))
−∞ otherwise.

(See, e.g., [93, §3.2].) Here T(λ)+ is the Moore-Penrose pseudoinverse [94, §11.5] of T(λ),
while T(λ) ≥ 0 means that T(λ) is positive semidefinite, and R(T(λ)) is the range of T(λ). The
corresponding problem of maximizing g over λ ∈ RN

+ can be written as a standard form SDP,
which we will call the power dual bound:

maximize u(λ) − (1/2)t

subject to
⎡⎢⎢⎢⎢⎣

t v(λ)T

v(λ) T(λ)

⎤⎥⎥⎥⎥⎦ ≥ 0

λ ≥ 0,

(19)

with variables t ∈ R and λ ∈ RN . This problem can be easily specified using domain-specific
languages such as CVXPY or JuMP.jl and solved using convex solvers that support SDPs, such
as Mosek [95], SCS [96], or COSMO.jl [97]. Because of the sparsity of A0, it is often the
case that such problems have chordal structure [98], which can be exploited to efficiently solve
problem (19) by some solvers such as COSMO.jl.

Optimal choice of Dj matrices. Given the dual problem (19) of problem (18), the question
remains of how to best choose the diagonal matrices Dj for j = 1, . . . , N such that the optimal
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value of (19) is maximized. Historically, the initial bounds in [78,83,86,89,91] assumed a number
of fixed diagonal matrices Dj. Later, [84] and [88] generalized the approach to include any
diagonal matrix D and [88] proposed an iterative algorithm which, starting with some diagonal
matrix D1 (such as D1 = I) would solve a problem similar to (19) at iteration k and propose
a new diagonal matrix Dk+1 that would be appended to the constraints of (18). This method
is conceptually similar to the cutting-plane method described in [93, §3.5] applied to the dual
problem (19) with Dj = Ejj for j = 1, . . . , n. (More accurately, the procedure proposed in [88]
solves an SDP relaxation of (18) instead of the dual problem (19), but it can be shown that both
problems have the same optimal value by strong duality [93, §3.3].)

It is also reasonable to ask: what are the best possible choices of Dj such that the optimal value
of (19) is maximized? It is not hard to show that a single (correctly chosen) diagonal matrix,
D = diag(λ), suffices and that this matrix can be efficiently found. To see this, note that we can
choose Dj = Ejj for j = 1, . . . , n such that,

D =
n∑︂

j=1
λjDj = diag(λ). (20)

This would let us write

T(λ) = P + AT diag(λ)A − diag(λ), v(λ) = q − AT diag(λ)b, u(λ) =
1
2

bT diag(λ)b + r,

We then note that picking λ⋆ optimal for (19), when it exists, gives a diagonal matrix D⋆ =

diag(λ⋆). Additionally, solving (18) with this choice of matrix D⋆ is a special case where the
number of quadratic constraints, N, equals 1, which can be efficiently solved and has the same
optimal value as (19). (See, e.g., appendix B of [90].)

3.3. Diagonal physics dual

Another approach to computing lower bounds for the diagonal physical design problem (6) is by
a direct application of Lagrange duality, originally given in [35] and later extended in [82] and
[99]. This approach gives a lower bound when the objective function is separable:

f (z) =
n∑︂

i=1
fi(zi),

and the constraints are of the following form:

Θ = {θ | −1 ≤ θ ≤ 1, θi = θj for i, j ∈ Sk, k = 1, . . .K}, (21)

where Sk ⊆ {1, . . . , d} for k = 1, . . . , K are disjoint sets, specifying which entries of θ are
constrained to be equal. We additionally note that a lower bound for this constraint set also yields
a lower bound for the Boolean case, since this constraint set contains the Boolean one.

Problem Lagrangian. The basic trick here is to rewrite problem (6) as the following
(equivalent) problem:

minimize
∑︁n

i=1 fi(zi) + I(θ)

subject to (A0 + diag(θ))z = b0,
(22)

where we have pulled out the constraint θ ∈ Θ into the indicator function I : Rn → R ∪ {+∞}

for the set Θ,

I(θ) =

{︄
0 θ ∈ Θ

+∞ θ ∉ Θ.
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We can then easily formulate the Lagrangian of this problem:

L(z, θ, ν) =
n∑︂

i=1
fi(zi) + I(θ) + νT (A0 + diag(θ))z − νTb0,

which we note is separable in terms of z:

L(z, θ, ν) =
n∑︂

i=1

(︂
fi(zi) + (aT

i ν)zi + νiθizi

)︂
+ I(θ) − νTb0

Dual function. As before, the dual function is defined as

g(ν) = inf
θ

inf
z

L(z, θ, ν).

Computing the inner infimum is relatively simple, which gives:

inf
z

L(z, θ, ν) =
n∑︂

i=1
inf
zi

(︂
fi(zi) + (aT

i ν)zi + νiθizi

)︂
+ I(θ) − νTb0

= −

n∑︂
i=1

f ∗i (−aT
i ν − νiθi) + I(θ) − νTb0.

Here, f ∗i : R → R ∪ {+∞} is the convex conjugate of fi (sometimes called the Fenchel conjugate
function or simply the conjugate function) defined as

f ∗i (u) = sup
x

(ux − fi(x)) ,

and is well known for a number of functions [90, §3.3]. Additionally, we will make use of the
fact that f ∗i is always a convex function, even when fi is not convex.

To compute the outer infimum, we note that we can write

g(ν) = inf
θ

(︄
−

n∑︂
i=1

f ∗i (−aT
i ν − νiθi) + I(θ) − νTb0

)︄
= inf

θ

(︄
−

K∑︂
k=1

∑︂
i∈Sk

f ∗i (−aT
i ν − νiθk) + I(θ)

)︄
− νTb0

= −

K∑︂
k=1

(︄
sup

−1≤θk≤1

∑︂
i∈Sk

f ∗i (−aT
i ν − νiθk)

)︄
− νTb0

= −

K∑︂
k=1

max

{︄∑︂
i∈Sk

f ∗i (−aT
i ν + νi),

∑︂
i∈Sk

f ∗i (−aT
i ν − νi)

}︄
− νTb0,

where we have used the fact that − infx h(x) = supx −h(x) for any function h, and the fact that a
scalar convex function achieves its maximum over an interval at the boundary of that interval.

Dual problem. Given the dual function g, we can find a lower bound to the original problem
by evaluating g for any ν ∈ Rn. We can then ask what’s the best possible dual bound, which
gives the following dual problem, which we will call the diagonal dual bound:

maximize −

K∑︂
k=1

max

{︄∑︂
i∈Sk

f ∗i (−aT
i ν + νi),

∑︂
i∈Sk

f ∗i (−aT
i ν − νi)

}︄
− νTb0. (23)

This problem is a convex optimization problem with variable ν ∈ Rn, whose optimal value, d⋆,
can almost always be efficiently found whenever the function f ∗ can be efficiently evaluated.
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Field bounds. In some cases, the bounds given by (23) can sometimes be very weak; e.g., if
fi = 0 for all indices i except one. One way of improving the lower bounds is to add a redundant
constraint to (22); i.e., a constraint such that, if z satisfies (A0 + diag(θ))z = b0, then it also
satisfies h(z) ≤ 0 for some function h : Rn → R, such that the dual function of the resulting
problem is still simple to evaluate.

One useful example, originally presented in [82], is to note that, if z satisfies

(A0 + diag(θ))z = b0,

then it also satisfies,

∥A0z∥2 − ∥ diag(θ)z∥2 ≤ ∥(A0 + diag(θ))z∥2 = ∥b0∥2,

where we have taken the norm of both sides of the expression, and the inequality follows from
the triangle inequality. Using the fact that

∥A0z∥2 ≥ σ1(A0)∥z∥2, and ∥ diag(θ)z∥2 ≤ ∥z∥2,

where σ1(A0) is the smallest singular value of A0, we find

σ1(A0)∥z∥2 − ∥z∥2 ≤ ∥b0∥2,

or, after some rearrangement:

∥z∥2 ≤
∥b0∥2

σ1(A0) − 1
,

whenever σ1(A0)>1. Evaluating the dual for this new problem is a simple extension of the
procedure given above as in [35, §6]. In fact, the same procedure can be extended to any norm
∥ · ∥ by replacing σ1(A0) with 1/∥A−1

0 ∥, where ∥A−1
0 ∥ is the induced operator norm of A−1

0 :

∥A−1
0 ∥ = sup

∥x∥=1
∥A−1

0 x∥,

but the resulting dual function need not be easy to evaluate.
Mode volume. Another extension, presented originally in [99] is for an objective function f

of the form

f (z) =
∥z∥2

2

z2
i

,

whenever zi ≠ 0 and is +∞ otherwise. Here, i is a fixed index and we will assume there is no
excitation; i.e., b0 = 0. Note that this objective function is similar to, and can be easily extended
to include, the cavity mode volume. Because b0 = 0, then the physics equation and objective
are 0-homogeneous in z, so any feasible point z with zi ≠ 0 can be scaled by a nonzero value
η ∈ R, such that ηz is also feasible with the same objective value, f (ηz) = f (z). We can then fix a
normalization by setting zi = 1 to get an equivalent problem:

minimize ∥z∥2
2

subject to (A0 + diag(θ))z = 0

zi = 1

−1 ≤ θ ≤ 1,

(24)

with variables z and θ and some fixed index i. The dual for problem (24) can be computed using
the same method presented in this section.
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4. Numerical examples

In this section, we show a basic comparison between some of the heuristics presented in §2.3 and
the performance bounds presented in §3 on a small problem of designing a Helmholtz resonator
in one and two dimensions. In these cases, we can certify that the heuristics find a device whose
performance is at most 2% above the global optimum, even though the original problem is likely
hard. We then show examples in the literature of much larger devices for which no lower bound
has been computed (and, indeed, cannot be computed with the current methods in a reasonable
amount of time), but has resulted in practically useful devices whose performance is much better
than that of traditional designs.

4.1. Small examples

In this section, we will compare the performance of three heuristics, sign-flip descent (SFD),
IPOPT, and genetic algorithms (GA), and the lower bounds presented in §3. We will first compare
their respective performance on a small, one-dimensional design, where both the power lower
bounds and the dual lower bounds can be computed in a reasonable amount of time, and then
compare their performance on a larger two-dimensional design. The times reported in this section
are from a dual-core 2015 MacBook Pro laptop running at 2.9GHz with 8GB of RAM. At the
time of writing, this machine is 5 years old and is roughly representative of the computational
power available in more recent standard and lower-end consumer laptops.

Problem formulation. In both scenarios, our objective function f will be to best match a
desired field ẑ,

f (z) = ∥z − ẑ∥2
2 ,

where the desired field is a cosine wave with a Gaussian envelope on the left half of the domain,
and is equal to zero on the right half. The excitation is a single delta function in the center of the
domain. In this problem, the designer is then allowed to choose the speed of the wave at each
point in space (via the design parameters θ), such that the objective function is minimized. (For
more details and code, see the appendix 9.)

1D problem. We compare the objective performance and computational performance of the
heuristics and bounds in Table 1. We also plot the corresponding fields and the desired field in
Fig. 1. While GA gives rather poor solutions (which only somewhat match the largest features
of the desired field), IPOPT and SFD give approximately-optimal fields that are essentially
indistinguishable from the desired one.We find, at least in this small scenario, that IPOPT and
SFD have objective values that are extremely close to that of the power bounds and diagonal dual
bounds, which means that the designs found in this scenario can, for all intents and purposes, be
considered globally optimal. We also note that GA, while simple to implement, does not find a
good solution even with some amount of tuning, while also having the worst performance of the
available heuristics in terms of total time taken. Additionally, while the power bound was slightly
tighter than the diagonal dual lower bound, it took nearly 90 times longer to converge for this
small problem. This is due to the fact that SDPs solution times scale approximately cubically
with the problem dimension (i.e., are O(n3)), which quickly becomes an issue for larger problems.

Table 1. Performance results for small design.

Algorithm Objective value Time (s)

Genetic algorithm 2.54 6.40

IPOPT .652 1.70

Sign-flip descent .642 .592

Power dual bound .639 125

Diagonal dual bound .634 1.39
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Fig. 1. Approximate designs and desired field for 1D problem.

In fact, we note that it was difficult to find a desired field ẑ where the bounds and the performance
of designs found by SFD differed significantly. We encourage readers to search for some cases
where this is true by trying a few different desired fields in the code available for this paper. For
more details, see appendix B.1.

2D problem. In the 2D problem, we again test the performance of GA, IPOPT, and SFD,
and the diagonal design lower bound, though we do not compute the power bounds. We note
that naïvely attempting to compute the power bounds in (19) by framing the problem as an SDP
(using an SDP solver that does not support chordal sparsity) results in a dense matrix variable of
size (2512)2/2 = 2514/2, which requires approximately 16GB of memory to store, nearly double
the available memory (8GB), not counting the additional memory required to perform operations
on this matrix.

The results of this comparison are available in Table 2 and the fields of the approximately
optimized designs are shown in Fig. 2. We terminated any algorithm whose runtime was longer
than 30 minutes on the current computer. We note that, again, SFD has surprisingly good
performance, and, when combined with the lower bound, yields a design that is guaranteed to
be no more than (11.9/11.7 − 1) ≈ 1.7% suboptimal, relative to the globally optimal value (in
fact, as shown in Fig. 2, the resulting field from SFD and the desired field, ẑ, are difficult to
visually distinguish). Additionally, solving the diagonal dual bound was faster than getting an
approximate design from any of the heuristics, though we note that this is likely not the case with
much larger designs or better-optimized heuristics. For more details, see appendix B.2.

Fig. 2. Approximate designs and desired field for 2D problem.
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Table 2. Performance results for larger design.

Algorithm Objective value Time (s)

Genetic algorithm N/A >1800

IPOPT 190.71 1360

Sign-flip descent 11.9 364

Diagonal dual bound 11.7 48.5

Discussion. The examples in this section show that modern heuristics have very good practical
performance when compared to the available lower bounds. In fact, we suspect that this is
true more generally: modern heuristics with reasonable initializations likely return designs
that are very good, if not globally optimal, even when there exist no bounds that can certify
this, or when the available bounds are very weak. Additionally, while we have made some
basic performance optimizations to the available code, we opted for clarity as opposed to pure
performance in the implementation of the algorithms presented, so the numbers above should
only be interpreted as general guidelines. The code to generate the plots and tables is available at
https://github.com/cvxgrp/pd-heuristics-and-bounds.

4.2. Practical examples

In this section, we show practical examples in the literature where the devices found by heuristics
have been fabricated and experimentally verified. While the current bounds cannot be used to
certify that the performance of these designs is close to globally optimal in a reasonable amount
of time, the resulting designs have much better performance than that of traditional designs.
For a comprehensive overview of the history of inverse design and its applications in practice,
including older literature, we refer the reader to [20].

Splitters. Perhaps the most striking applications of physical design is in the design of compact
splitters—devices which, given some input in a specific scenario (for example, given an input at
a specific frequency) must direct as much of the input as possible into a desired output location.
Different scenarios would direct the input to different locations; i.e., the input is ‘split’ to different
outputs depending on the scenario. Some examples of such devices and their performance can be
found in, e.g., [37,100,101].

Figure 3 shows an example of the splitter designed and fabricated in [102]. In this figure, three
different inputs are represented by the three different colors (blue, red, and green), which are
initially ‘mixed’ in the input on the left-hand-side of the domain. The device then separates the
wavelengths into each of the three output channels.

Fig. 3. Scanning-electron microscope image of a three-way wavelength splitter with
simulated fields overlaid. Figure and design from [102].

https://github.com/cvxgrp/pd-heuristics-and-bounds
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Particle accelerators. There are other types of devices which have been designed and
manufactured in practice. A recent demonstration of a laser-driven particle accelerator small
enough to be placed on a chip [103] required several components to be efficient enough that the
input power did not destroy the material out of which the components were made. The necessary
components included the devices which coupled the laser to the structure, along with the actual
accelerator. The resulting designs are unintuitive enough that it is not clear a human could
manually design a device of the same (or smaller) size that had at least the same efficiency. The
accelerator from the final device of [103] is shown in Fig. 4.

Fig. 4. Scanning-electron microscope image of an inverse-designed laser-driven particle
accelerator with simulated fields overlaid. Figure and design from [103].

Lenses. There have been a few other types of devices that have been designed by these methods
and created in practice. Some examples include flat lenses with a large depth of field that have
the same focusing efficiency as traditional lenses [39], and flat lenses with an ultra-wide field of
view [104]. There has been some additional work in creating deformable lenses whose focal
length can be controlled by stretching or contracting the material, with performances exceeding
those of traditional lenses [16].

Fabrication constraints. We note that, while there have been many numerical demonstrations
of inverse designed photonic devices, the actual fabrication of such devices has been relatively
difficult until recently, when methods that could include fabrication constraints [36,105] and could
accommodate a large enough number of field variables became available and were fast enough to
be used in practice. Additionally, fabrication constraints can also be applied to mass-produced
photonic circuits in a foundry [106], which makes it possible to fabricate inverse-designed
photonics at scale.

5. Future directions

While physical design and, more specifically, inverse design, has led to some dramatic improve-
ments in the performance of photonic devices, there are still many questions left unanswered and
possible future avenues for research.

Standard benchmarks. There is a need for standardized benchmarks for both heuristic
algorithms and bounds. Similar to the standard performance benchmarks for machine learning
(such as MNIST [107], ImageNet [108], CIFAR-10 [109], etc.) and for optimization (such as
the Maros–Mészáros test set [110], MIPLIB 2017 [111], etc.), which are used to compare the
performance of different proposed algorithms, it is feasible to have a standard library of design
specifications (objective functions and constraints) which either have known global solutions or a
best known solution and best known lower bound that is updated as better ones are found. This
would allow for researchers to have a concrete library which can be used to compare proposed
algorithms against existing ones, in terms of both objective value and computational performance.
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Like in machine learning or optimization, we suspect that such benchmarks would clarify the
performance tradeoffs of different algorithms and bounds. These benchmarks would help identify
what problems are ‘hard’ for current heuristics and possibly lead to better approaches.

Improved heuristics. While some of the methods presented here can scale to very large
designs with millions to tens of millions of field and tens of thousands of design variables, many
of the current methods do not make use of the specific structure of the physical design problem
and take a long time (days or weeks) even with large computers or clusters. For example, one
possible avenue is the use of a primal-dual algorithm, which can lead to drastically improved
performance for some problems (see, e.g., [112, §3.5]). Such methods could also lead to
algorithms whose natural byproduct of computing an approximately optimal design is a bound,
like in §3, guaranteeing that the resulting design is close to the global optimum without requiring
additional computational time. There has been additional work with combining machine learning
approaches to speeding up both simulations [113] and optimization [114–117], which trade off
training time for runtime performance.

Improved initializations. All of the heuristics used in practice often require good initializations
in order to have reasonable performance. In practice, initializations that are guided by intuition
appear to work well for many scenarios, but sometimes fail to reach what are known to be better
designs. (See, e.g., [34, §5].) As previously discussed, the bounds presented yield good initial
designs as a by-product of the optimization procedure; but this need not be true in general, and we
suspect that there might exist better methods which, while expensive to run exactly, might yield
good initial designs. For example, while sign-flip descent might be potentially very expensive to
run for large designs (as it requires solving a general constrained convex problem at each iteration)
one could perform a small number of iterations to get a reasonably good initial field and then feed
this resulting field into an optimization algorithm with faster convergence. (This latter procedure
is sometimes called ‘solution polishing’ in combinatorial optimization.) Another avenue of
similar work is the idea of ‘objective-first’ optimization [118] where the physics equation is
relaxed to a penalty with a small weight and the resulting nonconvex problem is solved to get an
infeasible design with good objective performance and (hopefully) small physics residual. This
initial, infeasible design is then passed to any of the heuristics above to attempt to find a feasible
design and field with similar performance.

Improved bounds. The small examples we have discussed here are simple cases where the
bounds and the heuristics are very close; but this need not be the case. For example, the diagonal
dual bounds given here can give weak bounds when the objective function depends only on a
few entries of the field variable z, even with the additional extensions presented. While we, in
general, suspect the power bound yields tighter results than the diagonal dual lower bound in
these cases, current off-the-shelf solvers are too slow to solve the resulting problem other than
for a small number of field variables, n ≲ 103. One future research avenue is to create faster
solvers for problem (19), by exploiting the specific structure available in these problems. A
second possibility is to find some connection between the diagonal dual and power bounds; in
particular, it is not clear how one is related to the other, if at all. We conjecture that the power
bounds (19) are always guaranteed to be at least as tight as the diagonal dual ones (23) whenever
the function f is a separable convex quadratic, and where the constraint sets Sk are singletons
(Eq. (21) with Sk = {k} for k = 1, . . . , n) but have been unable to prove this. It is also of practical
interest to create lower bounds which give approximate scaling rules for designs, which would
help a designer choose appropriate device sizes and materials for a desired objective.

6. Conclusion

There has been tremendous progress in the area of photonic inverse design, including foundry-
based fabrication and the use of design software in a wide range of academic and industry labs.
Still, there is a lot to be improved, including, but not limited to: designing standard benchmarks
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and comparisons for heuristics, overcoming computational bottlenecks in order to design larger
devices than those which are currently possible, and the improvement of bounds (both theoretically
and in terms of computational performance) which currently either do not apply, or are very
difficult to compute, for many of the devices used in practice. Yet, despite the drawbacks of the
current approaches, inverse design has yielded incredible practical benefits, and we expect that
such methods will, in the near future, become a standard approach to creating practical, efficient
devices that far exceed the performance of their traditionally-designed counterparts.

Appendix A. Bound equivalence

We show that the bounds presented in [84,88] are equivalent to the ones given in section 3.2.
Derivation. First, we derive the bounds presented using this notation. We define the

displacement field yi = γizi, for i = 1, . . . , n, where γi = (1 + θi)/2. (Note that θi ∈ [−1, 1]
whenever γi ∈ [0, 1].) The diagonal physics equation can then be written in terms of the field z
and the displacement field y:

(2A0 − I)z + y = 2b0, yi = γizi, i = 1, . . . , n,

where γ ∈ [0, 1]n. We will define G = (2A0 − I)−1 (this can be recognized, roughly speaking,
as the Green’s function) and b′ = 2Gb0 (which is sometimes called the ‘incident field’) for
notational convenience. We can then rewrite the diagonal physics equation using G and b′:

zi + gT
i y = b′

i , yi = γizi, i = 1, . . . , n, (25)

where gT
i denotes the ith row of G. Multiplying on the left by yi, we find that y and z must satisfy

yi(zi + gT
i y) = yib′

i , i = 1, . . . , n.

Note that y2
i = γ

2
i z2

i ≤ γiz2
i = yizi because γ2

i ≤ γi, since γi ∈ [0, 1]. Using this result, we find
the following quadratic inequalities depending only on the displacement field y:

yi(yi + gT
i y) ≤ yib′

i , i = 1, . . . , n.

Scaling each of the i inequalities by any nonnegative value λi ≥ 0 and summing them together
implies that y must satisfy:

yTDy + yTDGy ≤ yTDb′, (26)
where D = diag(λ) is any matrix with nonnegative diagonal entries. These are the bounds
presented in [84,88] in the case where Θ is a box rather than a Boolean constraint.

Tightness. As expected, these bounds are also tight in the sense that, if y satisfies (26) for all
nonnegative diagonal matrices D, then there exists a feasible design θ and a field z such that z and
θ satisfy the diagonal physical equation, and the displacement field y satisfies yi = (1 + θi)zi/2
for −1 ≤ θi ≤ 1, or, equivalently, that yi = γizi, where 0 ≤ γi ≤ 1 for i = 1, . . . , n.

To show this, we will consider (as before) only the diagonal matrices D = eieT
i . The bound

then implies that
yi(yi + gT

i y) ≤ yib′
i , i = 1, . . . , n.

We can then choose zi = b′
i − gT

i y and

γi =

{︄
yi/(b′

i − gT
i y) b′

i − gT
i y ≠ 0

0 otherwise,

for i = 1, . . . , n. Note that zi obviously satisfies zi + gT
i y = b′

i and whenever b′
i − gT

i y ≠ 0, we
have yi = γizi, by construction. On the other hand, if b′

i − gT
i y = 0, then

y2
i = yi(yi + gT

i y − b′
i ) ≤ 0,
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so yi = 0 = γizi, since γi = 0 whenever b′
i − gT

i y = 0, by definition. In other words, given a
displacement field y satisfying (26) for all nonnegative diagonal matrices, we have constructed a
field z and a design θ = 2γ − 1 such that y, z, and −1 ≤ θ ≤ 1 all satisfy the physics Eq. (25), or,
equivalently, z and θ satisfy the diagonal physics equation.

Equivalence. The equivalence between the bounds follows immediately from the fact that (26)
holds for all nonnegative diagonal matrices D if, and only if, the physics Eq. (25) holds for this
choice of y, z, and θ, which, in turn, holds if, and only if, the original family of power bounds
over z and θ holds for all diagonal matrices.

Appendix B. Numerical examples

In this section, we focus on two basic numerical experiments for comparing both heuris-
tics and lower bounds. Additionally, all Julia [119] code for the examples can be found at
https://github.com/cvxgrp/pd-heuristics-and-bounds. The optimization problems used in com-
puting the bounds were specified using the JuMP [120] domain-specific language in Julia, and
solved using Mosek [95].

Appendix B.1. Small design

In this scenario, we are given a device whose field must satisfy the discretized Helmholtz equation
in one dimension. At every point in the domain, the designer is allowed to choose the speed of
the wave in the material within some specified range, such that the resulting field best matches
some desired field.

Helmholtz’s equation. In one dimension, we can write Helmholtz’s equation in the interval
[−1, 1] as:

∂2u(x)
∂x2 +

ω2

c(x)2
u(x) = v(x), −1 ≤ x ≤ 1, (27)

where u : [−1, 1] → R is the amplitude of the wave, while ω ∈ R is the angular frequency and
c : [−1, 1] → R++ is the speed of the wave in the material, and v : [−1, 1] → R is the excitation.
We will assume Dirichlet boundary conditions for simplicity; i.e., that u(−1) = u(1) = 0.

Discretization. We can write a simple discretization of the above equation by subdividing the
interval [−1, 1] into n equidistant points {xi} for i = 1, . . . , n. We then approximate the second
derivative using finite-differences such that

∂2u(xi)

∂x2 ≈
zi−1 − 2zi + zi+1

h2 , i = 1, . . . , n,

where h is the separation xi − xi−1 for any i = 2, . . . , n and is equal to h = 2/(n − 1), while
zi = u(xi) for i = 1, . . . , n. Additionally, we have defined z0 = zn+1 = 0 for convenience.

If we then define ω2/c(xi)
2 = θi, then we can approximate Eq. (27) as a diagonal physics

equation of the form (5), where

A0 =
1
h2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 . . . 0

1 −2 1 . . . 0

0 1 −2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (28)

and (b0)i = v(xi) for i = 1, . . . , n.

https://github.com/cvxgrp/pd-heuristics-and-bounds
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Problem data. In this problem, we will seek to minimize the squared Euclidean distance
between the field z and some desired field ẑ; i.e., the objective is

f (z) = ∥z − ẑ∥2
2 =

n∑︂
i=1

(zi − ẑi)
2,

and we choose ẑ to be a cosine wave with a Gaussian envelope of width σ/
√

2, whenever xi<0
and 0 when xi ≥ 0:

ẑi =

{︄
cos(ωxi) exp(−x2

i /σ
2) xi<0

0 xi ≥ 0.
(29)

Note that this function is discontinuous at 0. For the small numerical experiment, we will choose
σ = 1/2, ω = 6π, and Θ = [1, 1.5]n. We will also set b(n+1)/2 = 2 and zero otherwise as our
excitation, and set n, the number of gridpoints, to be n = 1001. This means that there are 1001
design parameters and field variables, which, in practice, is a very small number when compared
to current applications.

Appendix B.2. Larger design

In this example, we will show an example of a larger physical design problem with n = d =
2512 = 63001, that is similar in spirit to the smaller design, but is large enough that sparsity has
to be exploited in order to have reasonable run time performance.

2D Helmholtz equation. For this problem, we discretize the 2D Helmholtz’s equation:

∂2u(x, y)
∂x2 +

∂2u(x, y)
∂y2 +

ω2

c(x, y)2
u(x, y) = v(x, y),

over the domain (x, y) ∈ [−1, 1]2. Here, as before u : [−1, 1]2 → R is the amplitude of the
wave, while ω ∈ R is the angular frequency, c : [−1, 1]2 → R++ is the speed of the wave in the
material, and v : [−1, 1]2 → R is the excitation. We assume Dirichlet boundary conditions; i.e.,
that u(x, y) = 0 at the boundary of the domain.

Discretization. Assuming that we have n = l2 equally spaced gridpoints (xi, yi) ∈ [−1, 1]2
(i.e., there are l points along a given axis), we will let zi be the approximate value of u(xi, yi).
Writing the second-order difference matrix in (28) as ∆ ∈ Rl×l, we can approximate the sum of
the partial derivatives as

∂2u(xi, yi)

∂x2 +
∂2u(xi, yi)

∂y2 ≈ ((Il ⊗ ∆ + ∆ ⊗ Il)z)i, i = 1, . . . , n,

where Il is the l × l identity matrix, and ⊗ is the Kronecker product. The resulting problem is
then a diagonal physical design problem with

A0 = Il ⊗ ∆ + ∆ ⊗ Il,

and (b0)i = v(xi, yi) for i = 1, . . . , n. Note that the size of A0 is n× n = l2 × l2; so the total number
of entries of the matrix grows in the fourth power of the side length. On the other hand, the
resulting matrix is very sparse because less than 5n of the entries are not zero. In other words,
when l = 100, the percentage of nonzero entries is less than .05%.
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Problem data. As before, the objective is to minimize the squared difference of the resulting
field z and some desired field ẑ:

f (z) = ∥z − ẑ∥2
2 .

Here ẑ is the two-dimensional analogue of (29),

ẑi =

{︄
cos(ωxi) cos(ωyi) exp(−(x2

i + y2
i )/σ

2) xi<0
0 xi ≥ 0,

for i = 1, . . . , n. We will again choose Θ = [1, 1.5]n, ω = 6π and σ = 1/2, and b(n2+1)/2 = 1,
along with l = 251 (and n = l2 = 65001), which results in a problem with 65001 design
parameters and field variables. We encourage the reader to try different choices parameters in the
provided code and explore the resulting heuristic performance, bounds, and time taken by the
algorithms.
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