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Two problems

polytope P described by linear inequalities, alx < b;, i =1,...,L

V4
Problem 1la: find minimum volume ellipsoid O P

Problem 1b: find maximum volume ellipsoid C P

are these (computationally) difficult? or easy?
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problem 1a is very difficult

e In practice

e in theory (NP-hard)

problem 1b is very easy

e in practice (readily solved on small computer)

e in theory (polynomial complexity)
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Two more problems

find capacity of discrete memoryless channel, subject to constraints on
input distribution

Problem 2a: find channel capacity, subject to:
no more than 30% of the probability is concentrated on any 10% of the
input symbols

Problem 2b: find channel capacity, subject to:
at least 30% of the probability is concentrated on 10% of the input symbols

are problems 2a and 2b (computationally) difficult? or easy?
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problem 2a is very easy in practice & theory

problem 2b is very difficult!

1I'm almost sure
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Moral

very difficult and very easy problems can look quite similar

. unless you're trained to recognize the difference
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Outline

e what's new in convex optimization
e some new standard problem classes
e generalized inequalities and semidefinite programming

e interior-point algorithms and complexity analysis
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Convex optimization problems

minimize  fo(x)
subject to  fi(x) <0,...,fr(x) <0, Ax=0b

e x € R" is optimization variable

e fi:R" — R are convex, i.c., forall z, y, 0 < A\ <1,

fildz + (1= A)y) < Afi(z) + (1 = A) fi(y)

examples:

e linear & (convex) quadratic programs

e problem 1b & 2a (if formulated properly)
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Convex analysis & optimization

nice properties of convex optimization problems known since 1960s

e |ocal solutions are global
e duality theory, optimality conditions

e simple solution methods like alternating projections

convex analysis well developed by 1970s (Rockafellar)

e separating & supporting hyperplanes

e subgradient calculus
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What's new (since 1990 or so)

e powerful primal-dual interior-point methods
extremely efficient, handle nonlinear large scale problems

e polynomial-time complexity results for interior-point methods
based on self-concordance analysis of Newton’s method

e extension to generalized inequalities
semidefinite & maxdet programming

e new standard problem classes
generalizations of LP, with theory, algorithms, software

e |ots of applications

control, combinatorial optimization, signal processing,
circuit design, . . .

ISIT 02 Lausanne 7/3/02



Recent history

e (1984-97) interior-point methods for LP

— (1984) Karmarkar's interior-point LP method
— theory (Ye, Renegar, Kojima, Todd, Monteiro, Roos, . . . )
— practice (Wright, Mehrotra, Vanderbei, Shanno, Lustig, . .. )

e (1988) Nesterov & Nemirovsky's self-concordance analysis

e (1989-) semidefinite programming in control

Boyd, El Ghaoui, Balakrishnan, Feron, Scherer, . . .)

e (1990-) semidefinite programming in combinatorial optimization

Alizadeh, Goemans, Williamson, Lovasz & Schrijver, Parrilo, . .

e (1994) interior-point methods for nonlinear convex problems

Nesterov & Nemirovsky, Overton, Todd, Ye, Sturm, . . .)
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1997-) robust optimization (Ben Tal, Nemirovsky, El Ghaoui, . . .
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Some new standard (convex) problem classes

e second-order cone programming (SOCP)
e semidefinite programming (SDP), maxdet programming

e (convex form) geometric programming (GP)

for these new problem classes we have

e complete duality theory, similar to LP
e good algorithms, and robust, reliable software

e wide variety of new applications
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Second-order cone programming

second-order cone program (SOCP) has form

minimize clx

subject to ||A;x + b;l|2 < c;-ra: +d;, 1=1,....m
Fx=g

e variable is x € R"
e includes LP as special case (4; =0, b; =0), QP (¢; = 0)
e nondifferentiable when A,z +b; =0

e new IP methods can solve (almost) as fast as LPs
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Robust linear programming

robust linear program:

minimize clzx

subject to alx < b; forall a; € &

e ellipsoid & ={ a@; + Fip | ||p|]2 <1 } describes uncertainty in
constraint vectors q;

e r must satisfy constraints for all possible values of a;

e can extend to uncertain ¢ & b;, correlated uncertainties . . .
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Robust LP as SOCP

robust LP is
minimize c¢lz
subject to @’ z + sup{(Eip)Tz | ||p|l2 < 1} < b;
which is the same as
minimize c¢lx
subject to @ x + ||l x|lo < b;

e an SOCP (hence, readily solved)

e term ||Fl'x||2 is extra margin required to accommodate uncertainty in a;
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Stochastic robust linear programming

minimize ¢!z

subject to Prob(alz <b;)) >n, i=1,..

where a; ~ N(a;,%;), n > 1/2 (c and b; are fixed)
i.e., each constraint must hold with probability at least n

equivalent to SOCP

minimize ¢!z

.M

subject to  alz + &~ 1(n)|2 %z <1, i=1,...

where @ is CDF of A/(0,1) random variable
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Geometric programming

log-sum-exp function:
Ise(x) = log (™ + - -+ + €*n)
.. a smooth convex approximation of the max function
geometric program (GP), with variable x € R™:

minimize  Ise(Agx + bg)
subject to Ise(A;x +b;)) <0, i=1,...,m

where A; € R™*" b, € R™

new IP methods can solve large scale GPs (almost) as fast as LPs
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Dual geometric program

dual of geometric program is an unnormalized entropy problem

maximize .. (b} v; + entr(v;))
subjectto v; =0, i=0,...,m, 1Ty;=1,

>itgAjvi=0

e dual variables are v; e R™, i =0,...,m

e (unnormalized) entropy is
ent = — E i log ——
ntr(v) 2 vilog -7

e GP is closely related to problems involving entropy, KL divergence
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Example: DMC capacity problem

x € R" is distribution of input; y € R™ is distribution of output
P ¢ R™*" gives conditional probabilities: y = Px

primal channel capacity problem:

maximize —clz + entr(y)

subjectto x>0, 1'z=1 y=Px

where Cj = — 2111 Pij 10gp¢j

dual channel capacity problem is a simple GP:

minimize  lIse(u)

subject to ¢+ PTu >0
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Generalized inequalities

with proper convex cone K C R* we associate generalized inequality

r<kgy < y—zreck

convex optimization problem with generalized inequalities:

minimize  fo(x)

subject to  fi(x) <k, 0,..., fr(z) 2k, 0, Ax=0b

fi :R" — R" are K;-convex: for all z, y, 0 < \ <1,

fildz + (1 = N)y) 2k, Mi(x) + (1 = A) fi(y)

ISIT 02 Lausanne 7/3/02 19



Semidefinite program

semidefinite program (SDP):
minimize c'x
subject to Ag+ x1A1+---+zx2,4, =20, Cx=d

o Az E— A? < Rme
e inequality is matrix inequality, 7.e., K is positive semidefinite cone

e single constraint, which is affine (hence, matrix convex)
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Maxdet problem

extension of SDP: maxdet problem

minimize c¢lx — logdet, (Go + 21G +
subject to A¢g+ x1A1+---+zx2,4, =20,

e x € R" is variable
e A;= A e R™™ G; =Gl € RP*P

detZ ifZ =0
o det, (Z) = { 0 otherwise
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Semidefinite & maxdet programming

e nearly complete duality theory, similar to LP
e interior-point algorithms that are efficient in theory & practice

e applications in many areas:

— control theory

— combinatorial optimization & graph theory
— structural optimization

— statistics

— signal processing

— circuit design

— geometrical problems

— algebraic geometry
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Chebyshev bounds

generalized Chebyshev inequalities: lower bounds on
Prob(X € C)

e X ¢ R"isarandom variablewith EX =a, EXXT = 8§

e (Cis an open polyhedron C = {z | alx < b;, i=1,...,m}

cf. classical Chebyshev inequality on R

Prob(X < 1) >

1+ o2

ifEX =0, EX? =02
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Chebyshev bounds via SDP

minimize  1—> "\

subject to alz; > b;N\;, i=1,...,m
m Zi % S a
: <
2 i=1 [ N |~ a1
~— =1,...
[ Z;f Y ] ~0, 1=1,....m

e an SDP with variables Z; = Z! € R"*", z; € R", and \; € R
e optimal value is a (sharp) lower bound on Prob(X € C)

e can construct a distribution with EX = a, EXX7? = S that attains
the lower bound
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Detection example

r=S8-+v

e © € R": received signal
e s: transmitted signal s € {s1,52,...,Sn} (one of N possible symbols)

e v: noise with Ev = 0, Evv! = I (but otherwise unknown distribution)

detection problem: given observed value of x, estimate s
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example (n =2, N

e detector selects symbol s closest to received signal x

e correct detection if s; + v lies in the Voronoi region around s;
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example: bound on probability of correct detection of s7 is 0.205

solid circles: distribution with probability of correct detection 0.205
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Boolean least-squares

xr € {—1,1}" is transmitted; we receive y = Az + v, v ~ N (0, 1)

ML estimate of x found by solving boolean least-squares problem

minimize || Az — y||?
subjectto z?=1, i=1,...,n

e could check all 2™ possible values of x . . .
e an NP-hard problem

e many heuristics for approximate solution
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Boolean least-squares as matrix problem

Az —y||? = 2t ATAx -2yt ATx + 4ty
= TrATAX — 29T ATz +yly

where X = xzz?t

hence can express BLS as

minimize Tr ATAX —2yT ATz + yly
subjectto X; =1, X =axz!, rank(X)=1

... still a very hard problem
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SDP relaxation for BLS

ignore rank one constraint, and use

X

NN 4
X =zxzxr <= [azT 1

E

to obtain SDP relaxation (with variables X, x)

minimize Tr ATAX — 2yT ATz + Ty

X x]iO

subject to X;; =1, [ T 1

e optimal value of SDP gives lower bound for BLS

e if optimal matrix is rank one, we're done
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Stochastic interpretation and heuristic

e suppose X, x are optimal for SDP relaxation

e generate z from normal distribution N'(z, X — xz?)

e take x = sgn(z) as approximate solution of BLS
(can repeat many times and take best one)
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Interior-point methods

e handle linear and nonlinear convex problems (Nesterov & Nemirovsky)

e based on Newton's method applied to ‘barrier’ functions that trap z in
interior of feasible region (hence the name IP)

e worst-case complexity theory: # Newton steps ~ +/problem size
e in practice: # Newton steps between 5 & 50 (!)

e 1000s variables, 10000s constraints feasible on PC; far larger if structure
is exploited
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Log barrier

for convex problem

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m

we define logarithmic barrier as

é(z) = = ) _log(~fi())

® ¢ is convex, smooth on interior of feasible set

e ¢ — 00 as x approaches boundary of feasible set
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Central path

central path is curve

x*(t) = argmin (¢t fo(x) + ¢(x)), t>0

x

e 1*(t) is strictly feasible, i.e., f;(x) <0
e 1*(t) can be computed by, e.g., Newton's method
e intuition suggests x*(t) converges to optimal as ¢t — oo

e using duality can prove z*(t) is m/t-suboptimal
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Example: central path for LP

xr*(t) = argmin,, (tch — 2?21 log(b; — a?x))
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Barrier method

a.k.a. path-following method

given strictly feasible x, t > 0, u > 1
repeat
1. compute x := x*(t)
(using Newton's method, starting from x)
2. exit if m/t < tol
3.1 := ut

duality gap reduced by p each outer iteration
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Trade-off in choice of 1

large 1 means

e fast duality gap reduction (fewer outer iterations), but

e many Newton steps to compute z*(t™)
(more Newton steps per outer iteration)

total effort measured by total number of Newton steps
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Typical example

GP with n = 50 variables, 10°F |
m = 100 constraints, m; = 5

e wide range of u works well

duality gap
o

e very typical behavior
(even for large m, n) .
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Effect of 1
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barrier method works well for 14 in large range
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Typical effort versus problem dimensions

o LPs with n = 2m vbles, m
constraints

e 100 instances for each of
20 problem sizes

Newton iterations

e avg & std dev shown
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Other interior-point methods

more sophisticated IP algorithms

e primal-dual, incomplete centering, infeasible start
e use same ideas, e.qg., central path, log barrier

e readily available (commercial and noncommercial packages)

typical performance: 10 — 50 Newton steps (!)
— over wide range of problem dimensions, problem type, and problem data
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Complexity analysis of Newton’s method

e classical result: if || small, Newton’s method converges fast
e classical analysis is local, and coordinate dependent

e need analysis that is global, and, like Newton’s method, coordinate
Invariant
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Self-concordance

self-concordant function f (Nesterov & Nemirovsky, 1988): when
restricted to any line,

‘f”/(t)‘ < 2f//(t)3/2

o fSC <= f(z)= f(Tz) SC, for T nonsingular
(i.e., SC is coordinate invariant)

e a large number of common convex functions are SC

T

rlogx —logx, logdet X! —log(y® —a'x),

ISIT 02 Lausanne 7/3/02

43



Complexity analysis of Newton’s method for
self-concordant functions

for self-concordant function f, with minimum value f*,

e theorem: #Newton steps to minimize f, starting from x:

#steps < 11(f(z) — f7) +5

e empirically: #steps ~ 0.6(f(z) — f*) +5

note absence of unknown constants, problem dimension, etc.
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Complexity of path-following algorithm

e to compute z*(ut) starting from x*(t),
#steps < 11m(pu—1—logpu) +5
using N&N's self-concordance theory, duality to bound f*

e number of outer steps to reduce duality gap by factor a: [log a/ log 1]

e total number of Newton steps bounded by product,

[log e

1lm(p—1-—1
log,u—‘( m(p og i) +5)

. . captures trade-off in choice of u
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Complexity analysis conclusions

e for any choice of u, #steps is O(mlog1/¢), where € is final accuracy

e to optimize complexity bound, can take u =1+ 1/4/m, which yields
#steps O(y/mlog1/e)

e in any case, IP methods work extremely well in practice
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Conclusions

since 1985, lots of advances in theory & practice of convex optimization

e complexity analysis
e semidefinite programming, other new problem classes
e efficient interior-point methods & software

e lots of applications
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Shameless promotion

Convex Optimization, Boyd & Vandenberghe

e to be published 2003

e pretty good draft available at Stanford EE364 (UCLA EE236B) class
web site as course reader
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