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Abstract— Corvex loss minimization with £, regularization
has been proposed as a promising methed for feature selec-
tion in classiBication (e.g, I, -regularized logistic regression) and
vegression (e.g, Li-regularized least squares). In this paper we
deseribe an efficient interior-point method for selving large-scale
{i-regularized convex loss minimization problems that uses a
preconditioned conjugate gradient method to compute the search
step. The method can solve very large problems. For example, the
methed can solve an (-regudarized logistic regression problem
with a million features and examples (¢ g, the 20 Newsgroups
data sef), in a few minutes, on a P

I. INTRODUCTION
A dy-regularized conver loss minimization
We consider a problem of the form
m

minimize (1/m) Zrﬁ)(*:f{zz + wby Loy + Allwlly,
i1

(D

where the vanables are v ¢ Roand w ¢ R”, the problem data
are o; € R, oy € R™, and &; € R, A > 0 1s the regularization
parameter, and w1 15 the 44 norm of . Here ¢ - R — R
18 g convex function. In classification and regression setting
{which will be described below), ¢ has the meaning of loss
and so 1s called g loss function. The first term 10 the objective
e
lavg (v, w) = (}_fm)qu(wTai i vl b oog)
i=1
s called the average loss. This problem is called an #-
regularized convex loss mimimization problem (CLMP).

We refer to the number of nonzero components in w as its
cardinality, denoted card{a). Compared with lg-regularized
convex loss minimization (which uses the {5 penalty function
mstead of the #4 penalty, #3-regularized convex loss mmmiza-
tion tends to vield w with card(w) small; the regularization
parameler A roughly controls card(a), with larger A typically
yielding smaller card(aw).

A ot of problems that arise n the context of feature or
model selection in signal processing and statistics have the
form (1}, The mam motwvation of £y regularization s that
solving (1) typically yvields o sparse vector w, fe, w typi-
cally has relatively few nonzero coefficients. (In contrast, &
regularization typically vields w with all coefficients nonzero.)
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1) lj-regularized regression: Let @ & R™ denote a vector
of explanatory or feature variables, and v € R denocte the
associated output or ocutcome. A linear model predicts the
output as

go=w x4+,

where v & R is the mtercept and w & R” 18 the weight vector.
Suppose we are given a sel of {observed or irammg)
examples, (r¢,y;) € R®x R, i = 1,...,m. When the number
of festures n is greater than the number of examples s,
an effective method for finding the weight coefficients and
intercept is to solve the [y-regularized optiumization problem
Tre i
minimize  (1/m) > dlwu; +v -y + T A

wil, (2)

with variables » € Rand w ¢ BR"® Typically ¢ is a symmetric

When the loss function is quadratic, i.e., ¢(u) = v the
convex loss mmmization problem (2) 18 the [j-regularized
least squares problem that has been studied extensively in the
lerature (see, e.g., [15], 1391 This feature selection method
15 called the Lasso [40] The theoretical properties of the Lasso
have been studied by several researchers; see, e.g, [22], 301
[51]. [50].

In signal processing, the idea of {y regularization arises in
the context of sparse signal recovery. The CLMP with the
quadratic loss function 1s related to compressed sensing [11],
[43] or compressive sampling [4], which has many applications
in image and signal processing [46], [47], [28], [26], [27]. The
elfectiveness of [y regularization has been studied by muny
researchers; see, e.g, [5L [6). 7], [12]. [13] [14], [16L [17L
[19], 1417, [42].

2} Fy-regularized classification: let » ¢ R" denote a
vector of explanatory or feature variables, and y = {—1,+1}
denote the associated binary output or cutcome. Suppose we
are given a set of (observed or trammg) examples, (z;, 1) €
R x{-1,+1hi=1,...,m

A classifier which has the form

Wiy = sgnlwl z | o), (3)
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where
| -1 =<0,

is called linear, since the boundary between the two decision
outcomes is a hyperplane (defined by w!a + v = O).

The weighis w and miercept » can be {ound by solving a
problem of the form

¥t n
minimize (1/m) Zq‘(g (whas +v)) + EM@, )]
i1 i1

with vamables v & R and w ¢ R This problem has the
form (1} with a; = wuog, by = 4, and o = 0 The loss
function ¢ is small and positive for positive arguments, and
grows [or negative arguments (e g, the huinge loss and logistic
toss) [20]. The aforementioned method for finding w and » can
outperform Zo-regularized classification algonthms, especially
whern the number of observations is smaller than the number
of features.
When ¢ 15 the logistic loss function ¢,

#(z) = log(l + exp(—2)),

(4y 15 a fy-regularized logistic regression problem. More
recently, &y-regularized logistic regression has received much
attention; see, ¢.g., |25], [34]

B. Existing generic solution methods

To solve the &3 -regularized CLMP (1), generic methods for
nondifferentiable convex problems can be used, such as the
ellipsoid method or subgradient methods [38], [35] These
methods are usually very slow in practice, however. {Because
#y-regularized CLMP typically results in a weight vector with
{many) zero components, we cannol simply ignore the nondif-
ferentiability of the objective in the #4-regularized CLMP (1),
hoping to not encourter ponts of nondifferentiability )

Faster methods are based on transioriming the problen to
an equivalent one, with lnear mequality constraints,

minmize Ly (v, w) 4 Al u
iy AP , (5)
subject to —uy < wp Ly, d=1,...,m,

where the variables are the onigmal ones » € R, w ¢ R™,

along with = & R" Here 1 denotes the vector with all
components one, 50 17w is the sum of the components of .
The refomiulated problem (5) 15 a convex optimization prob-
lem, with linear constraint functions. When the loss function
is twice differentiable, it can be solved by standard convex
optimization methods such as SQP, augmented Lagrangian,
interior-point, and other methods. Iligh quality solvers that
can directly handle the problem (5) melude for example
LOQO [45], LANCELOT [8], MOSEK [31], and NPSOL [18].
These general purpose solvers can solve small and medium
scale #1-regularized CLMPs quite effectively.

. Gutline

The main goal of this paper 15 o descnibe a specialized
interior-point method for solving the #i-regularized convex
loss mimmization problem (1) where the loss function 1s twice
differentiable. The method uses s preconditioned conjugate
gradient approach to compute the search direction and so i1s a
truncated Newton mterior-point method.

In Section I, we give (necessary and sufficient) optimality
conditions, and a dual problem, for the #;-regularized CLMP.
Using the dual problem, we show how to compute a lower
bound on the suboptimality of any pair {v,w). In Section II-
(, we describe the truncated Newton interior-point method.
In Section IV, we apply the method to {;-regularized logistic
regression. The method can solve very large problems, with a
million features and examples (2.g., the 20 Newsgroups data
sat [24]), in under an hour, on a PC, provided the data matrix
1s sufficiently sparse.

II. PRELIMINARIES

In this section, we give some preliminaries needed to
develop the truncated Newton interior-point method in §1-C.
A Optimality conditions

The objective function of the #;-regularized CLME,
Lave (v, w) -+ Aljwl|ly, 18 convex but not differentiable, so we

use a first-order optumality condition based on subdifferential
caleulus (see, eg., [1, Prop. B.24] or [2, §2]). The necessary

and sufficient conditions for (v, %) to be optimal for (1) are

By = 0,
! wy = 0,
(A1), w; <0, i=1,...,n,
w; =1,

B p(v,w) = 0, (&)
and
Fond 4 AL Y
{1/} (4}1 é}\gu, w) ), ;
S e mes 7
¢ AL wp e, i=1..,n
(A, Al wy =0,
(31)

¢ (wTay | vby |
plv,w) =
& (! apy + vy +
We analyze when a pair of the form (v, ) is optimal This
occurs if and only if

1(1/m) AT prog (9, D)oo < A,

¥ p(m,0) = 0. (8)

224



Using this value of v, the second condition becomes

A2 Amax = [[{1/m) AT p(2, )} so. (9

The number Ay ax gives us an upper bound on the useful range
of the regulanization parameter A for A > A, we get a

B. The dual problem

To derive a Lagrange dual of the £y-regularized CLMP (1),
we first infroduce a new variable 2  H™, as well a3 new
equality constramts z; = w' ey b vb; fo i = 1,0 m, o
obtain the squivalent problem

1
= 1,...,1m.

minimize

(1/m) Sy blei) + A
subject Lo

e — wlag 4+ vb; 4 &,

W

(10)

Associating dual variables 1, € R with the equality con-
stratnis, the Lagrangian is

L(v,w, 2,17

m
= (/)N dla)+ Ml + v (— 2t Aw -+ by b o).
SO Pl
=1

The dual function 1s

inf L{v,w,z 1)

U,

(/)8 ) 7o [ATu]u <A,
. by =10,
1 0 otherwise,

where ¢ 18 the compugate of the convex loss function ¢

¢* (y) = sup (yu — $(u)). (1D

uwe R
For general background on convex duality and conjugates, see,
eg. [3, Chap. 5] or [2].
The dual of the problem (1) 15

maximize —(1/m) 5> 0, & (—muy) + e

: AT T, ¢ (12}
aubject to A7 vl €A, =0,
where
e
YN _ i, RN ok . o T . s
Gy = —(1/m) lcb {(—ruy) + v o {13)
=1
A=Tlay - an]! € R™*" the variable is » € R™, and 4"

is the conjugate of the loss function ¢,

P (y) = sup (e~ (u)) .
neR

The dual problem (12) 1s a convex optimization problem with
variable ¢ = BR™, and has the form of an #..-norm constrained
maximum generalized entropy problem. We say that v ¢ R™
is dual feasible if it satisfies |ATv||o < A 3Ty =0

Trom standard results in convex optimization we have the
following.

e Weak duality Any dusl feasible pomnt v gives a fower
bound on the optimal wvalue p* of the (primal) #;-
regularized CLMP (1)

(14)

s Stromg duality The #1-wegularized CLMP (1) satisfies a
variation on Slater’s constraint qualification, so thers is
an optimal solution »* of the dual (12), which satisfies

Gi™) = p™.
In other words, the optimal values of the primal (1) and
dual {12) are equal.
(. Suboptimality bound
We can derive a bound on the suboptimality of (v,w), by
constructing a dual feasible pomt 7, rom an arbitrary w,

i o= (s myp(o, w) (15)
where 7 1s the optimal mtercept for the offset w,
T — arg mﬂm(i’m} b A’ a4 vhy ), (16}

and  the scaling  constant s s
min LA/ | A p(6,w)) | e, 1

The difference between the Iprima} objective value of (v, ),
and the associated lower bound G{(7), 1s called the duality gap,

and denoted 7(v, w):

given by ¢ =

|y — GE). (17

We always have n{v,w) > 0, and (by weak duality (14)) the
point {v,w) i3 no more than n-suboptimal. At the optimal
pomt {v*,w™}, we have n =10
D, The logarittwnic bavier ond central path
The logarithmic barrier for the bound constraints —u; <
wy < ug n (5) 18
T T
Plw,u) = — \)_Siog(ui 4wy} \)_\E-og(ui ————— i),
Fa—— Fa—— .

i=1 =1

p=1,...,n}

The logarithmic barrier function is smooth and convex. We
sugment the weighted objective function by the logarithmic
barrier, to obtain

el w, u) = e (v, w) 4 AT Lo b ®(w, ), {18

whare ¢ > 0 is a parameater. This function is smooth, strictly
convex, and bounded below, and so has a unique minimizer
which we dencte (v (#), ™ (t), ™ (1)). This defines a curve in
R x R"x R", parametrized by ¢, called the central path. (See
[3, §11] for more on the ceniral path and its properties.)
With the pont (o™ (£), w™(#), u™(#)) we associate
V() = puT (3, w” (8),
which can be shown to be dual feasible. (Indeed, it coincides
with the dual feasible pomnt 7 constructed from ™ {2) using the
method of Section II-C.) The associated duality gap satisfies

fave (WT(1), w0 (8)) + Allw* (8|11 — G(v™(2)) < 2n/t.

(19)

In other words, (#*(#),w™(#)) s no more than 2n/4-
suboptimal, so the central path leads to an optimal solution.
{See [3, Chap. 11] for more on the central path.)
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1 AN INTERIOR-POINT METHOD

In this section we describe an mterior-point method for solv-
mg the #1-regularized CLMP (1), m the equivalent formulation
given in (5}

In a primal miertor-pomnt methed, we compute a sequence
of points on the central path, for an ncreasing sequence of
values of ¢, using Newton’s method to minimize ¢ (v, w, u),
starting {rom the previously computed central point. A typical
method uses the sequence ¢ = ig, ply, p2lo, ..., Where p is
between 2 and 50 (see, e.g. [3, §11.3]). The method can be
suboptimality of (v*(#),w*(#)}. See, e.g., [32], [48], [49] for
more on (primal) mierior-point methods.

Using our method for cheaply computing a dual feasible
point and associated duality gap for any {v,w) {and not just
for (w,w} on the central path, as in the general case), we
can construct a custom interior-point method that updates the
parameter ¢ at each iteration. This method s an extension of
the interior-point method for £4-regularized logistic regression
developed in [23].

CUSTOM INTERIOR-POINT METHOD.
given tolerance e > 0, o 2 (0,1/2), 22 (0, 1)
Set inifial values.
ti=1/A v:= 5, the solution of (8), w =0, u:=1.
repeat

1. Compute search direction.

Solve the Newlon system

Av
Aw
| Au
. Backtracking line search.

== —Yqﬁf (’Ua W, ’f.é).

vgd\’t {\Ue W, ’.’,{',} i

=]

: . )
dy(v 4 B% A, w -+ B8 Aw, w5 Aw)
PAw
< v, w,w) + o Vii{v,w,w) | Aw
PoAy

. Update. (v,w,%) = (v,w,w) + 3*(Av, Aw, Au).

L fs s

. Construet dual feasible point v from (15).
. Bvaluate duality gap » from (17).
cguitifn <e

- Update &

[ T R

The computational effort per iteration is dominated by
step 1, the search direction computation. When the search
direction in Newton’s method 18 computed approximately,
using an iterative method such as a preconditioned conjugate
gradient (PCG) method, the overall algorithm 1s called a
conjugale gradiens Newlon method, or a fruncated Newion
method [37], |[9] (Truncated Newton methods have been
applied to mieror-point methods; see, eg, [44], [36])

. Set v := 7, the optimal value of the mtercept, as in (16).

A Update rule and pavameters

We describe the choice of initial values for v, 2, », and
t. The choice v = ¥ 18 the optimal value of v when w —
Oand u = 1. The choice w = 0, w = 1, and & = 1/A

seems to work very well, especially when the original data
are standardized (f.e. a; have zero mean and unmit variance).
{In any case, the choice of the mitial values does not greatly
affect performance ) The construction of a dual feasible point
and duabty gap, n steps 4-6, 18 explamed in Sectien H-C.
Tyvpical values for the line search parameters are o = 0.01,
5 = 0.5, but here too, these parameter values do not have a
large effect on performance.

There are many possible update rules Tor the parameter £
In a classical primal barrier method, ¢ is held constant until
¢y 18 (approxmately) mimnnized, 2.2, || V|2 15 small; when
this oceurs, 18 nereased by a factor typically between 2 and
50. More sophisticated update rules can be found in, e g., {32],
[48], [491.

The update rule we propose 1s

max | i min{i,i},ﬂ . 8§ Smin (20)
te 203

, e
Ty & = Emin

where { = 2n/n, and s = #* is the step length chosen in
the Ime search. Here gt > 1 and s ¢ (0, 1] are algorithm
parameters; we have found good performance with ¢ = 2 and
Smin = 0.5, This update rule uses the step length s as a crude
measure of proxintity 1o the central path. We can also give an
informal justification of convergence of the custom interior-
pomt algorithm [23]. (A lormal prool of convergence would
be quite long)

B. Hessian and gradient

In this section we give explicit formulas for the gradient
and Hessin of ¢y The gradient g = Vi (2, w, u) 18 given by

||
g= | g2 | € R"",
bogs
where
g1 = v’u Qi)t {’U: W, U)
= (t/m) plu, w),
#e v:i:(_ﬁh (“f U, U}
U 2un/(ud — wi)
= (t/myAT plv, w) + .
| w2
R ‘\—/’u ‘/{éb (’Ur ul, ?‘f}

2 2l
Qus/ (1 — )

= {Al —
2,/ (ud )

)

The Hessian H = V2¢(v,w, u) is given by

| b Dob ' Dy A 0 ‘
H= i tr’i"rD()!} I’iTiI}i;Ji | D] Dg & R‘(Bn.+i\,y(2-n+j_)1
0 D, Dy
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1
Dy = = dlag(qb”(wTal +vby+c1)y ..., qu”(wTam + vby,
by - (D) 2d )
(ui — wi)? (ui — wp)?
. —duqwq —dupwy,
Dy = dlag( g .
(ui — wi)? (uz — w?)?
Here, we use diag(s1, ..., #my) to denote the diagonal matrix
with diagonal entries z1, ..., 2y, where z; c R, i =1,... ,m.

The Hessian H is symmetric and positive definite.
The search direction is defined by the linear equations
(Newton system)

thDob thDoA 0 Ay g1
tATDob tATD()A + D1 DQ Aw = — g2
0 Do i Au 4q3
We first eliminate Aw to obtain the reduced Newton system
Av
Hred |: i } = —fred, (21)
where
I th” Dgh thT Dy A
s tATDob tATDgA+ Dy |2
g1
Gred { G Dng_lgg :| 2
Ds = Dy— DoD7'Ds.

Once this reduced system is solved, Aw can be recovered as
Au= —D7gs + Dy Aw).

Several methods can be used to solve the reduced Newton
system (21), depending on the relative sizes of n and 2 and
the sparsity of the data A

C. Computing the search direction

The PCG algorithm [10, §6.6] computes an approximate so-
lution of the Newton syste, Hx = —g. It uses a preconditioner
P € R**%7_galso symmetric positive definite.

PRECONDITIONED CONJUGATE GRADIENTS ALGORITHM

given relative tolerance ey > 0, iteration limit Ny,

and zp € R
k=0 rg:=Hxqg—g,p:=—P g y:= P lr.
repeat
ki=kFk+1
sie=ullpg

Vg 1= yg,l’f“kq/sz
T =g 1+ ViPk
Te i = Tek_1 — VLT
Yy = Pl
B = U el e
Di+1 1= Yk + Mik+1Dk
until |[rg|2/[|gll2 < €peg 0or & = Nyeg.

Each iteration of the PCG algorithm involves a handful of
inner products, the matrix-vector product Hp, and a solve
"Et@pl)')vith P in computing P17, With exact arithmetic,
and 1gnoring the stopping condition, the PCG algorithm 1s
guaranteed to compute the exact solution 2 = —H~1g in N
steps. When P~ V2H P~1/2 is well conditioned, or has just
a few extreme eigenvalues, the PCG algorithm can compute
an approximate solution in a number of steps that can be far
smaller than N. Since P~'ry is computed in each step, we
need this computation to be efficient.

The truncated Newton mterior-point method is the same as
the interior-point algorithm described in Section III, with the
search direction computed using the PCG algorithm.

We can compute Hpy, in the PCG algorithm as

[ T Dok th” Dy A

) Pra
Hp, = tAT Dok tAT DA+ Dy Do P2
| 0 Dy Dy D3
I e
= Atu+ Dipea |,
| Dapre + Dipes

where u = D (bpp1 + Apra) € R™. The cost of computing
Hpy, is O(p) flops when A4 is sparse with p nonzero elements.
{We assume p > n, which holds if each example has at least
one nonzero feature.)

We now describe a simple choice for the preconditioner P.
The Hessian can be written as

H = tV3ayg (v, w) + V2®(w, u).

To obtain the preconditioner, we replace the first term with its
diagonal part, to get

P = diag ({V¥ayg (v,w)) + V2@(w, u)
dg 0 0O
- 0 D3 Dy |, 22
0 Dy Iy
where
do = b7 Db, D3 = diag(t AT Dy A) + Ds.

(Here diag(S) 1s the diagonal matrix obtained by setting the
off-diagonal entries of the matrix S to zero.) This precon-
ditioner approximates the Hessian of #,,, with its diagonal
entries, while retaining the Hessian of the logarithmic barrier
For this preconditioner, P~1r; can be computed cheaply as

r -1

d[) 0 0 Tkl
Pl = 0 D3 Dy k2
0 DQ Dl Tks

Tkl/do
(D1D3 — D3) " (Dyrge — Dares) |,
| (D1Ds — D37 (—Dares + Dargs)

which requires O(n) flops.
There are several good choices for the initial point in the
PCG algorithm {labeled zg), such as the negative gradient,
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or the previous search direction. We have found good perfor-
mance with both, with a small advantage in using the previous
search direction.

The PCG relative tolerance parameter e, has to be care-
fully chosen to obtain good efficiency in a truncated Newton
method. If the tolerance 1s too small, too many PCG steps are
need to compute each search direction, if the tolerance is too
high, then the computed search directions do not give adequate
reduction in duality gap per iteration. The adaptive rule

epeg = min{0.1, &/ g2},

where g 1s the gradient and # 1s the duality gap at the current
iterate, appears to give good results for a wide range of
problems with £ = 0.3. In other words, we solve the Newton
system with low accuracy (but never worse than 10%) at early
iterations, and solve it more accurately as the duality gap
decreases. This adaptive rule is similar in spirit to standard
methods used in inexact and truncated Newton methods; see,
e.g., [33]

The computational effort of the truncated Newton interior-
point algorithm 1s the product of s, the total number of PCG
steps required over all iterations, and the cost of a PCG step,
which is O(p), where p is the number of nonzero entries
in A, i.e, the total number of (nonzero) features appearing
in all examples. In extensive testing, we found the truncated
Newton interior-point method to be very efficient, requiring
a total number of PCG steps ranging between a few hundred
(for medium size problems) and several thousand (for large
problems). For medium size (and sparse) problems it was
faster than the mterior-point method that uses direct methods
to solve the Newton system; moreover the truncated Newton
nterior-point method was able to solve very large problems,
for which forming the Hessian H (let alone computing the
search direction) would be prohibitively expensive.

While the total number of iterations in the interior-point
method that uses direct methods to solve the Newton system
is around 35, and nearly independent of the problem size and
problem data, the total number of PCG iterations required by
the truncated Newton interior-point method can vary signifi-
cantly with problem data and the value of the regularization
parameter A. In particular, for small values of A (which lead
to large values of card(w)), the truncated Newton interior-
point method requires a larger total number of PCG steps.
Algorithm performance that depends substantially on problem
data, as well as problem dimension, is typical of all iterative
(i.e., non direct) methods, and is the price paid for the ability
to solve very large problems.

(23)

IV, [{-REGULARIZED LOGISTIC REGRESSION EXAMPLES

In this section we demonstrate the performance of the
interior-point method described in Section III with some ;-
regularized logistic regression examples. We use algorithm
parameters

a=0.01, B=0.5, e=10"5.

Smin = 057

AfAmax | card{w) | Iterations | PCG iterations | Time (sec)
0.5 9 43 5568 134
0.1 544 60 1036 256
0.05 2531 58 2000 501

I: Performance of truncated Newton interior-point method on the
20 newsgroup data set (n = 777811 features, m = 11314 examples)
for 3 values of A.

{The algorithm performs well for much smaller values of
¢, but this accuracy is more than adequate for any practical
use.) We chose the parameter V.. to be large enough (5000)
that the iteration limit was never reached in our experiments;
the typical number of PCG iterations was far smaller. The
algorithm is implemented in both Matlab and C, on a 3.2GHz
Pentium IV running Linux. The C implementation is avail-
able online (www . stanford. edu/~boyd/reports,/11_
logreg.html).

A. A large problem

We use the 20 Newsgroups data set [24]. We processed the
data set in a way similar to [21]. The positive class consists
of the 10 groups with names of form sci.® comp.*®, and
misc.forsale, and the negative class consists of the other 10
groups. We used McCallum’s Rainbow program [29] with the
command
-h
to tokenize the (text) data set. These options specify trigrams,
skip message headers, no stoplist, and drop terms occurring
fewer than two times. The resulting data set has n = 777811
features (trigrams) and . = 11314 examples (articles). Each
example containg an average of 425 nonzero features. The
total number of nonzero entries in the data matrix A is
p = 4802169, We standardized the data set using implicit
standardization, as explained in Section III-C, solving three
£y-regularized LRPs, with A = 0.5 .0 A = 0.1Apax, and
A = 0.05Ap.,. (For the value A = 0.01Apax the runtime
1s on the order of one hour. This case 1s not of practical
interest, and so not reported here, since the cardinality of
the optimal solution 1s around 10000 and comparable to the
number of examples.) The performance of the algorithm, and
the cardinality of the weight vectors, is given in table 1.
Figure 1 shows the progress of the algorithm, with duality
gap versus iteration (lefthand plot), and duality gap versus
cumulative PCG iteration (righthand plot).

The number of iterations required to solve the problems
ranges between 43 and 60, depending on A. The more relevant
measure of computational effort 1s the total number of PCG
iterations, which ranges between around 500 and 2000, again,
increasing with decreasing A, which corresponds to increasing
card(w). The average number of PCG iterations, per iteration
of the truncated Newton interior-point method, is around 13 for
A= 0.5 Apnax, 17 for A = 0.1 nax. and 36 for A = 0.05Aax.
{The variance in the number of PCG iterations required per
iteration, however, is large.) The running time is consistent
with a cost of around 0.24 seconds per PCG iteration. The

rainbow -g 3 -s -0 2 -1
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. {a) -hb)
0 20 40 60
iterations

(a) (b . (o) ]

0 500 1000 1500 2000

cumulative PCG iterations
1: Progress of the truncated Newton interior-point method on the 20

Newsgroups data set for (a) A = 0.5 Amax, (D) A = 0.1Amax, and (c)
A = 0.05Anax. Top. Duality gap versus iterations. Beifom. Duality
gap versus cumulative PCG iterations.

increase in running time, for decreasing A, is due primarily to
an increase n the average number of PCG iterations required
per iteration, but also significantly from an increase in the
overall number of iterations required.

B. Randomly generated problems

To examine the effect of problem size on the runtime of
the truncated Newton interior-point method, we generated a
family of 21 data sets, with the number of features n varying
from one hundred to ten millions, and m = 0.1n examples.
Hach problem has an equal number of positive and nega-
tive examples. Features of positive (negative) examples are
independent and identically distributed, drawn from a normal
distribution A’ (v, 1), where v is in turn drawn from a uniform
distribution on [0, 1] for positive examples ([—1, 0] for negative
examples). In doing so, the sparsity was controlled to have the
average number of nonzero features per example around 30.
We standardized the data sets, solving each problem instance
for the three values A = 0.5 0. A = 0.1Apax, and A =
0.05 A max.

The total runtime, for the 63 #;-regularized logistic regres-
sion problems, is shown in figure 2. The plot shows that
runtime increases as A decreases, and grows approximately
linearly with problem size.
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