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Abstract- Convex loss minimization with tf regularization
has been proposed as a promising method for feature selec-
tion in classification (e.g, l1-regularized logistic regression) and
regression (e.g, 1l-regularized least squares). In this paper we
describe an efficient interior-point method for solving large-scale
fl-regularized convex loss minimization problems that uses a
preconditioned conjugate gradient method to compute the search
step. The method can solve very large problems. For example, the
method can solve an 11-regularized logistic regression problem
with a million features and examples (e.g, the 20 Newsgroups
data set), in a few minutes, on a PC.

I. INTRODUCTION

A. 11I-regularized conivex loss minimnization
We consider a problem of the form

m

minimize (1Mn) L (wTai +vbi+ ci) +A|w, (1)
i=l

where the variables are v c R and w c Rn, the problem data
are ci c R, ai c R2n, and bi c R, A > 0 is the regularization
parameter, and, Ilwi, is the ti norm of w. Here :::R-:ER
is a convex function. In classification and regression setting
(which will be described, below), b has the meaning of loss
and so is called a loss function. The first term in the objective

m

lavg(V,W) = (1/ r) L (wTai + vbi + ci)

is called, the average loss. This problem is called, an U1-
regularized convex loss minimization problem (CLMP).
We refer to the number of nonzero components in w as its

cardinality, denoted card(w). Compared with 12-regularized
convex loss minimization (which uses the £2 penalty function
instead of the /I penalty, f -regularized conxvex loss minimiza-
tion tends to yield, w with card(w) small; the regularization
parameter A roughly controls caid(w), with larger A typically
yielding smaller card(w).
A lot of problems that arise in the context of feature or

model selection in signal processing and statistics have the
form (1). The main motivation of L, regularization is that
solving (1) typically yields a sparse vector w, i.e., w typi-
cally has relatively few nonzero coefficients. (In contrast, f2
regularization typically yields w with all coefficients nonzero.)

1) l -regularized regression: Let x c RV denote a vector
of explanatory or feature variables, and y c R denote the
associated output or outcome. A linear model predicts the
output as

where v c R is the intercept and w c R' is the weight vector.
Suppose we are given a set of (observed or training)

examples, (xi, yi) Rn x R, i = 1, . . ., m- When the number
of features n is greater than the number of examples am,
an effective method for finding the weight coefficients and
intercept is to solve the 11l-regularized optimization problem

m n

minimize (1n)Z (wTui vv-Y) LF A wi, (2)

with variables v c R and w c R. Typically 4 is a symmetric
convex function, with (O) = 0, such as the quadratic loss,
Huber loss, and E-sensitive loss. This problem has the form (1)
with ai = xi, bi = 1, and ci = -yi
When the loss function is quadratic, i.e., 0(u) = u2, the

convex loss minimization problem (2) is the 11-regularized
least squares problem that has been studied extensively in the
literature (see, e.g., [15], [39]). This feature selection method
is called the Lasso [40]. The theoretical properties of the Lasso
have been studied by several researchers; see, e.g., [22], [30],
[51], [50].

In signal processing, the idea of 11 regularization arises in
the context of sparse signal recovery. The CLMP with the
quadratic loss function is related to compressed sensing [II],
[43] or compressive sampling [4], which has many applications
in image and signal processing [46], [47], [28], [26], [27]. The
effectiveness of 1i regularization has been studied by many
researchers; see, e.g., [5], [6], [7], [12], [13], [14], [l6], [17]1
[19], [41], [42].

2) tf-regularized classification. Let x C Rn denote a
vector of explanatory or feature variables and y {- + I
denote the associated binary output or outcome. Suppose we
are given a set of (observed or training) examilepls yi) c

Anxcfier ic s m
Aclassifier w hich has the form

O(xr) = sgn(wTx + V), (3)
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where

sgn(z) { +{ 0
- 07

is called linear, since the boundary between the two decision
outcomes is a hyperplane (defined by wTw + v = 0).

The weights w and intercept v can be found by solving a
problem of the form

m n

minimize (1/nm)>¾5(y,(WTX,+V)) > 'Aw~iv (4)
i1 i1

with variables v c R and w c R'. This problem has the
form (1) with ai = yixi, bi = yi, and ci = 0. The loss
function $ is small and, positive for positive arguments, and
grows for negative arguments (e.g., the hinge loss and logistic
loss) [20]. The aforementioned method for finding w and v can
outperform £2-regularized classification algorithms, especially
when the number of observations is smaller than the number
of features.
When 0 is the logistic loss function ,

0(z) = log(1 + exp(- z)),

(4) is a f -regularized logistic regression problem. More
recently, fI-regulcrized logistic regression has received much
attention, see, e.g., [25], [34].

C utline
The main goal of this paper is to describe a specialized

interior-point method for solving the fl-regularized convex
loss minimization problem (1) where the loss function is twice
differentiable. The method, uses a preconditioned, conjugate
gradient approach to compute the search direction and so is a
truncated Newton interior-point method.

In Section II, we give (necessary and sufficient) optimality
conditions, and a dual problem, for the li-regularized CLMP.
Using the dual problem, we show how to compute a lower
bound on the suboptimallity of any pair (vu w). In Section II-
C, we describe the truncated Newton interior-point method.
In Section IV, we apply the method to 11-regularized logistic
regression. The method, can solve very large problems, with a
million features and examples (e.g., the 20 Newsgroups data
set [24]), in under an hour, on a PC, provided the data matrix
is sufficiently sparse.

II. PRELIMINARIES

In this section, we give some preliminaries needed to
develop the truncated Newton interior-point method, in :11-C.

A. Optinality conditions
The objective function of the f -regularized CLMP,

lavg(v, w) + Alul,, is convex but not differentiable, so we
use a first-order optimality condition based on subdifferential
calculus (see, e.g., [1L, Prop. B.24] or [2, .2]). The necessary
and sufficient conditions for (v, w) to be optimal for (1) are

B. Existing generic solution methods

To solve the f -regularized CLMP (1), generic methods for
nondifferentiable convex problems can be used, such as the
ellipsoid method, or subgradient methods [38], [35]. These
methods are usually very slow in practice, however. (Because

-regularized CLMP typically results in a weight vector with
(many) zero components, we cannot simply ignore the nondif-
ferentiability of the objective in the f -regularized CLMP (1),
hoping to not encounter points of nondifferentiability.)

Faster methods are based on transforming the problem to
an equivalent one, with linear inequality constraints,

minimize K1jgv, w) + AlTu
subjectto -ui <wi <ui, i= l,...,n, (5)

where the variables are the original ones v c R, w E Rn,
along with a R'. Here 1 denotes the vector with all

components one, so 1TU iS the sum of the components of u.
The reformulated problem (5) is a convex optimization prob-

lem, with linear constraint functions. When the loss function

is twice differentiable it can be solved by standard convex

optimization methods such as SQP, augmented Lagrangian,
interior-point, and other methods. High quality solvers that
can directly handle the problem (5) include for example

LOQO [45], LANCELOT [8], MOSEK [31], and NPSOL [18].
These general purpose solvers can solve small and medium

scale £l-regularized CLMPs quite effectively.

where A= [a

i= I ... n,

a T c Rmxn and

vi = (1 /mT3 1(wTai + vbi
These constraints can be expressed as

bTp(v, w) = 0,

and

c)).

(6)

(1,
{-A} Wi >
{A} Wi <
[-A, A] wi=

0O

0)

0,

i=I
(7)n.

HereT
'(w a, + vbl + cl)

p(v, U)
(Wf(Tam + vbrn + cm )

We analyze when a pair of the form (v, 0) is optimal. This
occurs if and only if

bTp(av0) = 0, (1/Tr)ATplog(V,0) < A.

The equation bTp(v, 0) = has the unique solution, say, v:

bTp(v, 0) = 0. (8)

224

bTv = 0

f(j{-A > O,
(ATz)2, C f{+Al wj < °,

[-A, A] u)i = O,



Using this value of v, the second condition becomes

A > Arax (1 /Tn)ATp(v )) (9)

The number Ai-laxgives us an upper bound on the useful range
of the regularization parameter A: for A > A ax, we get a
maximally sparse weight vector, i.e., one with card(w) = 0.

B. The dual problem
To derive a Lagrange dual of the fl1-regularized CLMP (1),

we first introduce a new variable z C R', as well as new
equality constraints zi = wTai + vbi + ci 1, Tn, to
obtain the equivalent problem

minimize (1/m) m1.= (( ) A U)
subject to zi = wTai + vbi + ci, i = 1,

Associating dual variables v

straints, the Lagrangian is

L(v, w, z, a)
if

(1/m)E (zi) AllwU

m. (10)

R with the equality con-

aT(_Z +Aw bv + c)

Strong duality. The fl-regularized CLMP (l) satisfies a
variation on Slater's constraint qualification, so there is
an optimal solution v* of the dual (12), which satisfies

G(v*) = P*
In other words, the optimal values of the primal (1) and
dual (12) are equal.

C. Suboptimality bound
We can derive a bound on the suboptimality of (v, w), by

constructing a dual feasible point av, from an arbitrary w,

a= (SITn)p(v, w)
where v is the optimal intercept for the offset a,

m

v argmin(IJm)ZE(wTai + vbi + ci),
i=l

(15)

(16)

and the scaling constant s is given by s
min{mA/ ATp(v, w)) I}O 1.

The difference between the primal objective value of (v, w),
and the associated lower bound G(v), is called the duality gap,
and denoted q(V iw):

rq(v,w) = lag(v,Wu) +Allw , 0-G(a).

aTc ||AT ,

bTV =
otherwise,

A

where O* is the conjugate of the convex loss function ;:

05 (y) = sup (ya-(u)) .

zuGR
(I11)

For general background on convex duality and conjugates, see,
e.g., 3, Chap. 5. or [21.

The dual of the problem (1) is

:mai:mze_(1/mn) El 1 0*(_TnV) + 77TCmaximize 1i

subject to IIATcVlOc < A, bTV = 0

where

G(7) =-(I /rTn)E *(_MiVI) +iITC,
i=1

(12)

(13)

A= [a , ..a T Rmxn12 the variable is v' C R"~, and

is the conjugate of the loss function 3,

Xb(y) = sup (Ya-ja))
uIR

The dual problem (12) is a convex optimization problem with
variable av C R, and has the form of an fO -norm constrained
maximum generalized, entropy problem. We say that C Rm
is dual feasible if it satisfies AT aVoo < A, bTa = 0.

From standard results in convex optimization we have the
following.

. Weak duality. Any dual feasible point v gives a lower
bound on the optimal value p* of the (primal) li-

regularized CLMP (1).

G(v) <p*. ~~(14)

(17)

We always have ry(v, w) > 0; and (by weak duality (1L4)) the
point (v, w) is no more than q-suboptimal. At the optimal
point (v* w*), we have r = 0.

D. The logarithmic barrier and central path
The logarithmic barrier for the bound constraints -i <

wi < ui in (5) is
n n

P>(w, U) = - E log(ki + a'i) - E log(ui
i=l i=l

t'j)

with domain

dom 4 {(=w, a) c Rn x R' tovi < ui, i = 1,.. n, }.

The logarithmic barrier function is smooth and convex. We
augment the weighted objective function by the logarithmic
barrier, to obtain

¢tt(V, IV, a) = tl"g(v, uw) + tAlTaU+ (IV, a), (18)

where t > 0 is a parameter. This function is smooth, strictly
convex, and bounded below, and so has a unique minimizer
which we denote (v* (t), w* (t), a* (t)). This defines a curve in
R x RIA X RI, parametrized by t, called the central path. (See
[3, 11] for more on the central path and its properties.)

With the point (v* (t) w* (t), U*(t)) we associate

V* (t) p(v* (t) V*v(t)) (19)

which can be shown to be dual feasible. (Indeed, it coincides

with the dual feasible point av constructed from w* (t) using the
method. of Section Il-C.) The associated duality gap satisfies

lavg( (t), w* (t)) + A w* (t) 1 -G(a* (t)) < 2n/t.
In other words, (t), w (t)) is no more than 2nat-
suboptimal, so the central path leads to an optimal solution.
(See 13, Chap. 11 ] for more on the central path.)
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The dual function is

inf L(v, Ui, z, )
v,w,

-(1/) EZI1 O (-7vi)
= <~~~i

Doo



I I I. AN INTERIOR-POINT METHOD

In this section we describe an interior-point method for solv-
ing the Li-regularized CLMP (1), in the equivalent formulation
given in (5).

In a primal interior-point method, we compute a sequence
of points on the central path, for an increasing sequence of
values of t, using Newton's method to minimize /t (v, w, u),
starting from the previously computed central point. A typical
method uses the sequence t = to, to, u2to..., where ,a is
between 2 and, 50 (see, e.g., [3, 1 1.3]). The method can be
terminated when 2Tn/t < c, since then we can guarantee c-
suboptimality of (v*(t),w*(t)). See, e.g., [32], [48], [49] for
more on (primal) interior-point methods.

Using our method for cheaply computing a dual feasible
point and associated duality gap for any (v, w) (and not just
for (v, w) on the central path, as in the general case) we
can construct a custom interior-point method that updates the
parameter t at each iteration. This method is an extension of
the interior-point method for fl -regularized logistic regression
developed in [23].

CUSTOM INTERIOR-POINT METHOD.

given tolerance e > 0, a C (0 1/2), (0: 1)
Set initiazl vallues..

t := I/A, v := v, the solution of (8), w := 0, U

repeat
1. Compute search direction.

Solve the Newton system
V Av

t(V: w,W,U) Aw V= t(V, w,a,.
L Au i

2. Backtracking line search.
Find the smallest integer k > 0 that satisfies
t(V + kAVW + 3kAW U + 3k'AU)

,AV
< t(V, W, U) + aokVt( W U)j AW

Au
3. Updalte. (V, w, U1) :=(v, w, U) +'3 (v,A\V,,

1.

]
A).

4. Set v := v, the optimal value of the intercept, as in (16).
5. Construct dual feasible point ii from (15).
6. Evaluate duality gap Tj from (17).
7. quit if q <
8. Update .

The computational effort per iteration is dominated by
step 1 the search direction computation When the search
direction in Newton's method is computed approximately,
using an iterative method such as a preconditioned conjugate
gradient (PCG) method, the overall algorithm is called a
conjugate gradient Newton method or a truncated Newton
method [37] [9]. (Truncated Newton methods have been
applied to interior point methods, see, e.g, [44], [36].)

A. Update rule and parameters
We describe the choice of initial values for v, w, , and

t. The choice v = v is the optimal value of v when w =

O and u = 1. The choice w = O u = l, and t = i/A
seems to work very well, especially when the original data
are standardized (i.e., ai have zero mean and unit variance).
(In any case, the choice of the initial values does not greatly
affect performance.) The construction of a dual feasible point
and duality gap, in steps 4-6, is explained in Section II-C.
Typical values for the line search parameters are a = 0.01,
3 = 0.5, but here too, these parameter values do not have a
large effect on performance.

There are many possible update rules for the parameter t.
In a classical primal barrier method, t is held constant until
;t is (approximately) minimized, i. e., VOt 2 is small; when
this occurs, t is increased by a factor typically between 2 and
50. More sophisticated update rules can be found in, e.g., [32],
[48], [49].
The update rule we propose is

t max{ t min{t, t}, t}
t t

s4 > Smin

S < Smin
(20)

where t= 2n/q, and s = k is the step length chosen in
the line search. Here >i 1 and siiii, c (0, 1] are algorithm
parameters; we have found good performance with t = 2 and
sillill = 0.5. This update rule uses the step lencgth s as a crude
measure of proximity to the central path. We can also give an
informal justification of convergence of the custom interior-
point algorithm [23]. (A formal proof of convergence would
be quite long.)

B. Hessian and gradient
In this section we give explicit formulas for the gradient

and. Hessian of xt. The gradient g = V$t(v, W, a) is given by
91

g= 92 c R2n+1

93
where

g9 = V ht(V,c wV)
= (tAm,)bTp(v, w),

92 = V\7 (/t (V, W, U)

= (tAm)ATp(v, w)

T3 =Hessin t V, W, Uw)
2u,/(U12

0192The lHessian H = V2 O/t(V, W,
tb Dob tb DoA

H 7= tATDob tA7TDAl+
L ° D2

2 2)

2L vw/ (Un IV2)

w2)

_ 2)
a) is given by

0
Di D2 R 2n

DI j

(2n+ 1)
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where

Do 1 diag(<"(wTa, + vbl + cl),..rn

D19 diag (2(u *~ 2(*7 i

192 =diag 7***(U i;,2 _ U2

HDere, we use dia(, ., m ) to denote hI
with diagonal entries 1 m, where
The Hessian H is sy:mmetric and positive c

The search direction is defined by the
(Newton system)

[tb%Dob tbTDoA 0 [A
tATDob tATTDoA+ DI D2121A

L0 D2 D1 j At

Each iteration of the PCG algorithm involves a handful of
inner products, the matrix-vector product Hpk and a solve

<f)(WTum +b~V +t)tlvith P in computing P-Irk. With exact arithmetic,
,,2)0 and ignoring the stopping condition, the PCG algorithm is
2)2 ) guaranteed to compute the exact solution x = 19-g in N

steps When p- /2HP- 1/2 iswell conditioned, or has just
n2) . a few extreme eigenvalues, the PCG algorithm can compute

/ an approximate solution in a number of steps that can be far
ie diagonal matrix smaller than N. Since P-'rk is computed in each step, we
R. i = 1? ... ? m. need, this computation to be efficient.
lefinite. The truncated Newton interior-point method is the same as
linear equations the interior-point algorithm described in Section III, with the

search direction computed using the PCG algorithm.
I F 1 I We can compute HPk in the PCG algorithm as

l= L,92
'1- 93 J- HPk

We first eliminate Au to obtain the reduced Newton system

Hred Av -9red (21)

where

Hred
tbTDob tbTJ9A 1
tATDob tATDoA + D3 j

gred =1 I

D3 I -1D2D1 19D2

Once this reduced system is solved, Au can be recovered as

Au = 1-D11(93 + D2AW)

Several methods can be used to solve the reduced Newton
system (21), depending on the relative sizes of n and m and
the sparsity of the data A.

C. Computing the search direction
The PCG algorithm 10, 06.6j computes an approximate so-

lution of the Newton syste, Hx =-g. It uses a preconditioner
P c R2nx 2n, also symmetric positive definite.

tbTDob tbTDoA 0
tATDob tATDoA + D1 D2

°0 D2 DI
[ bT U 1

AT2 + Dlpk2 J
LD2Pk2 + DlPk3

Pkl
Pk2

j L Pk3 ,

where u = tDo(bpkI + Apk2) Rm. The cost of computing
HPk is O(p) flops when A is sparse with p nonzero elements.
(We assume p > n, which holds if each example has at least
one nonzero feature.)
We now describe a simple choice for the preconditioner P.

The Hessian can be written as

H = tV2 lavg (V, w) + V2 (W U)-

To obtain the preconditioner, we replace the first term with its
diagonal part, to get

P = diag (tV2 lavg (v, W)(+222) (W, u)
do ° ° (22)
0 193 191r D2 DI

where

do = tbTDob, 93 = diag(tATDoA) + D1.

PRECONDITIONED CONJUGATE GRADIENTS ALGORITHMA

given relative tolerance Epcg
andd xow R2n

k ,r0 -Hxo , pi
repeat

0, iteration limit Np,g

-P1g,yO := P 1rO.

(Here diag(S) is the diagonal matrix obtained by setting the
off-diagonal entries of the matrix S to zero.) This precon-
ditioner approximates the Hessian of tla,g with its diagonal
entries, while retaining the Hessian of the logarithmic barrier.
For this preconditioner, P. rk can be computed cheaply as

[z* HPk
k :=Yk rk-1 /PkZVk
*- k-1 kkXk 3=k- + kPk

rk r-k-1 Vk

Yk = 1rk
1-k+l := YT,i k/yT -lrk- IYk Yk 1r-
Pk+l = Yk + I'k+IPk

until flrkf 12/ 9|g|2 < Epcg or k = NCg

I

ao0
0

0
D3

192

0
D2
D1i ]

-1 _
[rk
rk2

- 'rk3

'rkI/do
D 2 -1 Dlrk2-DL 2) -1

_ 127k22 -
,D

[ (1DD3 -

I
- D2rk3)
+ D3rk3)

which requires O(n) flops.
There are several good. choices for the initial point in the

PCG algorithm (labeled, xo), such as the negative gradient,
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or the previous search direction. We have found good perfor-
mance with both, with a small advantage in using the previous
search direction.
The PCG relative tolerance parameter cpcg has to be care-

fully chosen to obtain good efficiency in a truncated Newton
method. If the tolerance is too small, too many PCG steps are
need to compute each search direction; if the tolerance is too
high, then the computed search directions do not give adequate
reduction in duality gap per iteration. The adaptive rule

cpcg = minfOl{01 0 21 (23)

where g is the gradient and iy is the duality gap at the current
iterate, appears to give good results for a wide range of
problems with ( = 0.3. In other words, we solve the Newton
system with low accuracy (but never worse than 10%) at early
iterations, and solve it more accurately as the duality gap
decreases. This adaptive rule is similar in spirit to standard
methods used in inexact and truncated Newton methods; see,
e.g., [33].
The computational effort of the truncated Newton interior-

point algorithm is the product of s, the total number of PCG
steps required over all iterations, and the cost of a PCG step,
which is 0(p), where p is the number of nonzero entries
in A, i.e., the total number of (nonzero) features appearing
in all examples. In extensive testing, we found the truncated
Newton interior-point method to be very efficient, requiring
a total number of PCG steps ranging between a few hundred
(for medium size problems) and several thousand (for large
problems). For medium size (and sparse) problems it was
faster than the interior-point method that uses direct methods
to solve the Newton system; moreover the truncated Newton
interior-point method was able to solve very large problems,
for which forming the Hessian H (let alone computing the
search direction) would be prohibitively expensive.

While the total number of iterations in the interior-point
method that uses direct methods to solve the Newton system
is around 35, and nearly independent of the problem size and
problem data, the total number of PCG iterations required by
the truncated Newton interior-point method can vary signifi-
cantly with problem data and the value of the regularization
parameter A. In particular, for small values of A (which lead
to large values of card(w)), the truncated Newton interior-
point method requires a larger total number of PCG steps.
Algorithm performance that depends substantially on problem
data, as well as problem dimension, is typical of all iterative
(i.e., non direct) methods, and is the price paid for the ability
to solve very large problems.

IV. 11 REGULARIZED LOGISTIC REGRESSION EXAMPLES

In this section we demonstrate the performance of the
interior-point method described in Section III with some 11-
regularized logistic regression examples We use algorithm
parameters

a = 0.01, 3 = 0.5, 5mn 0.5, e 10 8.

A/Ama card(w) Iterations PCG iterations Time (sec)
0.5 9 43 558 134
0.1 544 60 1036 256
0.05 2531 58 2090 501

I: Performance of truncated Newton interior-point method on the
20 newsgroup data set (n = 777811 features, m = 11314 examples)
for 3 values of A.

(The algorithm performs well for much smaller values of
c, but this accuracy is more than adequate for any practical
use.) We chose the parameter Npcg to be large enough (5000)
that the iteration limit was never reached in our experiments;
the typical number of PCG iterations was far smaller. The
algorithm is implemented in both Matlab and C, on a 3.2GHz
Pentium IV running Linux. The C implementation is avail-
able online (www. stanford.edu/ boyd/reports/1
logreg.html).

A. A large problem

We use the 20 Newsgroups data set [241. We processed the
data set in a way similar to [21]. The positive class consists
of the 10 groups with names of form sci.*, comp.*, and
misc.forsale, and the negative class consists of the other 10
groups. We used McCallum's Rainbow program [29] with the
command

rainbow -g 3 -h -s -o 2 -i
to tokenize the (text) data set. These options specify trigrams,
skip message headers, no stoplist, and drop terms occurring
fewer than two times. The resulting data set has a = 777811
features (trigrams) and na = 11314 examples (articles). Each
example contains an average of 425 nonzero features. The
total number of nonzero entries in the data matrix A is
p = 4802169. We standardized the data set using implicit
standardization, as explained in Section III-C, solving three
f -regularized LRPs, with A =005Aax, A = lAmax, and
A =0 05Amax (For the value A = OUOlAmax the runtime
is on the order of one hour. This case is not of practical
interest, and so not reported here, since the cardinality of
the optimal solution is around 10000 and comparable to the
number of examples.) The performance of the algorithm, and
the cardinality of the weight vectors, is given in table I.
Figure 1 shows the progress of the algorithm, with duality
gap versus iteration (lefthand plot), and duality gap versus
cumulative PCG iteration (righthand plot).

The number of iterations required to solve the problems
ranges between 43 and 60, depending on A. The more relevant
measure of computational effort is the total number of PCG
iterations, which ranges between around 500 and 2000, again,
increasing with decreasing A, which corresponds to increasing
cardc(w). The average number of PCG iterations, per iteration
ofthe truncated Newton interior-point method, is around 13 for
A 00An5ax, 17 for A 0 lmax, and 36 for A 0.05Amax-
(The variance in the number of PCG iterations required per
iteration, however, is large.) The running time is consistent
with a cost of around 0.24 seconds per PCG iteration. The
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gap versus cumulative PCG iterations.

increase in running time, for decreasing A, iS due primarily to
an increase in the average number of PCG iterations required
per iteration, but also significantly from an increase in the
overall number of iterations required.

B. Randomly generated problems

To examine the effect of problem size on the runtime of
the truncated Newton interior-point method, we generated a
family of 21 data sets, with the number of features n varying
from one hundred to ten millions, and Tn= 0.1n examples.
Each problem has an equal number of positive and nega-
tive examples. Features of positive (negative) examples are
independent and, identically distributed, drawn from a normal
distribution JV(v, 1), where v is in turn drawn from a uniform
distribution on [0, 1] for positive examples -1, 0] for negative
examples). In doing so, the sparsity was controlled to have the
average number of nonzero features per example around 30
We standardized the data sets, solving each problem instance
for the three values A = 0.5Ani5ax A =0 1Ami ax and A
0.05Aniax-

The total runtime, for the 63 f -regularized logistic regres-
sion problems, is shown in figure 2. The plot shows that
runtime increases as A decreases, and grows approximately
linearly with problem size.
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Ca)UV0
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0

10-
10-1
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2: Runtime of the truncated Newton interior-point method, for ran-
domly generated sparse fl-regularized logistic regression problems.
with three values of A.
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