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a b s t r a c t

Segmentation of time-varying systems and signals intomodels whose parameters are piecewise constant
in time is an important and well studied problem. Here it is formulated as a least-squares problem with
sum-of-norms regularization over the state parameter jumps, a generalization of �1-regularization. A nice
property of the suggested formulation is that it only has one tuning parameter, the regularization constant
which is used to trade-off fit and the number of segments.

© 2010 Elsevier Ltd. All rights reserved.

1. Model segmentation

Estimating linear regression models

y(t) = ϕT (t)θ (1)

is probably the most common task in system identification. It is
well known how ARX-models

y(t) + a1y(t − 1) + · · · + any(t − n)
= b1u(t − nk − 1) + · · · + bmu(t − nk − m) (2)

with inputs u and outputs y can be cast in the form (1). Time series
AR-models, without an input u are equally common.

The typical estimation method is least-squares,

θ̂ (N) = argmin
θ

N�

t=1

�y(t) − ϕT (t)θ�2, (3)

where � · � denotes the Euclidean or �2 norm.
A common case is that the system (model) is time varying:

y(t) = ϕT (t)θ(t). (4)
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A time-varying parameter estimate θ̂ can be provided by
various tracking (on-line, recursive, adaptive) algorithms. A special
situation is when the system parameters are piecewise constant,
and change only at certain time instants tk that are more or less
rare:
θ(t) = θk, tk < t ≤ tk+1. (5)
This is known as model or signal segmentation and is common in
e.g. signal analysis (like speech and seismic data), failure detection
and diagnosis. There is of course a considerable literature around
all this and its ramifications, e.g. Bassevill and Nikiforov (1993),
Gustafsson (2001), Ljung (1999).

The segmentation problem is often addressed using multiple
detection techniques,multiplemodels and/orMarkovmodelswith
switching regression, see, e.g. Bodenstein and Praetorius (1977),
Lindgren (1978) and Tugnait (1982). The function segment for the
segmentation problem in the System Identification Toolbox (Ljung,
2007), is based on a multiple model technique (Andersson, 1985).

2. Our method

We shall in this contribution study the segmentation problem
from a slightly different perspective. If we allow all the parameter
values in (4) to be free in a least-squares criterion we would get

min
θ(t), t=1,...,N

N�

t=1

�y(t) − ϕT (t)θ(t)�2.

Since the number of parameters then exceeds or equals the
number of observations we would get a perfect fit, at the price of
models that adjust in every time step, following any momentary
noise influence. Such a grossly over-fit model would have no
generalization ability, and so would not be very useful.
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2.1. Sum-of-norms regularization

To penalize model parameter changes over time, we add a
penalty or regularization term (see e.g. Boyd & Vandenberghe,
2004, p. 308) that is a sum of norms of the parameter changes:

min
θ(t)

N�

t=1

�y(t) − ϕT (t)θ(t)�2 + λ
N�

t=2

�θ(t) − θ(t − 1)�reg, (6)

where �·�reg is the norm used for regularization, and λ is a positive
constant that is used to control the trade-off between model fit
(the first term) and time variation of the model parameters (the
second term). The regularization norm � · �reg could be any vector
norm, like �1 or �p, but it is crucial that it is a sum of norms, and
not a sum of squared norms, which is the more usual Tychonov
regularization.

When the regularization norm is taken to be the �1 norm,
i.e., �z�1 = �n

k=1 |zk|, the regularization in (6) is standard �1
regularization of the least-squares criterion. Such regularization
has been very popular recently, e.g. in the much used Lasso
method, (Tibsharani, 1996) or compressed sensing (Candès,
Romberg, & Tao, 2006; Donoho, 2006). There are two key reasons
why the parameter fitting problem (6) is attractive:
• It is a convex optimization problem, so the global solution can

be computed efficiently. In fact, its special structure allows it to
be solved in O(N) operations, so it is quite practical to solve it
for a range of values of λ, even for large values of N .

• The sum-of-norms form of the regularization favors solutions
where ‘‘many’’ (depending on λ) of the regularized variables
come out as exactly zero in the solution. In this case, this
means estimated parameters that change infrequently (with
the frequency of changes controlled roughly by λ).
We should comment on the difference between using an �1

regularization and some other type of sum-of-norms regulariza-
tion, such as sum-of-Euclidean norms. With �1-regularization, we
obtain a time-varying model in which individual components of
the θ(t) change infrequently. When we use sum-of-norms regu-
larization, the whole vector θ(t) changes infrequently; but when
it does change, typically all its components change. In a statisti-
cal linear regression framework, sum-of-norms regularization is
called Group-Lasso (Yuan & Lin, 2006), since it results in estimates
in which many groups of variables (in this case, all components of
the parameter change θ(t) − θ(t − 1)) are zero.

2.2. Regularization path and critical parameter value

The estimated parameter sequence θ(t) as a function of the
regularization parameter λ is called the regularization path for the
problem. Roughly, larger values of λ correspond to estimated θ(t)
with worse fit, but fewer segments. A basic result from convex
analysis tells us that there is a value λmax for which the solution of
the problem is constant, i.e., θ(t) does not vary with t , if and only
if λ ≥ λmax. In other words, λmax gives the threshold above which
there is only one segment in θ(t). The critical parameter value λmax

is very useful in practice, since it gives a very good starting point
in finding a suitable value of λ. Reasonable values are typically on
the order of 0.01λmax to λmax (which results in no segmentation).

Let θ const be the optimal constant parameter vector, i.e., the
solution of the normal equations
N�

t=1

(y(t) − ϕT (t)θ const)ϕT (t) = 0.

Then we can express λmax as

λmax = max
t=1,...,N−1

�����

t�

τ=1

2(y(τ ) − ϕT (τ )θ const)ϕT (τ )

�����
reg∗

, (7)

where �·�reg∗ is the dual normassociatedwith �·�reg. This is readily
computed.

To verify our formula for λmax we use convex analysis
(Bertsekas, Nedic, & Ozdaglar, 2003; Borwein & Lewis, 2005;
Rockafellar, 1996). The constant parameter θ(t) = θ const solves the
problem (6) if and only 0 is in its subdifferential. The fitting term is
differentiable, with gradient w.r.t. θ(t) equal to
2(y(t) − ϕT (t)θ const)ϕT (t).
Now we work out the subdifferential of the regularization term.
The subdifferential of � · �reg at 0 is the unit ball in the dual norm
� · �reg∗. Therefore the subdifferential of the regularization term is
any vector sequence of the form
g(1) = −z(2),
g(2) = z(2) − z(3),
...
g(N − 1) = z(N − 1) − z(N),
g(N) = −z(N),

where z(2), . . . , z(N) satisfy �z(t)�reg∗ ≤ λ. We solve these to get

z(t) = −
t−1�

τ=1

g(τ ), t = 2, . . . ,N.

The optimality condition is
g(t) + 2(y(t) − ϕT (t)θ const)ϕT (t) = 0, t = 1, . . . ,N.

Combining this with the formula above yields our condition for
optimality of θ(t) = θ const as λ ≥ λmax.

2.3. Iterative refinement

To (possibly) get even fewer changes in the parameter θ(t),
with no or small increase in the fitting term, iterative re-weighting
can be used (Candès, Wakin, & Boyd, 2008). We replace the
regularization term in (6) with

λ
N�

t=2

w(t)�θ(t) − θ(t − 1)�reg,

where w(2), . . . , w(N) are positive weights used to vary the
regularization over time. Iterative refinement proceeds as follows.
We start with all weights equal to one, i.e., w(0)(t) = 1. Then for
i = 0, 1, . . .we carry out the following iteration until convergence
(which is typically in just a few steps).
(1) Find the parameter estimate.

Compute the optimal θ(i)(t) with weighted regularization
using weights w(i).

(2) Update the weights.
Set w(i+1)(t) = 1/(� + �θ(i)(t) − θ(i)(t − 1)�reg).

Here � is a positive parameter that sets the maximum weight that
can occur.

One final step is also useful. From our final estimate of θ(t),
we simply use the set of times at which a model change occurs
(i.e., for which θ(t) − θ(t − 1) is nonzero), and carry out a final
least-squares fit over the parameters, which we now require to be
piecewise constant over the fixed intervals. This typically gives a
small improvement in fitting, for the same number of segments.

2.4. Solution algorithms and software

Many standard methods of convex optimization can be used
to solve the problem (6) (code used by the authors can be
found on http://www.rt.isy.liu.se/~ohlsson/code.html). Systems
such as CVX (Grant & Boyd, 2008; Grant, Boyd, & Ye, 2009) or
YALMIP (Löfberg, 2004) can readily handle the sum-of-norms
regularization, by converting the problem to a cone problem and
calling a standard interior-point cone solver. For the special case
when the �1 norm is used as the regularizationnorm,more efficient
special purpose algorithms and software can be used, such as
l1_ls (Kim, Koh, Lustig, Boyd, & Gorinevsky, 2007). Recently
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Fig. 1. The data used in Example 1.

many authors have developed fast first-order methods for solving
�1 regularized problems, and these methods can be extended
to handle the sum-of-norms regularization used here; see, for
example, Roll (2008, Section 2.2). Both interior-point and first-
order methods have a complexity that scales linearly with N .

3. Numerical illustration

We illustrate our method by applying it to a number of
segmentation problems. We take � = 0.01 and use the
Euclidean norm for regularization throughout the examples. The
refinement technique described in Section 2.3 was applied with
two refinement iterations and a final refinement by applying least-
squares on segments without changes.

Example 1 (Changing TimeDelay). This example is fromiddemo11
in the System Identification Toolbox, (Ljung, 2007). Consider the
system

y(t) + 0.9y(t − 1) = u(t − nk) + e(t).

The input u is a±1 PRBS (Pseudo-Random Binary Sequence) signal
and the additive noise has variance 0.1. At time t = 20 the time
delay nk changes from 2 to 1. The data are shown in Fig. 1. An
ARX-model

y(t) + ay(t − 1) = b1u(t − 1) + b2u(t − 2)

is used to estimate a, b1, b2 with the method described in the
previous section. The resulting estimates using λ = 0.1λmax are
shown in Fig. 2. The solid lines show the estimate and dashed the
true parameter values. We clearly see that b1 jumps from 0 to 1, to
‘‘take over’’ to be the leading term around sample 20. The estimate
of the parameter a (correctly) does not change notably.

Example 2 (Changing Time Series Dynamics). Consider the time
series

y(t) + ay(t − 1) + 0.7y(t − 2) = e(t)

with e(t) ∼ N (0, 1). At time t = 100 the value of a changes from
−1.5 to −1.3. The output data and the estimate of a are shown in
Fig. 3. λ = 0.01λmax was used.

To motivate the iterative refinement procedure suggested in
Section 2.3, let us see what happens if it is removed. Fig. 4
shows the estimate of a (around t = 100) with and without
the refinement iteration. As shown by the figure, (6) incorrectly
estimates the change at t = 100 and gives an estimate having a
change both at t = 100 and t = 101. Using iterative refinement,
however, this does not occur. Without iterative refinement, a is
estimated to −5.1 at t = 100.

Fig. 2. The parameter estimates in Example 1. Solid lines show the parameter
estimates and dashed lines the true parameter values.

Fig. 3. The time series data (upper plot) and the estimate of a (lower plot) of
Example 2.

Fig. 4. Estimates of a in Example 2 with (top plot) and without (bottom plot)
iterative refinement. Thick black line, estimate after least-squares has been applied
to segments without changes in a and light-gray thick line, estimate given by (6).
In the top plot, the gray thin lines show estimates of a after one and two iterative
refinements (the two lines are not distinguishable). Without iterative refinement
(bottom plot) a is estimated to −5.1 at t = 100.
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Fig. 5. The seismic signal used in Example 3 is shown in the upper plot. a1 is shown
in the lower plot.

Example 3 (Seismic Signal Segmentation). Let us study the seismic
data from the October 17, 1989 Loma Prieta earthquake in the
Santa Cruz Mountains. (This data is provided with Matlab as
quake.mat and discussed in the command quake.m). We choose
to decimate the 200 Hz measurements of acceleration in the
east–west direction (‘‘e’’) by a factor of 100 and segment the
resulting signal modeled as an AR process of second order. Here,
the regularization constant λ in (6) will really act as a design
parameter that controls how many segments will be chosen. For
example, λ = 0.15λmax gives two segments, λ = 0.12λmax gives
three segments and λ = 0.1λmax gives four segments. The result
for λ = 0.15λmax is shown in Fig. 5.

4. Comparisons with other methods for segmentation

Several methods for model segmentation have been suggested
earlier, see e.g. Bassevill and Nikiforov (1993), Gustafsson (1992,
Chapter 5) and Gustafsson (2001). They typically employ either
multiple detection algorithms (Segen & Sanderson, 1980), hidden
Markov models (HMM) (Blom & Bar-Shalom, 1988) or explicit
management of multiple models, AFMM (adaptive forgetting
by multiple models) (Andersson, 1985). The latter algorithm is
implemented as themethod segment in the System Identification
Toolbox and as the routine detectM in the software package
adfilt, accompanying the book (Gustafsson, 2001). The idea is
to let M Kalman filters for a stochastic system live in parallel.
At each sample the M different predictions from the filters are
evaluated. The worst performing filter is killed and a new filter is
started. The segmentation is formed by the final estimate of each
best performing filter. It should also be mentioned that a similar
method to the one proposed in this paper has been discussed for
set membership identification, and image segmentation, in Ozay,
Sznaier, Lagoa, and Camps (2008).

All algorithms for tracking time-varying systems must have a
trade-off between assumed noise level (e) and the tendency and
size of system variations, and that may be reflected in the choice of
several tuning parameters. In the segment algorithm, the user has
to select 8 parameters (assumed noise variance R2, probability of a
jump, the process noise covariancematrix R1, the initial parameter
estimates, alongwith their covariancematrices, the guaranteed life
length of each filter, and, if R2 is estimated, the forgetting factor for
estimating it). Even though several parameters can be given default
values, it may be tedious work to tune the segmented regression
algorithm. At the same time it leads to considerable flexibility.
For good choices of these parameters, segment often gives

Fig. 6. Estimates of a1 in theARX-model used in Example 4using ourmethod (solid)
and segment (dashed).

performance comparable in quality to the algorithm suggested
here. The big advantage of the proposed method is that it has
only one scalar design parameter, λ, with the number of segments
controlled by λ. Moreover, reasonable starting values of the
parameter can be found from λmax, which is easily computed.

Most existing methods are local in nature: A jump is
hypothesized at each time instant, and the ensuing samples are
used to test this hypothesis. In contrast, our method is indeed
global in nature: For a given λ (corresponding to a certain number
of jumps), the positions of these jumps are determined as those
that globally minimize (6). Still, the complexity of the algorithm is
linear in the length of the data record. It seems that this should
be an advantage for situations with infrequent jumps in noisy
environments. That this indeed is the case is illustrated in the
following example.

Example 4 (Comparison Between segment and (6)). Let us com-
pare our method with segment in the System Identification Tool-
box (Ljung, 2007). Consider the system

y(t) + a1y(t − 1) + 0.7y(t − 2)
= u(t − 1) + 0.5u(t − 2) + e(t) (8)

with u(t) ∼ N (0, 1) and e(t) ∼ N (0, 9). At t = 400, a1
changes from −1.5 to −1.3 and at t = 1500 a1 returns to −1.5.
Both segment and our method are provided with the correct ARX
structure and asked to estimate all ARX parameters (a1, a2, b1, b2).
With the same design parameters as used to generate the
data (the true equation error variance, jump probability, initial
ARX parameters and covariance matrix of the parameter jumps)
segment does not find any changes at all in the ARX parameters.
Tuning the design variable R2 in segment so it finds three
segments gives the estimate of a1 shown in Fig. 6. It does not seem
possible to find values of all the design variables in segment that
give the correct jump instants.

Using our method with the same choices as in Section 3 and
tuning λ so as to obtain three segments gives directly the correct
change times. The parameter estimate of our method using λ =
0.025λmax is also shown in Fig. 6.

5. Ramifications and conclusions

5.1. The Akaike criterion and hypothesis testing

Model segmentation is really a problemof selecting the number
of parameters to describe the data. If the ARX-model has n
parameters and uses R segments, the segmented model uses d =
Rn parameters. The Akaike criterion (AIC), (Akaike, 1973) is a well
knownway to balance themodel fit against themodel complexity:

min
d,Θ

�
V (ZN , Θ) + 2dσ 2� (9)

d = dim(Θ) (10)
where V is the negative log likelihood function, ZN is the
data record with N observations, and σ 2 is the variance of
the innovations. Comparing with (6), V is the first term
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(if the innovations are Gaussian), and the regularization term
corresponds to the model cardinality term 2dσ 2. In fact, sum-of-
norms regularization is a common way to approximate cardinality
constraints, e.g. Boyd and Vandenberghe (2004). The link to
cardinality penalties becomes even more pronounced with the
iterative refinement procedure of Section 2.3. It aims,with iterative
replacement of the weights, at a regularization term

λ
N�

t=2

�θ(t) − θ(t − 1)�reg

� + �θ(t) − θ(t − 1)�reg
,

which essentially counts the number of nonzero terms, i.e. the
number of jumps and hence the number of parameters.

A common statistical approach to selecting model size is to use
hypothesis testing, e.g Ljung (1999, p. 507), where the simpler
model is the null hypothesis. Using the optimal test, likelihood
ratios, is known to correspond to the Akaike criterion at a certain
test level, (Söderström, 1977). The criterion (6) can thus be
interpreted as a simplified likelihood ratio test, where λ sets the
test levels.

5.2. General state space models

It is well known that ARX-model estimation with varying
parameters can be seen as state estimation in a general state space
model, see e.g. Ljung (1999, p. 367). Applying the Kalman filter
to this time-varying ARX-model gives the Recursive Least Squares
algorithm. It works well if the time variation is well described
as a Gaussian white noise process. The segmentation problem (5)
rather correspond to an assumption that the parameter changes at
rare instants, i.e. a ‘‘process noise’’ that as zeromost of the time, and
nonzero at random time instants with a random amplitude. Our
method can therefore also be used for state smoothing for general
state spacemodelswith such process noise. This includes problems
of abrupt change detection, and processes with load disturbances
(cf equations (2.10)–(2.11) in Ljung (1999)).

5.3. Summary

We have studied the model segmentation problem and
suggested to treat it as least-squares problem with sum-of-norms
regularization of the parameter changes. We do not claim that the
suggested method necessarily outperforms existing approaches;
but being a global method, it certainly has an edge in cases with
considerable noise and infrequent jumps. An important benefit is
also that it has just one scalar design variable, whose influence on
theparameter fit andnumber of segments is easily understood, and
for which a reasonable starting value is readily found.
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