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Convex optimization control policies



Dynamics

» Known dynamical system

Xt+1 - f(Xt,Ut, Wf)7 t:O,l,

t=20,1,...is time period

x; € R" is state

u; € R™ is input or action

wy € W is the (random) disturbance

f:R" x R" x W — R" is state transition function
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Convex optimization control policy

» Convex optimization control policy (COCP):

¢(x) = argmin fo(x, u; 0)
subject to fi(x,u;0) <0, i=1,...,k
gi(x,u;0)=0, i=1,...,¢

» f; are convex in u and g; are affine in u
» 0 € © C R” are parameters
> eg.: LQR, ADP, MPC



Judging a COCP

» Consider length-T trajectories

X = (x,xi,...,xy) e RITLn
u = (Uo,U]_,.-.,UT_]_) € RTm
W = (W07W1a---7WT71) EWT

» Judge control policy by average of cost v : R+ R™™ « WT — R:

J(0) = Ey(X, U, W)



Examples of COCPs



Dynamic programming policy

» Time-separable cost:

I
!

(X, U, W)= g(xe, ug, wy)

t
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» Optimal policy as T — oo is
o(x) = argmin, E (g(x, u, w) + V(f(x, u, w)))

» V :R" — R is cost-to-go function

» COCP when f is affine in x and u and g is convex in x and u



Approximate dynamic programming policy

A

» Replace cost-to-go V with approximate cost-to-go V
» ADP policy has the form

(x) = argmin, E (g(x, u, w) + V(F(x, u, W)))

> This is a COCP when g is convex in u, f is affine in u, and V is convex



Learning method



Controller tuning problem

» Controller tuning problem

minimize  J(0)
subjectto 0 € ©

» Nonconvex and difficult to solve exactly

» Possible to use derivative-free methods, but slow



A gradient-based method

» COCP often differentiable in x and 6 [ABB*19; Amo19]
» If cost and dynamics differentiable, can compute VyJ(0)
» Use projected gradient method

9k+1 = I'I@(Hk —akgk), kZO,..-,niter

» gk is stochastic gradient of J(#), computed through Monte Carlo
» o is step size
» When COCP non-differentiable, often still get descent direction



Implementation

» CVXPY layers package? to define COCPs [AAB*19]

{(Xpy |\ ¢ PyTorch

x*(6) = argmin f(x;0)

bj 0)<0
subject to zg 93 : o _} TenSOr

» PyTorch for the chain rule

2www.github.com/cvxgrp/cvxpylayers



Numerical examples



Box-constrained LQR

» Dynamics
Xt+1 - AXt + But -+ Wit

w; is Gaussian
» Cost

w(X U W) _ Zt 1 XTQXt + U;I—Rut + X']'—QXT ”utHoo S Umax
T +00 otherwise
» ADP policy

#(x) = argmin uT Ru + [|0(Ax + Bu)||3

u
subject to  ||u||oo < Umax-

» Compare to LMI-based upper- and lower-bound [WB09]



Box-constrained LQR
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Supply chain

» single-good supply chain over n nodes

» x, = (he, pt, di); he € R is quantity held, p, € R is supplier price, d; € R°
is consumer demand

» up = (b, st,2); z2 € R™ ¥ is quantity shipped, b, € R¥ is quantity
bought, s; € R® is quantity sold

» r € R is consumer price



Supply chain
» Dynamics .
ht+1 — ht + (Aln _ Aout)ut

> AE-I(OM) is 1 if link j enters (exist) node i and 0 otherwise
» p;i1 and diyq are ID log-normal
» Cost:

\1
[ay

1
'Qb(X, U, W) = ? p;rbt — I’TSt +7—th +O{Tht +ﬁTh? + /(Xta Ut)
t
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From left to right: payment to suppliers, sale revenues, shipment cost,
storage cost, constraints

» Constraints are

0 <t < tpax, 0< h <H™ Ay, < h, s<d



Supply chain

» COCP
&(he, pr, di) = argmin pth —rTs4+ 7724+ ||Sh+||§ +qTht

b,s,z
subject to  h* = h, + (A" — A°")(b, s, 2)
0 S h+ S hmaxa 0 S (b,S,Z) S Umax
AOUt(b,S,Z) S ht, S S dt

Parameters S and g



Supply chain

Simulated example with 4 nodes, 4 links, 2 supply links, 2 consumer links
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Figure: Normalized shipments (0-1). Left: untrained. Right: trained.



Summary

» Can learn COCPs efficiently w/ gradient descent
» Easy to enforce constraints; hard with neural networks

» Applications to vehicle control and finance in our paper



Learning Convex Optimization Control Policies

Software:
» https:
> https:
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