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Introduction

The premise in low-authority control (LAC) is that the
actuators have limited authority, and hence cannot sig-
ni�cantly shift the eigenvalues of the system [1, 2]. As
a result, the closed-loop eigenvalues can be well approxi-
mated analytically using perturbation theory. These an-
alytical approximations may su�ce to predict the behav-
ior of the closed-loop system in practical cases, and will
provide at least a very strong rationale for the �rst step
in the design iteration loop.

In this paper we introduce a new method for low-
authority controller design, based on convex program-
ming. We formulate the LAC design problem as a non-
linear convex optimization problem, which can then be
solved e�ciently by interior-point methods. The advan-
tage of formulating the problem as convex is that very
large order problems can be solved (globally) in practice.
Another advantage of this formulation is that it can han-
dle a very wide variety of speci�cations and objectives be-
yond standard eigenvalue-placement. Typical objectives
for LAC design include increased damping or decay rate
for the system response, and typical constraints include
limitations on the controller gains and actuator power.
We show that by optimizing the `1 norm of the gains, we
can arrive at sparse designs, i.e., designs in which only
a small number of the control gains are nonzero. Thus,
in e�ect, we can also solve actuator/sensor placement
or controller architecture design problems. Moreover, it
is possible to address the robustness of the LAC, i.e.,
closed-loop performance subject to uncertainties or vari-
ations in the plant model. Therefore, by combining all
these, for example, we can solve the problem of robust
actuator/sensor placement and LAC design in one step.

The paper is organized as follows. The next sec-
tion poses the problem statement, which is followed by
a section that presents typical applications of LAC. Sec-
tion 3 discusses the �rst order perturbation formulas for
the matrix eigenvalues, and how the design problem can
be posed within convex optimization framework. Sec-
tion 4 discusses the sparsity of the solution, which is
important for the control architecture studies. Section 5
addresses robust LAC design, i.e., a LAC design that
guarantees performance subject to uncertainties or vari-
ations in the plant model. Section 6 introduces an ex-
tension to LAC design based on Lyapunov methods, and
it is shown how additional performance objectives (other
than eigenvalue-placement) can be included in the formu-
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lation. Finally, Section 7 demonstrates the application
of the methods on a few example problems.

1 Problem statement

We consider the linear time-invariant system

_z = A(x)z; z(0) = z0; (1)

where z(t) 2 R
n is the state, x 2 R

q is a (design) param-

eter, and A(x) 2 Rn�n is di�erentiable at x = 0. The
goal is to �nd x so that the system has su�cient damp-
ing, or more generally, the eigenvalues of the system are
in some desired region of the complex plane. However, it
is assumed that there is \limited authority" in designing
x so that the eigenvalues of system (1) are only slightly
di�erent from the eigenvalues of the unperturbed system

_z = A(0)z; z(0) = z0; (2)

i.e., system (1) with x = 0. Therefore, �rst order per-
turbation methods can be used to predict the eigenvalue
locations of system (1) from the eigenvalue locations of
system (2). We will refer to (1) and (2) as the closed-loop
and open-loop systems respectively.

In many applications, it is desirable to achieve the
required eigenvalue locations (or damping) when x has
the minimum number of nonzero elements. In such cases,
each nonzero xi may correspond to a sensor, an actua-
tor, a dissipating mechanism, or a structural component,
and therefore, reducing the number of nonzero xi's sim-
pli�es the implementation. Hence, we will also address
the problem of minimizing the number of nonzero ele-
ments of x such that the eigenvalues of system (1) are in
some desired region of the complex plane.

In addition, we will consider robust LAC design, i.e.,
a LAC design with guaranteed closed-loop system per-
formance subject to uncertainties for variations in the
system, as well as LAC design for performance measures
beyond eigenvalue-placement.

2 Applications of LAC

A key control design methodology for 
exible systems
with many elastic modes follows the two-level architec-
ture presented in [1, 3]. This architecture consists of a
wide-band, low-authority control (LAC) and a narrow-
band, high-authority control (HAC). Within this frame-
work, the HAC is designed based on a (low-order) �nite-
dimensional model of the structure, and provides high
damping or mode-shape adjustment in a selected num-
ber of modes to meet performance requirements. How-
ever, due to spillover, the HAC can destabilize modes
not included in the design model, which are usually at



high frequency and poorly known. LAC, on the other
hand, introduces low damping in a wide range of modes
for maximum robustness. LAC is, therefore, necessary
to reduce the destabilization problems created by HAC.
HAC, for example, could be a linear-quadratic-Gaussian
(LQG) controller using a collection of sensors and ac-
tuators. LAC, however, is usually implemented using
high-energy-dissipating mechanisms such as layers of vis-
coelastic shear damping material. In this case, the pa-
rameter x in (1) could represent the amount of viscoelas-
tic material at various locations of the structure.

Linear state-feedback LAC design is another simple
example that can be easily cast in the framework (1). In
this case, the parameter x consists of the elements of the
state-feedback gain matrix. We may require the state-
feedback gain to satisfy certain constraints (e.g., on the
size of its components or its sparsity pattern), or �nd a
state-feedback gain that is sparse. This state-feedback
approach is particularly useful for the (collocated) rate-
feedback design often used for LAC. A sparse feedback
gain matrix represents a simple controller topology since
it implies that we only need to connect each sensor to
a few actuators. Moreover, a zero row (column) means
that the corresponding actuator (sensor) is not required.

More generally, we can also consider dynamic LAC
design where the controller is parameterized by its state-
space system matrices. In this case, x represents the
elements of these matrices. By requiring sparsity, we can
�nd designs that require a small number of actuators and
sensors.

Another problem that can be formulated in the LAC
framework is that of structural design and optimiza-
tion. In such a case, x can include various parameters
such as beam widths, beam lengths, masses, dampers,
etc. The best design, for example, is a structure that
supports speci�ed loads at �xed points, achieves accept-
able dynamic behavior such as su�cient damping, and
at the same time, has the simplest topology or minimum
weight.

3 Eigenvalue-placement LAC design using linear
and second-order cone programming

In this section we show that analytic �rst order per-
turbation formulas for eigenvalues of a matrix can be
used to design low-authority controllers using linear
programming (LP) or second-order cone programming
(SOCP) for eigenvalue-placement speci�cations. LPs
and SOCPs are convex optimization problems and can
be solved very e�ciently, both in theory and practice
(see, e.g., [4, 5, 6, 7]).

3.1 First order perturbation formulas for eigen-
values of a matrix

Consider the family of operators A(x) 2 Rn�n where
A(0) = A and x 2 Rq is a parameter supposed to be
small. A question arises whether the eigenvalues of A(x)
can be expressed as a power series in x, i.e., whether
they are holomorphic functions of x in the neighborhood
of x = 0.

In [8] it is shown that if A(x) is continuously di�eren-
tiable in x on a simply-connected domain D � Rq , and
the number of eigenvalues �i(x) of A(x) corresponding
to a Jordan block of size 1 is constant for x 2 D, then
each �i(x) is also continuously di�erentiable. Therefore,

the change of these eigenvalues will be of the same order
of magnitude as the perturbation for small kxk. Speci�-
cally we have

�i(x) = �i +

qX
k=1
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i
ui

�
xk + o(kxk); (3)

where ui 2 C
n, wi 2 C

n are the left and right eigenvec-
tors of A(0) corresponding to the eigenvalue �i 2 C, and
Ak = @A(0)=@xk for k = 1; : : : ; q. Equation (3) gives the
�rst order expansion formula for the eigenvalues of the
perturbed matrix A(x).

3.2 LAC eigenvalue-placement design using lin-
ear or second-order cone programming

Let Di � C be the desired region for �i(x), the ith
eigenvalue of A(x). We assume that Di is either polyhe-

dral (an intersection of Ji half-planes) given by

Di = f s 2 C j aij Re(s) + bij Im(s) � cij ; j = 1; : : : ; Ji g; (4)

where aij 2 R, bij 2 R, cij 2 R, or an intersection of
second-order cones given by

Di = f s 2 C j
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where Fi 2 R2�2, gi 2 R2, ci 2 R2, di 2 R, in which
Re(s) and Im(s) are the real and imaginary parts of
s 2 C respectively (examples of these regions will follow
shortly).

Under the low-authority control assumption, we can
drop the o(kxk) term in equation (3) without signi�cant
error, and �i(x) becomes approximately linear in the de-
sign variable x, and therefore, to �rst order �i(x) 2 Di as
de�ned in (4) if and only if (after some simple algebraic
manipulations)

Pq
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cij � aij Re (�i)� bij Im (�i) ;

(6)

for j = 1; : : : ; Ji, which are linear inequality constraints
in x.

Similarly, if we require that �i(x) fall inside the
second-order conic region Di as in (5), to �rst order we
must have
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Note that (7) is a second-order cone constraint in x.
Suitable objectives are usually ones that require x to

be in some sense \small". These include di�erent norms
on x such as kxk1, kxk2, and kxk1. For example, min-
imizing kxk1 or kxk1 subject to (6) leads to LPs (after
adding slack variables), while minimizing any of these
norms subject to (6) or (7) leads to SOCPs. Therefore,
the LAC eigenvalue-placement problem can be easily cast
as an LP or SOCP which can then be solved very e�-
ciently.

Consider a typical example which is to place the
eigenvalues of system (1) in the shaded region of Fig-
ure 1(a) (damping of at least 0.1, damping ratio of at



least 0.2), and the objective is to minimize the sum of
the entries of x. In this case, for i = 1; : : : ; n

Re (�i(x)) � �0:1; Im (�i(x)) � 5Re (�i(x)) � 0:

Therefore, the optimization problem becomes (to �rst
order)

minimize x1 + x2 + � � �+ xq

subject to

Pq

k=1
Re

�
w�
i
Akui

w�
i
ui

�
xk � �0:1�Re (�i) ;Pq

k=1

�
Im

�
w�
i
Akui

w�
i
ui

�
� 5Re

�
w�
i
Akui

w�
i
ui

��
xk

� � Im (�i)� 5Re (�i) ; i = 1; : : : ; n;

which is an LP in x.
As another example, if the eigenvalues are to be

placed in the hyperbolic region D of Figure 1(b), i.e.,

fs j
p
Im(s)2 � �5Re(s) � 0:5g, and the objective is

the same as before, using (7) we get an SOCP (minimiz-
ing a linear function over second-order cone constraints).

Note that we can also mix the linear inequality and
second-order cone constraints (6) and (7) with other
constraints on x. For example, we may require that
0 � xi � xi;max (xi;max is given) corresponding to,
say, physical limitations on the values of xi. As long
as these conditions are linear equality, linear inequality,
or second-order cone constraints in x, they can be easily
dealt within an e�cient optimization program.
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Figure 1: Desired regions for system eigenvalues.

4 Sparse LAC design

In many cases it is desirable to guarantee performance
for system (1) using the minimum number of nonzero
elements of the vector x. For example, each nonzero el-
ement could correspond to a sensor, actuator, damper,
or structural component, and a sparse x (i.e., one with
\many" zero elements) would result in a simpler con-
troller, dissipation mechanism, or structure. As another
example, x could denote the entries of a full matrix of
feedback gains that indicates which sensors should be
connected to which actuators. A sparse x then corre-
sponds to a simpler controller topology.

The problem of minimizing the number of nonzero
elements of a vector x (subject to some constraints in x)
arises in many di�erent �elds, but unfortunately, except
in very special cases, it is a very di�cult problem to
solve numerically. However, a relaxation to this problem
gives reasonably sparse solutions while being numerically
tractable. The method is to minimize the `1 norm of x
instead of minimizing its nonzero entries. The `1 norm
of x is de�ned as kxk1 = jx1j+ � � �+ jxq j, and therefore,

minimizing kxk1 subject to, for example, (6) or (7) is an
LP or SOCP that can be solved very e�ciently.

The `1 norm relaxation method usually tends to give
acceptable sparse solutions. However, if we insist on �nd-
ing the x with the least number of nonzero elements,
we need to enumerate all possible sparsity patterns of
x (there are 2q of them) and check them for feasibility
(i.e., if there exists an x with the given sparsity pattern
that satisfy the constraints). Among all feasible sparsity
patterns of x, the one with the least number of nonzero
elements is the solution.

5 Robust LAC design

In this section we address the problem of robust LAC
design, i.e., a LAC design with guaranteed (closed-loop)
system performance subject to uncertainties or varia-

tions in the system model. We show that it is possible
to solve the robust LAC design problem using LP and
SOCP. Therefore, by combining the methods of this sec-
tion and that of x4, we can handle low-authority con-
troller design, actuator/sensor placement, and robust-
ness at the same time.

We will consider two di�erent approaches for mod-
eling the system uncertainty. The �rst approach is to
consider a parametric uncertainty, and the second ap-
proach is to model the uncertainty by a �nite number of
possible system models. The uncertainty is assumed to
be time-invariant in both cases.

5.1 Robust LAC design for systems subject to
\small" parametric uncertainties

As a generalization to the setup of x1, we assume
that the dynamics of the (closed-loop) system can be
described as

_z = A(x; �)z (8)

where x 2 Rq is the design parameter (as before), and
� 2 Rr represents the model uncertainty satisfying

��i;max � �i � �i;max (9)

for i = 1; : : : ; r in which �i;max is given. We assume that
the low-authority assumption holds and � is \small" so
that the eigenvalues of A(x; �) can be well-approximated
using (�rst order) perturbation formulas. The goal is to
�nd x such that for all possible values of �, the eigen-
values of (8) are in some desired region of the complex
plane. Let Di � C be the desired region for �i(x; �), the
ith eigenvalue of A(x; �). We assume that Di is polyhe-
dral as in (4).

Using the Farkas Lemma, it can be shown that (to
�rst order) �i(x; �) 2 Di for all � satisfying (9) if and

only if there exists � (1); � (2) 2 Rr such that
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(10)

for l = 1; : : : ; r and j = 1; : : : ; Ji, which is a set of linear
equality and inequality constraints in x, � (1), and � (2).
Hence, by minimizing kxk1 subject to (10) for exam-
ple, it is possible to design robust and sparse LACs for



eigenvalue-placement speci�cations subject to bounded
parametric uncertainties by solving LPs.

Note that using similar methods, it is possible to cast
robust LAC design as an LP or SOCP for cases in which
Di is described as in (5), and/or � is bound to lie in an
ellipsoid.

5.2 Robust LAC design for systems with multiple
models

Here we consider a multiple model approach to robust
LAC design. In this approach, we suppose that it is pos-
sible to adequately model uncertainty or plant variation
by a �nite number of system models given by

_z = A(l)
(x)z; l = 1; : : : ; �: (11)

For robust LAC design in this framework, the goal is
to �nd x such that the eigenvalues of each of the sys-
tem models (11) are in some desired region of the com-
plex plane. This can be easily done by requiring the
eigenvalue-placement speci�cations to hold for each of
the models. Therefore, in the robust case, eigenvalue-
placement speci�cations can still be described as LPs
that are just � times larger.

6 Extension: LAC design based on Lyapunov
theory

In this section we show how Lyapunov theory can be used
to design low-authority controllers. Lyapunov methods
are very powerful and enable us to formulate design
objectives beyond eigenvalue-placement speci�cations in
terms of semide�nite programs (SDPs), which can then
be solved very e�ciently (see, e.g., [9, 10, 11]). These
design objectives can be combined to get, for example, a
desired eigenvalue location for the system while provid-
ing a bound on output energy, L2 gain, etc.

Here, the method is illustrated on the output energy

objective, but it should be noted that the method is quite
powerful, and can also be applied to handle many other
design speci�cations [12].

6.1 Bound on output energy
Consider the (closed-loop) linear dynamical system

with output

_z = A(x)z; y = C(x)z; z(0) = z0: (12)

The goal is to design x to \moderately" reduce the out-
put energy

R
1

0
yT y dt of the closed-loop system (12) from

that of the unperturbed or open-loop system (i.e., sys-
tem (12) with x = 0).

The output energy of the open-loop system is
bounded by z(0)TPz(0) for any P � 0 satisfying (see,
e.g., [13])

A(0)T P + PA(0) +C(0)TC(0) � 0: (13)

(If the inequality in this equation is replaced by equality,

z(0)TPz(0) gives the exact output energy). The out-
put energy of the closed-loop system (12) is bounded by

z(0)T (P+�P )z(0) if there exists �P such that P+�P � 0
and

A(x)T (P + �P ) + (P + �P )A(x) + C(x)TC(x) � 0: (14)

Under the low-authority assumption it is reasonable to
assume that �P and xi are \small" and their product is
to �rst order negligible. Hence, by expanding A(x) and

C(x) in (14) to their �rst order (Taylor) approximation,
and neglecting the second order terms such as xi�P we
get

A(0)TP + PA(0) +C(0)TC(0) +A(0)T �P + �PA(0)+Pq

k=1
xk
�
AT
k
P + PAk + C(0)TCk + CT

k
C(0)

�
� 0;

(15)

where Ak
�
= @A(0)=@xk, and Ck

�
= @C(0)=@xk. (15) is

a linear matrix inequality (LMI) in the variables �P 2

Rn�n and x 2 Rq . By adding the constraint P +�P � 0
(and constraining k�Pk � 0:2kPkI for example to ensure
that the �rst order approximations are accurate), a �rst
order condition for an output energy of no more than
z(0)T (P + �P )z(0) for the closed-loop system becomes

(15); P + �P � 0;

h
0:2P �P
�P 0:2P

i
� 0; (16)

where P is any positive de�nite matrix satisfying (13).

By adding (linear) constraints such as z(0)T (P +
�P )z(0) � �, Tr(P + �P ) � �, etc., that require the
output energy to be smaller than some prescribed level,
and by minimizing for example kxk1, LAC design for
output energy speci�cations can be solved using SDP.

Note that the method of this section works for any
P that satis�es (13). This observation highlights a po-
tential weakness of this method because it is not clear
which P should be used. However, we conjecture that
it does not make much di�erence which P is chosen,
because P can be adjusted using the free variable �P .
Our experience indicates that, selecting either the P
which is the unique solution to the Lyapunov equation
A(0)TP + PA(0) +C(0)TC(0) = 0, the P with smallest
condition number satisfying (13), or the P that mini-
mizes log detP�1 subject to (13) works well in practice.

7 Example: LAC design for 39-bar truss
structure

The purpose of this section is to design low-authority
controllers for the truss structure shown in Figure 2. The
structure consists of 39 bars with sti�ness and damping
connecting 17 masses at the nodes. The (linearized) dy-
namics of the structure are written as _z = Az where
A 2 R

64�64, and the state variable z consists of lin-
ear combinations of the horizontal and vertical displace-
ments, and rates of displacements of each mass.

The goal is to design a controller that achieves an
overall damping of at least 0:01 and a damping ratio of
at least 0:02. The open-loop eigenvalues and the desired
region D for the closed-loop eigenvalues of the system
are shown in Figure 3. We will assume that the low-
authority assumption holds and use the method of x3.2
to design controllers that achieve the required damping
and damping ratio. The validity of the low-authority
assumption is veri�ed after each design.

7.1 LAC using dampers along bars
We �rst consider the case in which we can place a

damper of size bi along each bar to achieve the design
speci�cations. The closed-loop system dynamics are now
written as _z = A(x)z where the design variables are

the size of each of the dampers x = [b1 b2 � � � b39]
T and

A(0) = A. In this case, A(x) is a�ne in x.
It is also desirable to �nd a design in which many

of the dampings are zero. To achieve such a design,



Figure 2: Truss structure.

we minimize the `1 norm of x subject to the eigenvalue
placement constraints (note that the number of sparsity
patterns of x is 239 � 1012 and an exhaustive search
method for computing the optimum sparsity is imprac-
tical). The resulting LP that must be solved to �nd the
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Figure 3: Desired region D for closed-loop eigenvalues.

damping design consists of 39 variables and 64 linear
inequality constraints. The solution for this problem re-
sulted in 22 out of the 39 possible dampers being zero
(this takes several seconds using the LP solver PCx1 on a
typical personal computer). The locations of the nonzero
dampers are shown in Figure 4 (a solid line between two
nodes corresponds to a nonzero damper between those
two nodes). The �gure shows that, in this case, most of
the dampers are on the diagonals of the truss structure,
and we get

P
i bi = 1:73 and maxi bi = 0:27 which are

a measure of the total amount of damping material that
must be added to the structure and to a single strut.

Figure 5 shows a plot of the actual (not �rst order
approximate) eigenvalues of the closed-loop system. All
closed-loop eigenvalues satisfy the requirements, or are
very close to the boundary, which clearly shows that the
low-authority assumption is valid in this case.

1http://www-c.mcs.anl.gov/home/otc/Library/PCx/

Figure 4: Locations of dampers.
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Figure 5: Open-loop and closed-loop eigenvalues.

7.2 LAC using rate sensors at each node, force
actuator along each bar

A more sophisticated design approach is to use ac-
tive damping. In this case we assume that a horizon-
tal and vertical rate sensor can be placed at each node
and a force actuator can be placed along each bar. We
consider an extremely 
exible control architecture that
allows each sensor to be connected to each actuator via
a feedback gain that must be determined. The dynamics
of the closed-loop system are written as _z = A(x)z such

that the vector of design variables x 2 R1326 represents
the elements of the 34�39 matrix of feedback gains from
each sensor to each actuator. In this case also, A(x) is
a�ne in x.

The goal is to achieve the eigenvalue placement design
speci�cations with a small number of actuators/sensors
and a simple controller topology. This objective is ac-
complished by minimizing the `1 norm of x subject to
the eigenvalue placement speci�cations, which is an LP
with 1326 variables and 64 linear inequality constraints
(this takes approximately a minute using PCx on a typical
personal computer).

The sparsity pattern of the resulting feedback gain
matrix is given in Figure 6. Again, the solution is very
sparse and only 16 out of 1326 possible feedback gains
are nonzero (

P
i jxij = 3:44 and maxi jxij = 0:56). Of

course, actuators (sensors) that are not connected to a
sensor (actuator) can be eliminated. For the solution
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Figure 7: Sensor & actuator locations. A solid line between
two nodes corresponds to an actuator between those two nodes.
A vertical or horizontal line crossing a node corresponds to a
vertical or horizontal rate sensor at that node. The actuator
numbers are italicized and the sensor numbers are boldfaced.

given here, only 13 (out of 39) actuators, and 15 (out of
34) sensors are required. Figure 7 shows the location of
these actuators and sensors.

By examining Figures 6 and 7 it can be seen that the
controller is colocated rate feedback in the sense that
there is no feedback path from a sensor to an actuator
that does not have the sensor attached to it. It is in-
teresting to note that actuators #6, #21, and #28 use
two sensors, while all other actuators use only one sen-
sor. Also, all sensors are connected to only one actuator
except for #14 which is connected to two actuators #21
and #22.

Thus, by considering a problem with a very general
feedback matrix, the optimization has succeeded in si-
multaneously performing the sensor/actuator placement
problem and the feedback control design. Computing
the closed-loop eigenvalues for this design show that the
closed-loop eigenvalues meet or exceed the design speci-
�cations, which veri�es the low-authority assumption in
this design approach.

As a �nal remark, it should be noted that the exam-

ples given here are the simplest of the type. More sophis-
ticated ones (including robust LAC, and combined dy-
namic HAC/LAC) are considered in [12]. Furthermore,
the solution time scales very well with the problem size.

8 Conclusions

In this paper we addressed the problem of robust and
sparse LAC design using convex optimization. The main
points were:

� LP, SOCP, and SDP can be used to solve very com-
plex LAC problems, involving complicated cases
with substantial spillover. LP, SOCP, and SDPs
can be solved (globally) for huge problem sizes.

� In many applications it is desirable to compute
a sparse x which can be done by an `1 relax-
ation method. These applications include actua-
tor/sensor placement and controller topology de-
sign.

Di�erent LAC design constraints in previous sections
can be mixed freely. These constraints were either linear
inequalities, second-order cone constraints, or LMIs in x,
and therefore, an SDP solver (e.g., [9]) can be used to
compute the desired x. In other words, multiobjective
LAC design can be handled e�ciently in practice. By
minimizing kxk1 subject to these design speci�cations,
it is possible, for example, to (heuristically) solve the
actuator/sensor placement problem as well.
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