Linear Controller Design: Limits of
Performance Via Convex Optimization

STEPHEN BOYD, CRAIG BARRATT, AND STEPHEN NORMAN

We give a tutorial presentation of an approach to the analysis
and design of linear control systems based on numerical convex
optimization over closed-loop maps. Convexity makes numerical
solution effective: it is possible to determine whether or not there
is a controller that achieves a given set of specifications. Thus, the
limit of achievable performance can be computed.

Although the basic idea behind this approach can be traced back
into the 1950s, two developments since then have made it more
attractive and useful. This first is a simple description of the
achievable closed-loop behaviors for systems with multiple sen-
sors and actuators. The second is the development of numerical
algorithms for solving convex optimization problems, and power-
ful computers to run them.

I.  INTRODUCTION
A. Control Engineering and Controller Design

To provide a context for the material in this paper, we first
give a very brief overview of control engineering. The goal
of control engineering is to improve, or in some cases ena-
ble, the performance of a system by the addition of sensors,
which measure various signals in the system and external
command signals, control processors, which process the
measured signals to drive actuators, which affect the behav-
ior of the system. A schematic diagram of a general control
system is shown in Fig. 1. The use of the sensed response
of the system (and not just the command signals) in the
computation of the actuator signals is called feedback con-
trol, an old idea which has been developed and applied with
great success in this century [1], [2].

Control engineering involves

1. Modeling or identification. The designer develops
mathematical models of the relevant aspects of sys-
tem to be controlled. This can be done using knowl-
edge of the system (for example by applying New-
ton’s equations of motion to a mechanical system),
and experimentally by observing responses of the
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system to various excitations, a procedure known as
system identification [3]. In some cases, several
models are developed, varying in complexity and
accuracy.

2. Control configuration: selection and placement of
sensors and actuators. The designer decides which
signalsin the system will be measured or sensed, with
what sensor hardware, and similarly what actuators
will be used. In a large industrial process, for exam-
ple, the control engineer might decide which tem-
peratures, flow rates, pressures, and concentrations
to sense. Choosing the type and positioning of con-
trol surfaces on an aircraft is an example of actuator
selection and placement.

3. Control law or controller design. This is the topic of
this paper. The designer decides exactly how the
actuators are to be driven by processing the incoming
sensor signals. The controller or control law describes
the signal processing used by the contro! processor
to generate the actuator signals from the sensor sig-
nals. The area of control law design is extensively
studied and taught.

4. Controller implementation. Once the control law is
chosen, the control processor which implements this
law must be designed. This may involve mechanical
design, analog and digital circuit design, and soft-
ware design.

5. Control system testing and validation. This may
involve extensive computer simulations with a com-
plex, detailed mathematical model, real-time simu-
lation of the system with the actual control processor
operating (“hardware-in-the-loop”), and actual field
tests fo the system.

While each of these five tasks can be critical in control
engineering, most research and teaching concentrates on
modeling and controller design, perhaps because it is dif-
ficultto precisely formulate the problems of the other tasks.
Our concentration on controller design should not be taken
as an implicit assertion of its greater importance in control
engineering—indeed, we note that the control configura-
tion can have an enormous impacton the final performance
of the system. In particular, the difference between a good
and bad control configuration can be dramatically greater
than the difference between a good and bad control law.
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Fig. 1. A schematic diagram of a general control system.

B. Design Specifications for Control Law Design

Design specifications can be loosely divided into three
categories: performance specifications, robust perfor-
mance specifications, and control law specifications.

Performance specifications describe how the system per-
forms closed-loop, meaning with the control processor
operating. Examples of qualitative performance specifica-
tions are:

+ the closed-loop system is stable.

+ the actuator signals generated by the control law are
not too large.

« the effects of disturbances or noises on the system are
small.

+ the system responds in particular ways to reference or
command inputs.

Robust performance specifications describe how the
closed-loop system would perform if some parts of the sys-
tem were changed or perturbed. The perturbations could
be due to any of the following:

+ the system under control may have been inaccurately
modeled or identified.

» the system under control, or the controller, physically
changes, perhaps due to component tolerances or
temperature coefficients.

+ certain nonlinearities may have been ignored in the
design process, but may be significant in the real
closed-loop system.

- the operating point of a nonlinear system changes, so
asmall signal linear approximation becomes less accu-
rate.

+ gross failures, such as a sensor or actuator failure, may
have occurred.

The robust performance specifications themselves
can take several forms. The general flavor of these
specifications is to limit the degradation (or variation)
of the behavior of the closed-loop system to some sub-
set of the perturbations. Examples of robust perfor-
mance specifications are:
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+ Low differential sensitivities. The sensitivity (deriva-
tive) of some closed-loop quantity to some parameter,
or some family of parameters, is small.

* Robust stability. The closed-loop system remains sta-
ble in the face of some specific set of perturbations,
for example, parameters varying over given (not nec-
essarily small) ranges.

* Robust performance. The closed-loop system contin-
ues to meet some specific set of performance speci-
fications in the face of some specific set of pertur-
bations.

Control law specifications describe properties of the con-
trol law itself. Examples of control law specifications are:

+ the control law has a simple structure or form, for
example, described by a low order linear differential
equation. Another example is that it be a decentralized
control law: each actuator signal may depend on only
a few of the sensor signals.

+ the controller is open loop stable.

+ the controller can be implemented using a particular
control processor.

In sections V-VIII we discuss design specifications in
more detail.

We can describe the fundamental problem of control law
design as:

Fundamental Problem: Given a specific system to be
controlled, control configuration, and set of design
specifications, either find a control law that meets
these design specifications, or determine that none
exists.

An aspect of the Fundamental Problem that we stress is
the determination of whether or not there is a control law
that meets the given design specifications, or in other
words, whether the design specifications are too tight. This
aspect of the Fundamental Problem is hardly trivial—we will
seein section X that, even for a very simple system, it is easy
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to write down specifications which seem quite reasonable
but which nevertheless cannot be met.

This aspect of the Fundamental Problem can be as impor-
tant in control engineering as finding or synthesizing an
appropriate control law when one exists. If it can be deter-
mined that no control law can achieve a given set of spec-
ifications for a given control configuration, then the search
for a suitable control law can be abandoned. We may then

+ change the control configuration by adding, relocat-
ing, or changing sensors or actuators,
+ change (relax) the specifications.

Thus, even though the Fundamental Problem concerns
control law design, it can be quite relevant to other aspects
of control engineering, particularly control configuration.

No method is currently known for solving the Funda-
mental Problem. Various analytic methods can solve the
Fundamental Problem when the specifications have very
specific forms, usually far removed from specifications
appropriate in a real design problem. When they can be
applied, the analytic methods have the advantage that the
fundamental problem can be precisely answered. In sec-
tion X we present an example for which the Fundamental
Problem can be answered using an analytic method.

In practice, various heuristic methods are commonly suc-
cessful at finding a control law that meets the design spec-
ifications, in those cases where such a control law exists.
These methods depend upon talent, experience, and a bit
of luck on the part of the designer. If the designer is suc-
cessful and finds a controller meeting the specifications,
then of course the Fundamental Problem can be answered
affirmatively. However, if the designer fails to design a con-
troller that meets the given specifications, he or she in gen-
eral cannotconclude that there is no controller meeting the
specifications, although he or she may suspect that the
specifications are not achievable. It could be that another
design approach or method (or indeed, designer) would
yield a controlier meeting the specifications.

C. Purpose of this paper

The purpose of this paper is to describe how the Fun-
damental Problem of controller design can be solved
for a restricted set of systems and a restricted set of
design specifications, by combining a recent theo-
retical result with numerical convex optimization
techniques.

The restriction of the systems is that they must be linear
and time-invariant (LTI).

The restriction on the design specifications is that they
be closed-loop convex, a term we shall describe in detail in
section IV. This restricted set of design specifications
includes awide (although incomplete) class of performance
specifications, e.g., limits on RMS regulation or tracking
errors, actuator authority, rise-time, and overshoot. Closed-
loop convex design specifications include a less complete
class of robust performance specifications, and essentially
none of the control law specifications.

The recent theoretical result referred to above is: Given
alinear system to be controlled, the set of closed-loop trans-
fer matrices that can be achieved is easily characterized.

BOYD et al.: LINEAR CONTROLLER DESIGN

Thus, focus is shifted from designing a control law that will
yield good closed-loop system behavior, to directly design-
ing good closed-loop system behavior, and only then, if at
all, determining the control law that yields this system
behavior.

If the specifications are achievable, it is possible to find
a controller which meets the specifications, although the
controller found may be complex (high order). It may be
possible to find a simpler controller which meets the spec-
ifications, for example by some model reduction tech-
nique. More significantly, the Fundamental Problem can be
solved for a given system to be controlied, control config-
uration, and set of (closed-loop convex) design specifica-
tions, and therefore the limit of performance can be deter-
mined for a given system and control configuration.

This ability to numerically determine limits of perfor-
mance extends various rules-of-thumb used by practicing
engineers to approximate the best performance achievable
with a given system and control hardware. These rules-of-
thumb might be based on knowledge of maximum actuator
effort, of limits on loop gain imposed by delay or other
excess phase in the system to be controlled, of robustness
requirements, and so on.

No matter which controller design method is used by the
engineer, knowledge of the achievable performance is
extremely valuable practical information, since it provides
an absolute yardstick against which any designed control-
ler can be compared. To know that a certain candidate con-
troller, which has low order and is easily implemented,
achieves an RMS regulation error only 10% above the min-
imum achievable by any linear controller, is a very strong
point in favor of the design. In this sense, this paper is not
about a particular controller design method or synthesis
procedure; rather it is about a method of determining what
specifications (of a large but restricted class) can be met
using any controller design method, for a given system and
control configuration.

D. Paper Outline

Section 1l gives a broad outline of various approaches to
controller design for LTI systems, as a basis for comparison
with the approach presented in this paper. This section
briefly describes the advantages and disadvantages of cur-
rent controller design approaches. Readers already familiar
with these ideas may wish to skim this section.

Section [l presents a formal framework for what we
describe above as the system to be controlled and the con-
trol configuration. In particular, notation which is used in
the sequel is defined. This section also explicity describes
the assumptions that are made about the system and con-
troller.

Section 1V shows that many performance specifications
have natural and useful geometric interpretations. These
geometrical properties will be used in section IXto describe
effective numerical solutions to the Fundamental Problem.
We define the notion of a closed-loop convex design spec-
ification.

Section V discusses the performance requirement that
the closed-loop system be stable. The main result of this
section is that the set of closed-loop transfer matrices
achievable with stabilizing controllers has a simple rep-
resentation. To develop the main idea of this paper, this
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main result is all that is needed. This section, however,
describes at some length its historical development,
explores different perspectives on it, and gives several
interpretations of it.

In section VI we show that many performance specifi-
cations can be expressed as convex constraints on closed-
loop transfer matrices. Section VI discusses robust per-
formance specifications, and how some of these can be
expressed as convex constraints on closed-loop transfer
matrices, and section VllI shows that several important con-
trol law specifications cannot be expressed as convex con-
straints on closed-loop transfer matrices.

Section IX poses the Fundamental Problem, with a
restricted set of design specifications, as a convex opti-
mization problem. Since this optimization problem is con-
vex, there are “‘good” methods for solving it numerically.

Section X shows an example of how the methods pre-
sented in this paper may be used to compute the perfor-
mance limits achievable with a particular plant and control
configuration.

Section XI explores the history of some of the ideas pre-’

sented in this paper, and also outlines recent work related
to this paper.

Il. ON LTl CONTROLLER DESIGN APPROACHES

There are several families of approaches to LTl controller
design. Historically, there are two broad categories: “clas-
sical” methods, which generally involve working with
transfer function descriptions of systems, and “‘modern”’
(state space) methods, which involve working with descrip-
tions of systems of ordinary differential equations. Of
course, the boundary between the two categories is not
sharp. In this section we examine some of the advantages
and disadvantages of various design approaches. Our goal
is not to make judgments about merit but to provide some
basis for comparison between different approaches.

A. Synthetic Methods Versus Analytic Methods

An essential distinction to make is between what we shall
call synthetic methods and what we shall call analytic meth-
ods. (A similar but not identical distinction is made in [4]
between the “trial-and-error design method’’ and the ““ana-
lytical design method.” See section XI.)

In a synthetic method, the designer starts with a simple
controller and continues to add to it, in the hope that after
some number of additions the controller will meet the
design goals. In other words, the controller is “built up”
piece by piece, possibly using a variety of “tools” at dif-
ferent stages. Synthetic methods are described in, for
example (5], [6], [7], (8]

An analytic method, on the other hand, is based on an
analytic solution of some optimal controller design prob-
lem, for example, the Linear Quadratic Gaussian (LQG)
problem. Since analytic solutions are currently available
only for a few very specific types of design problems, the
designer must try to formulate an analytically solvable con-
troller design problem that captures as closely as possible
the actual design goals. Analytic methods are described in,
for example, [9], [10], [11]. )

1) Synthetic methods: In a synthetic method, each part
added to the controller often has a specific purpose: anotch
filter notches out a mechanical resonance, a low-pass filter
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reduces noise fromasensor, and alead-lag section increases
the phase of the loop gain in a certain frequency band. Thus
in a synthetic approach the controller is often naturally
divided into simple subsystems. This has the very great
advantage that the designer “understands’” how the con-
troller works or ““what part does what.”

In carrying out a synthetic design, the designer will face
these questions at each stage:

* How do | “tweak’’ the present controller to improve
its performance?

* How do | decide that the current controller structure
cannot meet the design goals (i.e., “‘tweaking’’ alone
will not work), so that another part must be added to
the controller?

» How do | decide what would be an appropriate part
to add to the controller to improve its performance?

These questions are often dealt with using an open-ended
“toolbox"’ or “cookbook’’ approach. A wide variety of tools
is available to the designer. For low-order, single-input, sin-
gle-output systems there are several well-known classical
techniques, including the use of root-locus methods and
reasoning involving Bode plots, Nyquist diagrams, or
Nichols charts. For more complex systems, advances in
optimization theory and numerical computing allow the
application of sophisticated numerical parameter optimi-
zation methods.

Synthetic controller design methods can work well when
there are “many’ relatively simple controllers that meet the
performance goals. The principal advantages of synthetic
approaches are:

+ They are sparing with controller complexity; unlike
many analytic methods, they tend to use the least com-
plex controller needed to get the job done.

+ The controllers designed by a synthetic method often
retain an understandable form—each subsystem of the
controller performs its own identifiable task.

+ They very often work, especially when the perfor-
mance goals are modest.

+ They are often economical in terms of the time, intel-
lectual energy, and computation spent in the design
effort.

Their main disadvantages are:

+ Theyare noteffective, in the following technical sense:
if they fail, the designer cannot be sure that there really
is no solution to the problem. Furthermore, if they fail,
the designer is not left with a clear idea of what the
actual limits of performance for the given system are.

+ Thedesigneris notworking according to awell-defined
algorithm—he or she must rely repeatedly on intuition
and experience to make decisions. If the problem at
hand is too far removed from problems the designer
has seen before, he or she may not have any idea how
to go about improving performance by adjusting the
current controller or adding parts to it.

+ The problem may be molded into an “understand-
able”” form at a substantial cost in final system per-
formance. For example, designers using synthetic
methods often pair sensors and actuators and design
the controller “’loop-at-a-time,” in order to be able to
use all the intuition and experience built up in ’single-
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loop”” design. This can greatly reduce the final per-
formance of the system.

2) Analytic methods: An analytic method is based on an
analytic solution of some optimal controller design prob-
lem, for example, the Linear Quadratic Gaussian (LQG)
problem. Only very rarely is there an analytical solution for
the exact problem the designer wishes to solve. To get
around this difficulty, the designer essentially designs the
optimal control problem in such a way that the resulting
optimal controller, which can be analytically determined,
meets the design goals. Techniques available for the design
of this optimal control problem include: selection of weight
matrices (as in the LQG problem); addition of fictitious
noises to the system model; and addition of fictitious
dynamics to the system model.

The controllers designed by analytic methods are often
complex: high order, with (in the multiple-actuator multi-
ple-sensor case) every sensor affecting every actuator sig-
nal. This complexity may obscure the fact that the controller
may be very close to, say, asimple lead-lag filterwith anotch
filter, which could have been designed by a synthetic
method. Analytic methods are often followed by a con-
troller reduction phase, the goal of which is to find a less
complex controller that does essentially the samejobas the
analytically designed controller.

An advantage of an analytic method is that, provided the
optimal control problem is reasonably well-posed, the
resulting optimal controller tends to yield at least reason-
able, if not good, performance, in terms of the original
design goals. In particular, controllers designed by analytic
methods will stabilize the plant. This is a critical advantage
in the case of, say, an unfamiliar, unstable plant with many
actuators and sensors, where the designer may have dif-
ficulty even in knowing where to start in his search for an
acceptable design.

A disadvantage of an analytic method is the difficulty of
expressing actual design goals in the framework of an ana-
lytically solvable optimal control problem. The analytic
designer has to deal with the same kinds of issues in his
design of an optimal control problem that the synthetic
designer deals with in his design of the actual controller.
The analytic designer’s problem is compounded by the fact
that the physical intuition that guides the synthetic designer
is much harder to apply to the design of such things as
weight matrices and fictitious dynamics.

B. Classical Synthetic Open-Loop Design

Classical synthetic open-loop design methods have their
origin in the work of Bode [5]. These methods are extremely
widely studied and applied, and are described in many cur-
rent introductory control texts, such as [12]-[15]. Examples
of the numerous works developing and extending syn-
thetic open-loop techniques are [6]-[8], [16]. In this section
we will briefly describe and comment on this kind of
approach to control design.

Consider the classical feedback control setup shown in
Fig. 2. Given the plant, P, the designer must find acontroller
K that results in satisfactory closed-loop performance. Clas-
sical open-loop methods concentrate on designing the loop
gain, L = PK. The advantage of working with the open-loop
system is that L is simply the product of P, the “fixed part
of the system” and K, the controller; on the other hand, the
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Fig. 2. Classical feedback control setup.

closed-loop transfer function from r to y, PK/(1 + PK),
depends on K in a more complicated way. The effecton the
loop gain of changing K is much easier to see than its effect
on the closed-loop transfer function.

The various design goals for the closed-loop sytem are
translated into requirements on the open-loop gain L. For
many designers, this translation is so automatic that they
might be said to “think open-loop”; we even find speci-
fications for control systems described in terms of the open-
loop gain. Requirements for the loop gain derived from
design goals for the closed-loop system include:

- Closed-loop stability. This is often stated using the
Nyquist stability criterion: stability of the closed-loop
system is related to the number of net clockwise encir-
clements of the point —1 by the loop gain L in the com-
plex plane.

« Tracking reference signals. The specification of good
tracking performance can be expressed as the require-
ment that the loop gain L have large magnitude at fre-
quencies up to the bandwidth w; of the reference sig-
nals.

« Disturbance rejection. The effect of disturbances
added anywhere in the loop can be made small by
requiring the loop gain to be large at those frequencies
where the disturbance is significant. ‘

+ Robustness to “loop perturbations.” The proximity of
the Nyquist plot to the critical point —1 gives one mea-
sure of stability robustness of the closed-loop system.
Two often used measures of this proximity are the clas-
sical gain and phase margins. Another robustness
requirement is that the loop gain magnitude should
be safely smaller than 1 above the plant “cutoff fre-
quency” wc.

« Stability and simple structure of the controller K. The
designer simply avoids candidate controllers that do
not meet these specifications.

To achieve tracking of references and some level of
robustness, the designer will require a large loop gain at
frequencies lower than wg and a small loop gain at fre-
quencies higher than some cutoff frequency wc. Typical
constraints on the loop gain are shown in Fig. 3.

A designer will typically add dynamics to the controller
K (and hence the loop gain L = PK) until the loop gain sat-
isfies the constraints shown in Fig. 3 and the closed-loop
system is stable; the designer might add such things as inte-
grators or lowpass filters to get the desired magnitude
response in the loop gain, and then, if necessary, use lead
or lag networks to adjust the phase of [ to ensure closed-
loop stability.

Major drawbacks of this type of approach include:

+ Many design goals, such as low noise sensitivity and
acceptable transient behavior, can only be incorpo-
rated indirectly, by various rules-of-thumb.

- All the general disadvantages of synthetic methods
which were outlined earlier in this section.
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Fig. 3. Examples of constraints on the loop gain L.

* Many methods developed for single-actuator, single-
sensor systems are not readily extended to methods
for multivariable systems.’

C. Analytic State-Space Methods

““Modern”’ or state-space methods use systems of ordi-
nary differential equations to describe the physical systems
involved in the control problem. State-space methods for
control problems are generally considered to have their
origins in the 1950s, in the work of Bellman and Kalman in
the United States and Pontryagin in the Soviet Union. State-
space methods are applicable to a very broad class of con-
trol analysis and design problems for nonlinear and time-
varying linear systems, but here we will be concerned only
with applications of state-space techniques to LTI feedback
controller design. Texts introducing state-space ideas
include [18]-[21].

There are well-known advantages to the use of state-space
models for LTI systems. A state-space model is particularly
useful in the case of multivariable systems where the struc-
ture of the model emphasizes that the entire system can be
described in terms of its state; multiple inputs mean mul-
tiple available degrees of freedom for affecting or redi-
recting the state, while multiple outputs mean multiple
““perspectives”’ for viewing the state.

A key result, sometimes called the separation principle,
in LTI state-space theory is that any plant without unstable
hidden modes can be stabilized with a control law that con-
sists of an observer (a system to estimate plant state from
knowledge of plant input and output) and a constant state
feedback gain matrix. The controller design problem can
be posed as a search for satisfactory observer designs and
state feedback gains. Linear Quadratic Regulator (LQR) the-
ory provides an analytical solution to the problem of finding
a state feedback that minimizes a weighted sum of quad-
ratic measures of the cost of state excursion and the cost
of actuator use in driving the state to zero. Linear Quadratic
Gaussian (LQG) theory incorporates LQR theory and Kal-
man filter theory (dual to LQR theory) to find analytically

"This is not to say that these extensions are impossible. To cite
just three examples, MacFarlane and Kouvaratakis [8], MacFarlane
and Postlethwaite [16), and Freudenberg and Looze [17] have dem-
onstrated how many of the classical ideas involving loop gain can
be extended to multivariable systems.
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a state feedback and an observer design which together
minimize an LQR-like cost function in the presence of white
Gaussian process and measurement noises [22], [9].

It is possible that the goal of a controller design effort is
precisely the minimization of an LQR-like cost and that the
noises affecting the plant are described well by the models
that fit into the LQG formulation. But it is much more likely
that the designer will have to come up with LQR cost matri-
ces that somehow express different, actual performance
specifications, and fictitious noise models that express the
degree of caution the observer should maintain when using
plant output to estimate plant state. In typical applications
of LQG theory to controller design problems the designer
keeps adjusting the weight matrices in the LQG problem
untilacontroller appears that meets the design goals. Some
discussion of how to select LQR weight matrices appears
in [9]. Extensive comments on the problem of LQG design
iteration appear in [23], along with many references. An
attempt to deal with robustness requirements while main-
taining an LQG approach has led to the development of the
Loop Transfer Recovery (LTR) approach [24], which is often
quite successful at producing a controller with reasonable
noise sensitivity and robustness properties.

D. Parameter Optimization Methods

Parameter optimization methods for LTI feedback design
start with controller structures that are motivated by ideas
from classical, modern, or other techniques. What is gen-
erally meant by controller structure is a system model with
one or more parameter values that can be adjusted. A sim-
ple example is a Pl (proportional-plus-integral) controller
structure—the coefficients K, and K; in the controller trans-
fer function K, + K;/s are the parameters. Another example
is a fixed-order state space model for the controller—the
parameters are the entries in the matrices of the state space
model in some canonical form.

The next step in a parametric method is to select a cost
function that will represent the quality of system perfor-
mance. One way to get a cost function is to take one from
an analytically solved optimization problem, for instance
the LQG problem. This has the advantage that the cost
yielded by the structured controfler by parameter search
can then be compared to the absolute minimum achieved
by any controller, which is analytically computable.

Another possible way to obtain a cost function is to form
a weighted sum or maximum of various performance
indices, such as integrated square error in response to a
step command, integrated magnitude of frequency
response across some band where a disturbance is con-
centrated, some index representing actuator use, and so
on; the idea is that the weights define the relative impor-
tance of different aspects of system performance. Finally,
the designer may add explicit constraints, such as bounds
on the values of the parameters, bounds on closed-loop
pole locations, bounds on open-loop frequency responses,
and so on.

After a controller structure, a cost function and possibly
some constraints have been specified, the designer has a
nonlinear optimization problem to solve, a problem that
will almost certainly require numerical solution. Many tech-
niques for numerical solution of optimization problems
resulting from control design problems have been pro-
posed in the control literature. Some of these techniques
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are simple heuristic algorithms, such as steepest descent;
some are highly specialized algorithms for certain kinds of
problems; others are sophisticated software packages for
handling very general classes of problems.

It is beyond the scope of this paper to provide a com-
prehensive overview of parameter optimization methods.
We make a few sample citations to give some idea of the
breadth of this field: SANDY, a gradient technique for find-
ing optimal controllers of afixed order [25]; a survey of work
onthe problem of finding the optimal constant output feed-
back (or fixed structure controller) in terms of LQG cost
function [26]; parameter optimization applied to aircraft
control design problems[27]; sophisticated interactive opti-
mization software, connected to system simulation soft-
ware, for handling a wide range of constrained parameter
optimization probelms [28]-[30]. A good treatment of the
issues involved in the selection of a nonlinear optimization
algorithm and the issues involved in computer implemen-
tation of the selected algorithm is [31].

Good reasons for using parameter optimization methods
include

+ If the designer is fairly certain that some controller of
the selected structure will do an adequate job, param-
eter optimization is a good way to look for that con-
troller.

+ Amuch greater range of cost functions and constraints
are allowed than are available in analytic methods.

+ If a reasonable controller has already been designed
by, say, open loop synthesis or an analytic method,
parameter optimization can be used to see if better
performance can be obtained by changing the param-
eters in the existing controller.

» The designer can allow precisely as much controller
complexity as he or she sees fit.

Problems with parameter optimization techniques
include:

+ Designing an iterative optimization algorithm to con-
verge quickly to alocally optimal solution is a hard task.

+ ‘““Reasonable” initial guesses at parameter values may
be required to start the optimization algorithm. It may
be hard to come up with such a “‘reasonable’” guess
for a complex problem.

A general nonlinear optimization problem is likely to
be nonconvex. When applied to nonconvex problems,
optimization algorithms in general use may converge
to points that are locally but not globally optimal. When
the number of parameters is anything but tiny, the
computational effort required to ensure that a local
optimum is in fact a global optimum is prohibitive. See
section IX for more discussion of this important point.

+ Even if a globally optimal controller of the selected
structure is found, the designer does not know
whether a drastic improvement in performance could
be obtained by using some other controller structure.

1. SeTuP AND FRAMEWORK
A. Some Terms and Definitions

In this section we consider in some detail a formal frame-
work for what we described in section | as the “’system to
be controlled,” the “’control configuration,”” and the ““con-
trol law.”

We start with a mode! of the system to be controlled, with
a fixed control configuration. The inputs to this model, in
other words, those signals which affect the model, will
include the actuator signals from the controller and many
other signals which might represent various noises and dis-
turbances acting on the system. We will see in section VI
that it may be useful to include among these input signals
some fictitious inputs. These are inputs which are not used
to model any specific noise or disturbance, but rather
““spare” inputs which will allow us later to ask the question,
““what if a signal were injected here?”

Definition 1 The inputs to the model are divided into two
vector signals:

+ The actuator or control signal vector, denoted u, will
consist of those inputs to the model that can be manip-
ulated by the controller. The actuator signal u is the
signal generated by the controller.

+ Allotherinputsignals to the model will be lumped into
a vector signal w, called the exogenous input.

Of course, our model of the system must provide as out-
put every signal that we care about, i.e., every signal needed
to determine whether a given controller yields an accept-
able design. These signals would typically include the sig-
nals we are trying to regulate or control, alt actuator signals
(u), and perhaps important internal variables, for example
stresses on various parts of amechanical system. The model
must also produce the sensor signals, which may or may
not overlap with the output signals above.

Definition 2 The outputs of the model consist of two vector
signals:

+ The sensor or measured signal vector, denoted y, will
consist of those output signals that are accessible to
the controller. The sensor signal y will be the input sig-
nal to the controller.

+ The output signals from the model will be lumped into
a vector signal z, called the regulated variables.

The plant, denoted P, will refer to the model of the system
and the two vector input signals z and w. This is shown in
Fig. 4.

Figure 5 shows the plant connected to the controller. We
refer to this as the closed-loop system.

Our notion of plant includes more detail about the sys-
tem than is common in classical control. First, our notion
of the plant includes information about exactly which sig-
nals are accessible to the controller. In classical control, this

exogenous inputs w ————

actuator inputs ¥ ————

———— 2 regulated outputs

——> y sensed outputs

Fig. 4. Decomposition of the plant’s inputs and outputs.
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exogenous inputs w ———

actuator inputs u

Fig. 5. The closed-loop system.

is side information given along with the plant in the con-
troller design problem. For example, what would be called
“’state feedback”” and “output feedback” for a given clas-
sical plant, we would distinguish as two different plants,
since the sensed signals (our y) differ from the two con-
troller design problems. We will see that other distinctions
made in classical control, for example between one-degree-
of-freedom, two-degree-of-freedom, and feedforward con-
trollers, are readily expressed in our framework as con-
troller design problems for different plants.

Second, the exogenous inputs and the regulated vari-
ables are explicitly declared or described. The intention is
that z and w should contain every signal about which we
will express a constraint or specification. In classical con-
trol, the disturbances might be indicated in a block diagram
showing where they enter the system; some important
exogenous inputs and regulated variables are commonly
left out, since it is expected that the designer will simply
know that an acceptable design cannot excessively amplify
a signal injected at some point in the system.

The reader may have noticed that command or reference
signals do not appear explicitly in Fig. 5. In a classical frame-
work, command signals would appear as separate inputs
to the controller, or subtracted from other signals to form
error signals, as shown in Fig. 6.

Our treatment of command signals simply follows the
definitions above. If the command signal is directly acces-
sible to the controller, then it is included in the signal y. If
the command signal is subtracted from some other signal
to form an error signal which is accessible to the controller
(as in Fig. 6), then the error signal (and not the command)
is included in y. Thus the command signals enter the con-
troller via y, from the plant. There remains the question of
how the command signals enter the plant. Again, we follow
the definitions above: the command signals are plantinputs,
not manipulable by the controller (they are presumably
manipulable by some external agent issuing the com-
mands), and so they must be exogenous inputs, and there-
fore included in w. Often, exogenous inputs that are com-
mands pass directly through the plant to some of the
components of y. The classical closed-loop system in Fig.
6 can be redrawn in our framework as in Fig. 7.

[—————> z regulated outputs
Y d outputs
____________________ ,
w : + z
. [!
N I
' ‘ !
i
u : Po > + Yy
! Yp e:
e
K

Fig. 7. Classical feedback loop in our framework.

This method of handling command signals may appear
confusing at first, but the examples to follow should help
clarify. For now, we make a few comments about it. First,
it seems confusing to call a command an exogenous input
to the plant, when the command only affects the system
through the controller. On the other hand, it is not hard to
think of cases where a command might directly affect the
system (and thus deserve more to be called an exogenous
input) as well as affect the system through the controller.

Second, it seems confusing to call a command signal a
sensor signal, since in classical control a command signal
is represented as ready for injection into the controller
without being sensed or measured. We can, however, imag-
ine that a command signal originates as a physical signal
that must be sensed or measured in order to be accessible
to the controller. Suppose, for example, that a potentiom-
eter is used to specify a set-point for a regulator. We could
view the potentiometer as a sensor (therefore part of the
plant), the shaft angle as one of the exogenous inputs, and
the voltage output as the corresponding sensed command.

B. Linear, time-invariant systems

In the sequel we assume the following:

We assume that the plant, P, and controller, K, are
linear and time-invariant (LTI), and lumped.

Py Yp z

Fig. 6. A classical feedback loop with injection of a reference signal.
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Before proceeding, we make a few comments about this
assumption:

« Many interesting and important plants are highly non-
linear—most robots or mechanical systems which
undergo large (e.g., slewing) motions, for example.

+ The assumption always represents an approximation
to some degree. In particular, the approximation will
only be good for certain ranges of values of system
signals, over certaintime intervals or frequency ranges,
and so on. The performance specifications might
include requirements that these signals stay within
regions where the linear system model accurately
approximates the actual plant.

« Even if the plant is LTI, the restriction that the con-
troller be LTI can also be a substantial restriction. The
minimum time control problem with a limit on actua-
tor authority is a good example of this—the optimal
controller is well known to be highly nonlinear (bang-
bang control [32)). Adaptive controllers (“self-tuning
regulators”) are another example.

We wish to emphasize that our restiction to LT plantsand
controllers is hardly a minor restriction, even if itis a com-
monly made one. Nevertheless, we believe the material of
this paper is still of great value, for several reasons:

+ Many nonlinear plants are well modeled as LTI sys-
tems, especially in regulator applications, where the
goal is to keep the system state near some operating
point.

+ It often occurs that a controller, designed on the basis
of a linear model of a nonlinear plant, will work well
with the nonlinear plant, even if the linear model of
the plant is not particularly accurate. The authors are
not aware of any formal study of this phenomenon.?

« There are some exciting new results of feedback linear-
ization from the field of geometric control theory. In
many cases, it is possible to construct a preliminary
feedback which makes the plant, with the preliminary
feedback loop closed, linear and time-invariant, and
thus amenable to the methods of this paper. See for
example [33]-[36] and the many references therein.

+ We will see in Section VII-D that some of the effects
of plant nonlinearities can be accounted for.

2Except Lyapunov’s classical result that, roughly speaking, the
system will work provided the system does not venture far from
the region where the linear model is accurate.

« Linear control systems often form the core or basis of
control systems designed for nonlinear systems, for
example in gain-scheduled or adaptive controllers.

A consequence of our assumption is that the plant can
be described by the set of transfer functions from each of
its inputs (the components of the vectors w and u) to each
of its outputs (the components of z and y), organized into
a matrix, the transfer matrix. We will use the symbols Pand
Kto denote the transfer matrices of the plantand controller,
respectively. We partition the plant transfer matrix P as

b [P,w P]
P Py
where P,,, is the transfer matrix from w to z, P, is the trans-
fer matrix from u to z, P, is the transfer matrix from w to
y, and P, is the transfer matrix from u to y. This decom-
position is shown in Fig. 8.
Now suppose the controller is operating, as shown in Fig.

5. We can solve for the closed-loop transfer matrix from w
to z, which we denote H:

H = P,, + P, KU — P,,K)'P,,. M

The entries of the transfer matrix H are the closed-loop
transfer functions from each exogenous input to each reg-
ulated variable. Various entries might represent, for exam-
ple, closed-loop transfer functions from some disturbance
to some actuator, some sensor to some internal variable,
and some command signal to some actuator signal. The for-
mula (1) above shows exactly how each of these closed-loop
transfer functions depends on the controller K.

A central theme of this paper is that H should contain
every closed-loop transfer function of interest to us. Indeed,
we can arrange for any particular closed-loop transfer func-
tion in our system to appear in H, as follows. Consider the
closed-loop system in Fig. 9 with two signals A and B which
are internal to the plant. If our interest in the transfer func-
tion from a signal injected at point A to point B, we need
only make sure that one of the exogenous signals injects
at A, and that the signal at point B is one of our regulated
variables, as shown in Fig. 10.

C. Some Examples

1) Example 1: A regulator: Consider the setup for a reg-
ulator design for a single-actuator, single sensor system. In
aclassical terminology the transfer function from the actua-

exogenous inputs w P,

z regulated outputs

actuator inputs u

y sensed outputs

Fig. 8. The decomposed linear plant.
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Fig. 9. Two signals A and B internal to the piant P.

Fig. 10. Accessing internal signals A and B from w and z.

tor input to the sensed output, P,, is the plant. As we shall
see, in our framework the plant consists of P, and several
interconnections.

We measure the performance of the regulator by the size
of the actuator signal and the output signal y, in the face
of sensor noise and actuator referred process noise. Thus,
we take the exogenous input vector to consist of the pro-
cess noise or disturbance d,,..c and the sensor noise dens

d,
“ ]: proc}
dsens
and we take the vector of regulated outputs to consist of
the plant output y, and the actuator signai:

4]

The control input of the plant is just the actuator signal u,
and the sensed output will consist of the output signal cor-
rupted by the sensor noise:

Y=Y + dsens-

The plant, which has three inputs and three outputs, is
shown in Fig. 11. The plant transfer matrix is

The block diagram for the closed-loop system is shown
in Fig. 12. From equation (1), closed-loop transfer matrix H
from w to z is

P(1 — PK
H_[m oK)

PKI(1 — PoK)}
PoKI(1 —PoK) )

KI(1 — PoK)

Fig. 11. The plant for a single input, single output transfer function P,.
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K
Fig. 12. The closed-loop regulator.
Each entry of H, the 2 x 2 closed-loop transfer matrix from dproc
w to z, has its own significance and importance. The first
row consists of the closed-loop transfer functions from the w sens

process and sensor noises to the output signal y,; our goal
is to make these two transfer functions “small” in some
appropriate sense. The “size” of these two transfer func-
tions tells us something about the closed-loop regulation
achieved by our controller.

The second row consists of the closed-loop transfer func-
tions from the process and sensor noises to the actuator
signal, and thus relate to the actuator authority our con-
troller uses.

The idea is that H contains all the closed-loop transfer
tunctions of interest in our regulator design. Thus, the per-
formance of different candidate controllers could be com-
pared by their associated H’s, using (1).

2) Example 2: Tracking a command signal: Consider the
previous example with the injection of a reference signal
r. Now our goal is to keep the output variable y, close to
the reference inputr. We willaugment the exogenous input
vector of the previous example to include r:

r

Assuming that the controller has access to the reference
signal r as well as y, + dsens, WE take

YP + dsens
y = .
r

The new plant, shown in Fig. 13, now has four inputs and
four outputs. The transfer matrix of the plant is

PZW PZU
p= =
P | Pra P, 1 0P

0 0 110

The closed-loop system is shown in Fig. 14. This arrange-
ment is the most general way to inject the reference signal

dproc ——
w { dl:ens :
r

Fig. 13. The plant for a single input, single output transfer function P, with a reference

input.

d ) ———L—-——) Yp
w{afx : > u}z
r + |
' 1
v+ H 1
: +—> Py 7 ':
u 1 .
o ——— =1
Yn
K T

Fig. 14. The closed-loop two degree of freedom system.
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r into the regulator system of example 1. The controller K

has twoinputs and one output. If we write its transfer matrix
3

as

K=K K

then the closed-loop transfer matrix H is

(Pr}/ﬁ - PoKy)
H =

PoKi/(1 — PoKy) PoKol(1 — P0K1)]
PoK /(1 — PoKy) Kif(1 — PoKy) )

KJ(1 = PoKy)

The closed-loop transfer matrix H of this example consists
of the closed-loop transfer matrix of example 1 with a third
column appended. The third column consists of the closed-
loop transfer functions from the reference signal to the out-
put signal y,, and the actuator u.

The controller in Fig. 14 is two-input single-output,
whereas the controller of example 1 is single-input single-
output. The controller in this example is known as a two-
degree-of-freedom-controller, since the controller takes two
inputs.

IV. GEOMETRY OF DESIGN SPECIFICATIONS

The Fundamental Problem posed in section [-B is to find
a control law that meets the design specifications or deter-
mine that none exists. As described in section I-C our focus
shifts to finding a particular closed-loop transfer matrix H
which meets the design specifications, or determining that
none exists. Thus the restated Fundamental Problem is:

Fundamental Problem (restatement 1): Given a specific
plant P and a set of design specifications, either find
a closed-loop transfer matrix H that meets these
design specifications, or determine that none exists.

Inthe previous section we arranged for every closed-loop
transfer function of interest to be available as some element
of the closed-loop transfer matrix H. In this way all design
specifications can be expressed as requirements on the
closed-loop transfer matrix H.

In this section we will show how each design specifi-
cation can be interpreted as a set of allowable transfer

matrices. In many cases (as discussed in sections V, VI, and -

V1), the set of allowable transfer matrices H corresponding
to a particular design specification has a very simple geo-
metric form. This allows the revised Fundamental Problem
(and hence the Fundamental Problem) to be solved numer-
ically (see section IX).

A. Design Specifications as Sets

The number of exogenous inputs (N, and regulated
outputs (n,e) is fixed by the choice of control configuration.
Let 3C denote the set of all Neg X Nexog transfer matrices.

With each design specification D; we will associate the
set 3C; © JC of all nieg X Negog transfer matrices that meet
the design specification ;. For example, consider the spec-
ification that the closed-loop transfer function from w; (a
command input, perhaps) to z; (the variable it is supposed
to command, perhaps) should have unity DC gain. The cor-

3Note that for stability reasons it is not always possible to imple-
ment the controller as two separate transfer functions K; and K.
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responding set of acceptable transfer matrices is
Hpc = {H € 3| H3(0) = 1}. 2)

Another example is the specification that H should be the
closed-loop transfer matrix achieved by a controller K which
results in a closed-loop stable system:

JCS(ab = {H € JC‘H = Pzw + quK(I - PyuK)_1P)’W
for some stabilizing K}. 3)

This important specification is the topic of section V.

Simultaneous satisfaction of design specifications cor-
responds to the intersection of the associated sets of accept-
able closed-toop transfer matrices. Continuing the exam-
ples in equations (2) and (3) above, 3C,, N Ipc consists of
those transfer matrices that arise as the closed-loop transfer
matrix of our plant with a stabilizing controller and have
unity DC gain from w, to z;. This set could very well be
empty—which would mean that the two specifications are
inconsistent or too tight. In practical terms, 3Cqa, N Hpe =
@ means that no stabilizing controller can yield a DC gain
from w, to z3 which equals one.

If 3¢, and 3¢, correspond to specifications H, and D,, and
3¢, € 3¢y, then specification D, is stronger or tighter than
specification D, (equivalently, D, is weaker or looser than
D,); there are ““fewer” transfer matrices which satisfy ;.

If our design specifications are Dy, - - - , Dy, then the set
which corresponds to satisfaction of all the design speci-
fications is

Hspee = 3¢, N -+ N 3¢,

Thus we can restate the Fundamental Problem as:

Fundamental Problem (restatement 2): Find an H €
JCspec, OF determine that 3gpec = .

B. Affine and Convex Sets

In many cases the sets of transfer matrices associated with
design specifications have a simple geometric form: affine
or convex.

We remind the reader that 3C is a vectorspace. This means
that we have away of adding two of its elements (n,eg X Nexog
transfer matrices) and multiplying one by a scalar; the vec-
tor addition and scalar multiplication must satisfy certain
standard rules [37], [38].

Definition 3 A subset of a vector space is said to be affine
if whenever two distinct points are in the set, so is the entire
line passing through them. More precisely, € € Vis affine
if for any vq, v, C,and any A e R, Avy + (1 — N v, € C.

Definition 4 A subset of a vector space is convex is when-
ever two points are in the set, so is the entire line segment
between them. More precisely, € € V is convex if for any
vi,vo€C,and any A€ [0, 1], \v; + (1 — Nv, € C.

Of course, it is a stronger condition for a set to be affine
than convex: all affine sets are convex. If A eR, we will refer
to Avy + (1 — N) v, as an affine combination of v, and v,; geo-
metrically, we may think of an affine combination of two
points as being on the line passing through the points. If
0 < A < 1, we will refer to A\v; + (1 — N) v, as a convex com-
bination of v; and v,; geometrically, we may think of a con-
vex combination of two points as being on the line segment
between the points.
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(a)

Fig. 15. Examples of (a) convex and (b) non convex subsets of R%.

An example of a convex subset of the vector space R?is
shown in Fig. 15(a). The subset of R? shown in Fig. 15(b) is
not convex.

An example of an affine subset of the vector space R?is
any straight line

{x e R¥v'x = c}.

The set ¥pc in (2) is affine, although this is harder to vis-
ualize, since IC is infinite dimensional. This assertion is
readily verified: if H € 3C and H € 3 satisfy Hy(0) = H3,(0)
= 1, and \ is any real number, then the transfer matrix Hy
= \H +'(1 = NH also satisfies Hy3,(0) = 1. We can view H,
asatransfer matrix on the ““line’ through the transfer matri-
ces H and H: that Xpc is affine means that the DC gain of
the 3, 2 entry of all such transfer matrices is one.

We will show in section V that the example in equation
(3)—achievability by a stabilizing controller—is also affine.

Definition 5 A design specification is closed-loop convex
if the set of transfer matrices that satisfy it is convex.

One of the themes of this paper is that many design spec-
ifications are closed-loop convex.

C. The Time and Frequency Domains

Design specifications about time domain quantities (such
as impulse or step responses) will also correspond to sets
of acceptable transfer matrices. For example, consider the
specification that the overshoot of the step response from
w, to z3 not exceed 1.3:

Hos = {H € K|sp(®) < 1.3 for all t = 0}, “

where s3(t) is the inverse Laplace transform of Hsy(s)/s.

The set 3Cos might be called “hard to describe” in “fre-
quency-domain terms’’: there is no simple description of
JCos in terms of pole and zero locations of Hj, (although
there are many approximate descriptions and rules-of-
thumb). The overshoot specification seems more naturally
expressed in ‘‘time-domain terms’’ (the step response
matrix, say).

Nevertheless, we can easily verify that 3Cos is convex (and
thus, the overshoot specification is closed-loop convex),
evenifitis“hard todescribe.” We rewrite (4) more explicitly

as -
L i g,

27 jeo

JC05=EHEJC

A

13 forall t = O}. (5)
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(b)

Suppose that H and~l-l are transfer matrices in 3Cps, and let
Hy=AH + (1 = N H where 0 < A < 1.Then forallt = 0,
_1_ S Hxavz(l"*’) e dw

27 J-o

jw

“at S Holj) ot g
2T J-o j@
+( ~)\)lg Me’“"dw.
2T J-o  J

The right-hand side of this last equation is a convex com-
bination of two real numbers, neither of which exceeds 1.3,
and thus the left-hand side also does not exceed 1.3. This
means that H, € ¥Cos.

More generally, and less explicitly, since the Laplace
transform and its inverse are linear operations, convex and
affine sets are preserved between the frequency and time
domains. The property of convexity is independent of
whether a constraint is expressed in the time or frequency
domains. It is also independent of whether the constraint
is ‘more easily”” or ‘naturally” expressed in the time or fre-
quency domains.

Other time domain design specifications may involve the
response to a particular input signal. Considertheresponse
z5(t) to a fixed input signal wy(t) (wi() =0fori #2),

t
Z3(t) = S() h32(t — T) W2(T) dr.

Since this convolution integral is linear, a convex or affine
constraint on z; will correspond to a convex or affine con-
straint on the impulse response hs,, and therefore on the
closed-loop transfer function Hs,. This will be discussed
more fully in section VI.

V. REALIZABILITY AND CLOSED-LOOP STABILITY

In this section we consider the important design require-
ment of internal (closed-loop) stability. The central result is
that the set 3¢, of closed-loop transfer matrices achiev-
able with controllers that stabilize the plant is an affine set
which is readily described. This description is referred to
as the parametrization of achievable closed-loop transfer
matrices. Thus, internal stability is a closed-loop convex
constraint.

Various preliminary forms of this result, for special cases,
can be found or are implicit in work dating back to 1950.
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Its modern, general form appears in Desoer, Liu, Murray
and Saeks, in 1980 [39]. Section XI contains some detail on
the evolution of the idea, along with a more complete set
of references.

A. Closed-Loop Transfer Matrices Achieved by Controllers

A very important constraint on the transfer matrix H is
that it should be the closed-loop transfer matrix achieved
by some controller K, in other words, H should have the
form P, + P,,K( — P, K)~'P,, for some K. We will refer
to this constraint as realizability:

3 = {Held|H =P, + P, KUl — P,K)P,
for some K}. (6)

This constraint is usually quite strong, meaning that 3Cg
is in general a ““small” subset of 3C; there are many transfer
matrices H e 3C which do not correspond to any controller.
To understand what this constraint means, consider a plant
with one actuator (scalar u) and one sensor (scalar y), and
wand z each with 4 components, so that His a4 X 4transfer
matrix. It seems intuitively clear that since we can design
only one transfer function (K), we should therefore have
one one “‘degree of freedom” in the resulting closed-loop
transfer matrix H, which contains 16 closed-loop transfer
functions. This intuition is correct: examination of (6) shows
that at each frequency s, choice of K(s) yields only a rank
one change in H.

We can think of 3C; as expressing the dependencies
among the various closed-loop transfer functions (entries
of H). For example, suppose that the closed-loop transfer
functions S = 1/(1 — PgK) = Hypand T = PyKI(1 — PyK) =
H,, are two of the entries of H in our example above. The
constraint H € 3Cg will include the well known and obvious
constraint H;; — H,y = 1; in classical terminology, the sen-
sitivity and complementary sensitivity must sum to one.

B. Internal Stability

1) The idea of internal stability: Recall that a rational
transfer function is stable if it has no more zeros than poles
and if each pole has negative real part; a transfer matrix is
stable if all of its entries are stable transfer functions.

There are several ways to express the idea that the closed-
loop system is internally stable:

1. All internal transfer functions are stable. The transfer
function from a signal injected anywhere in the
closed-loop system to any other point in the closed-
loop system (as shown in Fig. 9) is stable.

2. The state-space description of the closed-loop sys-
tem is stable. If the state space description of the
closed-loop system is x = Ayx + Byw, z = Cyx +
D.w, then all the eigenvalues of A, have negative real
part.

3. In classical single-actuator, single-sensor control,
there are no unstable pole-zero cancellations
between plant and controller. This form of the idea
of internal stabilization is the oldest, predating the
extensive use of state-space descriptions and con-
cepts such as controllability and observability. For
multi-actuator, multi-sensor systems it is much harder
to say what a pole-zero cancellation is—it is possible
that a multi-actuator, multi-sensor system is inter-
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nally stable even if the plant has a pole at s = 1 and
the controller a zero ats = 1.

2) Desoer’s formal definition: In 1975 Desoer and Chan
[40] proposed a formal definition of internal stability that
captures the ideas listed above. Their definition has been
widely used since [41, pp. 15-17], [42, pp. 99-108]. It makes
use of two auxiliary signals »; and »,, injected as shown in
Fig. 16. The signal »; can be interpreted as an actuator

W —— ———— 2
P
" b i vy
u K v

Fig. 16. Sensor and actuator noises used in formal defi-
nition of internal stability.

referred plant noise or actuator noise; », can be interpreted
as a sensor noise. The definition is:

Definition 6 The closed-loop system is internally stable if
the four closed-loop transfer matrices from »; and », to u
and y,
H,, = K(I - Py,,K)‘1Pyu,
Hy,, = KU = P,K)™,
H,, = — P,K)Y P,
Hy, = ( — P,,K)"",
are stable.

The intuition behind this definition is clear: it prohibits
avery small (bounded) actuator or sensor noise from having
very large (unbounded) effect on u or y, and therefore z.

Under the assumption that the realizations of Pand K have
no unstable hidden modes, that is, modes uncontrollable
from u or unobservable from y, this is equivalent to ideas
(1-3) above [43]. When the closed-loop system is internally
stable, we say the controller K stabilizes the plant P.

A simple example follows. Consider the system shown
in Fig. 17 (with w and z omitted).

For K; = —2, the four closed-loop transfer functions are
-2
H =-—=
un S + 1/
—2(s — 1)
Hy, = ———rt
uw S + 1 ’
151 PW = ﬁ [ 4]
u K Yy

Fig. 17. An example of stabilizing a simple plant.
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Ho = 1
moos + 1
s —1
H, = .
"o 4+ 1

Since each of these transfer functions is stable, K; sta-
bilizes the ptant P. The reader may verify (1-3) for this closed-
loop system.

On the other hand consider the controlier K, = —(s — 1)/
(s + 1). The closed-loop transfer functions are now

-1
H ’
W s+ 2
s —1
Huvz ’
s+ 2
s+ 1
H, =—F—7,
moos+ 26 -1
_st1
"o+ 2

For this controller we find that three of the closed-loop
transfer functions are stable, but H,,,, the transfer function
from actuator noise to plant output, is unstable. Thus, K,
does not stabilize P.

It is instructive to consider the closed-loop system with
the controller K, in terms of the ideas (1-3) above. (1) is
clearly violated—we take the injected signal to be actuator
noise and the tapped signal to be the plant output y. (2) is
violated; the reader can verify that a state space description
of the closed-loop system will be unstable—A will have an
eigenvalue of 1. (3) is violated by the unstable plant pole at
s = 1 being canceled by the controller zero at s = 1.

3) Internal stability in our framework: It should be clear
that, by including »; and », as parts of the exogenous input
w and including u and y as part of the regulated output z,
the four transfer matrices of the Desoer-Chan definition
appear as blocks within the overall closed-loop transfer
matrix H. Assuming that the realizations of Pand K have no
unstable hidden modes, with this inclusion of signals in w
and z, the satisfaction of the Desoer-Chan conditions is
equivalent to stability of H. This is shown in Fig. 18.

o{ — |

Fig. 18. When sensor and actuator noises are included in
wand uand yincluded in z, internal stability is simply equiv-
alent to stability of the closed loop response H.

In fact, if the definitions of w and z from section Il are
rigorously followed, then we must include u and y in z and
sensor and actuator noises (v; and »,) in w—the four transfer
matrices in the definition of closed-loop stability are closed-
loop transfer matrices we care about, and so they should
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appear in H. Thus the whole issue of internal stability can
be seen as arising when one considers an H that is too
“small”’; Hdoesn'tinclude all the closed-loop transfer func-
tions of interest in the design. For example, in classical con-
trol, the designer might concentrate on the input/output
(1/0) transfer function PyK/(1 — PyK)—our second example
above shows, however, that the 1/0 transfer function can
be acceptable, or even desirable, but the design will not
work, because another important closed-loop transfer
function is unstable. One of our themes is that the designer
must simultaneously consider all closed-loop transfer func-
tions of interest, in other words, the transfer matrix H.

C. Closed-Loop Transfer Matrices Achievable with
Stabilizing Controllers

We now consider the set of closed-loop transfer matrices
achieved by controllers that stabilize the plant:

o = {H € B|H = Py + PoKU = P K) TPy
for some K that stabilizes P} )

Thus 3C,,,; is the set of possible closed-loop transfer matri-
ces achieved with controllers that stabilize P.

An extremely important fact is that internal stability is a
closed-loop affine constraint, i.e.,

Iy is affine: Any affine combination of closed-loop
transfer matrices achievable with stabilizing con-
trollers is also achievable with a stabilizing controller.

If K and K each stabilize P and yield closed-loop transfer
matrices H and H, respectively, then for each \ € R, there
is some controller K, that stabilizes P and yields closed-loop
transfer matrix H, = AH + (1 — \) H. Thus if we can find two
controllers that stabilize P we can find an entire one param-
eter family of controllers that stabilize P, and the corre-
sponding closed-loop transfer matrices will lie on a fine in
3C.

A very important point is that the controller K, that yields
closed-loop transfer matrix Hy is generally not Ky = MK +
(1 = N K. Straightforward but tedious algebra yields

Ky = (A + A\B)~"(C + \D) 8
where

A=1+KI~-P,K P,

I

B = KU — P, ,K)"'P,, — KU — P, K)"'Py,

C=Kdi-P,K7",
D =KU - P,K)™" =R - P,K).

The special form of K, given in (8) is called a bilinear or linear
fractional dependence on \. We will see this form later in
this section.

It is not hard to verify directly that 3Cy, is affine by sub-
stituting the formula (8) into the four critical closed-loop
transfer matrices of definition 6. The reader will find, for
example, that

Hyp, = Kl — PK) ™" = NKU = P, K)™
+(1 =NKI - PR

since the right hand side is an affine combination of stable
transfer matrices, the left hand side is stable.
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= .l
Py = sy 2
| » 22

Fig. 19. A possible controller configuration for a stable plant P,

1) An example: Consider the system shown in Fig. 19. In
classical terminology, K is a one degree of freedom con-
troller (see section Ili). The two Pl (proportional-integral)
controllers K(s) = 1.8 + 1.5/s and K(s) = 60 + 3/s each sta-
bilize P. With K in the loop, the transfer matrix from w to
[z, 2l is

185 +. 1.5
s?+ 285+ 15
H(s) = ,
1.8s2 + 3.35s + 1.5
s?+ 285+ 15

b =

while with Kin the loop, the closed-loop transfer matrix is

3s + 60
) s?+ 4s + 60
H(s) =
352 + 63s + 60
st + 4s + 60

From the result above, we conclude that for every \ € R,
there is a controller K, that stabilizes P and yields a closed-
loop transfer matrix of

1.8s + 1.5
s?+28s + 1.5
HA(S) =\
1.8s2 + 3.35 + 1.5
s2+28s + 1.5

3s + 60
s2 + 4s + 60
+(1 =N
352 + 63s + 60
52+ 4s + 60

The step responses from w to 2, for K and K are shown
in Fig. 20(a) and the corresponding step responses from w
to z, are shown in Fig. 20(b). Figure 20(c) shows five mem-
bers of the one parameter family of achievable closed-loop
step responses from w to z, generated by K and K; Fig. 20(d)
shows the five corresponding step responses from w to z,.

For N = 0.5, it turns out that

2.4s + 38.55s2 + 143.25s + 90

s* + 6.853 + 72.7s2 + 174s + 90
HO.S(S) = ’
2.4s* + 40.95s5% + 181.8s2 + 233.25s + 90
s* + 6.8s% + 72.7s% + 174s + 90
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KU - P, K)'P,
KU — P, K)™",
(= PuK)Y P,
(I = PK)"

Paw + PouKU — PK)7'P,,

and that this closed-loop transfer matrix is achieved with
the controller

2.4s% + 38.55s2 + 143.25s + 90

K =
0.5(5) 53 + 3.4s2 + 30.75s

Note that Ky 5 is not the average of the Pl controllers; it is
not even a Pl controller.

In the next two subsections we discuss two special but
important cases in which we can derive a complete descrip-
tion of 3C.p.

2) Special case I: stable plant: We first make a useful
transformation of our description of 3C,,,. By definition,

yur

are stable ) . (9)

Let us make the definition R = K(/ — P,,K)~", so that K
=(+ RP,U)”R. These formulas describe a one-to-one cor-
respondence between K and R. With some algebraic manip-
ulation we can rewrite equation (9) in terms of R as

Jcstab = {Pzw + quRwalRPyur R, (I + PyuR)l
(I + P, R)P,, are stable}. (10)

Now we consider the case when the plant is stable. In
particular P, is stable; it follows that if R is stable, then so
are RPy,, I + P,,R, and ( + P,,R) P,,. Thus the set of achiev-
able closed-loop transfer matrices can be written

Kab = {Pzw + P, RP,,|R stable}. an

Given some stable R, the controller that stabilizes P and
yields closed-loop transfer matrix H = P,,, + P,, RP,, is [44)

K=(+RpP,)"R 12)

Conversely, every controller that stabilizes P has this form
for some stable R. This simple result appears in [45).

Note that equation (11) give a free parameter represen-
tation for 3Cy,p.

3) Special case II: interpolation conditions: To see what
changes when the plant is unstable we first examine the
very special case shown in Fig. 21. Here u, y, w, and z are
all scalar signals; we assume that P, is strictly proper. This
is the one-degree-of-freedom controller design problem in
classical control—the closed-loop transfer function H is PK/
(1 + PyK), the transfer function from the reference input
to the output of Py. In a practical controller design problem
we would augment w and z so that we could make spec-
ifications relating to actuator authority, disturbance rejec-
tion, and robustness, but it turns out that scalar w and z are
sufficient to express the specification of stability in terms
of conditions on H.
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Fig. 20. Closed loop step responses achievable by a one parameter family of stabilizing
controllers. (a) and (c) show the step response from the command w; to the plant output
zy; (b) and (d) show the step response from the command w; to the actuator signal u =

z,.

Fig. 21. Classical one degree of freedom setup.

Let {p4, - -+ , pa} be the set of unstable poles of Py and
let {z;, - -, z} be the set of unstable zeros (zeros with
nonnegative real parts) of P,. If Py has no repeated unstable
poles or zeros, a closed-loop transfer function H is achiev-
able with a stabilizing controller if and only if

H is stable,

for each unstable plant pole p;, H(p;) = 1,

for each unstable plant zero z;, H(z;) = 0, and

the excess of poles over zeros of His at least the excess
of poles over zeros of P,

s =

These conditions are known as the interpolation condi-
tions, and can be easily understood in classical control
terms. Condition 2 reflects the fact that the loop gain Pk
is infinite at the unstable plant poles (internal stability pro-
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hibits the controller from having azero at the unstable plant
poles), and so we should have perfect tracking (H = 1) at
these frequencies. Conditions 3 and 4 reflect the fact that
there is no transmission through P, at a frequency where
P, has a zero, and thus H = 0.

The interpolation conditions are also readily understood
in terms of our description of 3, given in (10). For the

plant of this example we have P,,, = 0, P,, = P, P,,, = 1, and
P,, = —Py, 50 (10) is:
Haan = {PoR|RPy, R, (1 — PyR)P, are stable}.  (13)

using the fact that if RP, is stable, then so is 1 — RP,. Sub-
stituting H = PyR into (13) we get

Hoan = {H|H, HIPy, (1 — H)P, are stable}. (14)
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H/Py will be stable if and only if H vanishes at z,, - - - , z,,
and in addition H has an excess of poles over zeros at least
equal to the excess of poles over zeros of Py; in other words,
HIP,is stable if and only if conditions 1, 3, and 4 of the inter-
polation conditions hold. Similarly, (1 — H) P, will be stable
ifandonlyif1 — Hvanishesatp,, - - -, p,, whichis condition
2 of the interpolation conditions.

It can be seen directly from the interpolation conditions
that JCy.p is affine, since if H(p;) = 1 and H(p;) = 1, then
AH(p;) + (1 — N H(p,) = 1, and similarly if H(z;) = 0 and
A(z;) = 0, then NH(z;) + (1 — \) A(z;) = 0.

The interpolation conditions give a constrained repre-
sentation of 3Cq,y, for the special system shown in Fig. 21.
The interpolation conditions are the earliest description of
JCqan, dating back at least to 1955 (see section XI).

4) General case: free parameter representation: In the
general case there is a free parameter description of the set
of closed-loop transfer matrices achievable with stabilizing
controllers:

¥ = {T1 + T,QT;3|Q stable} (15)

where T;, T,, and T; are certain stable transfer matrices which
depend on the plant. Q is referred to as the parameter in
(15), notinthe sense of areal numberwhich is to be designed
(e.g., the integrator time constant in a Pl controller), but
rather in the sense that it is the free parameter in the
description (15). We have already seen a special case of this
form in the example of the stable plant, where P,,,, P,,, and
P, are possible choices for T,, T,, and Ts, respectively.

The controller that stabilizes the plant and yields closed-
loop transfer matrix H = T; + T,QT; has the linear frac-
tional form

Ko =1(A +BQ™ " (C + DQ) (16)

where A, B, C, D are certain stable transfer matrices related
to Ty, T, and T3. Thus the dependence of Kq on Qs bilinear
(c.f. equation (8)).

A complete derivation of the free parameter description
(15) and the formula (16) can be found in Vidyasagar [42] and
the references cited in section XI.

D. The Modified Controller Paradigm

The description of 3, given in the previous section can
be given an interpretation in terms of modifying a given
nominal controller which stabilizes the plant. Given one
controller K, that stabilizes the plant, we can construct
a large family of controllers that stabilize the plant, just as
the formula (8) shows how to construct a one parameter
family of controllers that stabilizes the plant.

The construction proceeds as follows:

* We modify or augment the nominal controller K,,,, to
produce an auxiliary output signal e (of the same size
as y) and accept an auxiliary input signal v (of the same
size of u) as shown in Fig. 22. This augmentation is done
in such away that the closed-loop transfer matrix from
v to e is zero while the open-loop controller transfer
matrix from y to u remains simply Knom.

* We connect a stable transfer matrix Q from e to v as
shown in Fig. 23, and collect K., and Q together to
form a new controller, K.

The intuition is that K should also stabilize P, since the
Qfilter we added to K, ‘sees no feedback,”” and thus can-
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H.y = 0 closed loop

Fig. 22. The nominal controller K., is augmented to pro-
duceasignal eand acceptasignal v. The closed loop transfer
matrix from v to e is 0.

W ——— f————— 2
P
u ¥
b — T :
] '
I |
1 1
! K, !
[] nom '
! !
Il 1
' |
t 1
1 i
1 ]
1 t
L Q e !
1 ]
] ]
] 1

Fig. 23. Modification of nominal controller K, with a sta-
ble transfer matrix Q.

not destabilize our system. However, the Q filter can change
the closed-loop transfer matrix H. To see how Q affects the
closed-loop transfer matrix from w to z, we redraw our sys-
tem as in Fig. 24.

Let us define the following transfer matrices:

*+ Uy is the closed-loop transfer matrix from w to z with
the controller K, o m.

* U, is the closed-loop transfer matrix from v to z.

* U is the closed-loop transfer matrix from w to e.

Since the transfer matrix from v to e is zero, we can redraw
Fig. 24 as Fig. 25(a). Figure 25(a) can then be redrawn as Fig.
25(b), which makes it clear that the closed-loop transfer
matrix resulting from our modified controller is simply

H = U; + U,QU;, (17

which must be stable because Q, U, U,, and U, are all sta-
ble.

It can be seen from equation (17) that as Q varies over all
stable transfer matrices, H sweeps out the following affine
set of closed-loop transfer matrices achieved by modifying
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Fig. 24. Finding the closed loop transfer matrices Us, Uy,
and U,.

the controller:
Fmce = {U; + U;QUs|Q stable}.

Of course, Hepuce S Hqap- This means thata (possibly incom-
plete) family of stabilizing controllers can be generated from
the (augmented) nominal controller using this modified
controller paradigm.

The remarkable fact is that if the augmentation of the
nominal controller is done with skill, then the modified
controller paradigm yields every controller that stabilizes
the plant P. In other words, if Knom is augmented properly,
Fpmcp = Hsap. In this case Uy, Uy, and Us qualify as possible
values of T4, T,, and T in the free parameter representation
of 3Cq.p given in equation (15). Thus we have:

Given a controller K,om Which stabilizes P, suitably
modified to produce the signal e and accept the signal
v, every controller K that stabilizes P can be con-
structed as a connection of Ko With some suitable
stable transfer matrix Q, as shown in Fig. 23.

1) Case I: stable plant: As an example of the modified
controller paradigm, consider the special case of the stable
plant treated in section V-C(2). Since the plant is stable, the
nominal controller K,,m = 0 stabilizes the plant. How dowe
modify the zero controller to produce e and accept v? Per-
haps the most obvious first step is to take e = y and to add
vinto u as shown in Fig. 26. This modification results in the
closed-loop transfer matrix from v to e being P,,—but the
modified controller paradigm requires that the modifica-
tion be done in such a way that this transfer matrix is zero.

v e

Fig. 26. An incorrect attempt at augmenting the nominal
controller K,om = 0.

(a)

Uy

Us

Q

Uz

(b)

Fig. 25. Figure 24 is redrawn in (@), which is shown in a more convenient form in (b).
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v €

Fig. 27. Extracting e and injecting v in the case where P,,
is stable.

A simple remedy is shown in Fig. 27: subtracting v pro-
cessed through a copy of the plant dynamics P,, makes the
transfer matrix from vto e zero, as required by the modified
controller paradigm. The reader should note that the aug-
mented controller shown in Fig. 27 is much more complex
than the nominal controller!

From Fig. 27 we see that

U1 = Pzwv
UZ = qu/
U; = Py,.

To apply the second step of the modified controller par-
adigm, we connect a stable Q as shown in Fig. 28 so that
the closed-loop transfer matrix is

H=U, + U,QU,.

Thus the set of closed-loop transfer matrices achievable by
the modified controller shown in Fig. 28 is

Kuce = {Pw + P,,QP,,|Q stable}.

P
u Y

v LTI
! I
: Kpom =0 :
! '
! '
1
, —> Py __’l * E
! 1
! '
! ¢
Vo .
! '
! )
! '
! '
: v— @Q |=¢ :
|
'K :
L T U I S —

Fig. 28. The modified controller paradigm in the case where

Py, is stable.
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The expression here for 3ycp is the same as the expression
for 3Cy.p in equation (11) in section V-C(2). So here is a case
where the modified controller paradigm does indeed gen-
erate all stabilizing controllers: any stabilizing controller K
for a stable plant P can be implemented with a suitable sta-
ble Q as shown in Fig. 28.

The reader can also verify that the connection of Q with
the augmented nominal controller yields K = QU +
P,, Q™ '—exactly the same formula as (12) with Q substi-
tuted for R.

2) Case II: the observer-based controller: A general
method of applying the modified controller paradigm starts
with a nominal controller which is an estimated state feed-
back. Knom consists of a full state observer for the plant,
which produces an estimate x of the plant state, and a state
feedback gain K (a constant matrix, c.f. K,on!); the con-
troller outputis u = —Kg%. For this nominal controller we
can take e to be the output prediction error of the observer—
the difference between the sensed output y and the cor-
responding output of the observer, y. We can add the aux-
iliary input v to the actuator signal, before the observer tap,
as is shown in Fig. 29. The requirement that the closed-loop

Observer

Fig. 29. Augmenting an observer based controller so that
it produces e and accepts v.

transfer matrix from v to e be zero is satisfied because the
observer error state, x — %, is uncontrollable from v, and
therefore the transfer matrix from vto e =y — y is zero.

Applying the modified controller paradigm to the esti-
mated state feedback controller yields the observer-based
controller shown in Fig. 30. The observer-based controller
is just an estimated state feedback controller, with the out-
put prediction error filtered by a stable transfer matrix Q
and added to the actuator signal.

Remarkably, this method is one of those which produces
every controller that stabilizes the plant. This was first
pointed out by Doyle [46].

E. Comparison with Parametrized/Structured Controller

So far this section has outlined the answer to the ques-
tion, "How can we describe the set of all closed-loop trans-

_ fer matrices achieved by controllers that stabilize the
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Fig. 30. Modifying an observer based controller with Q.
Here K, is a stabilizing state feedback gain and y = Cx,
where x is the plant state.

plant?’’ We have seen that this question has a fairly simple
answer, given by equation (15). We also saw that the related
question, “How can we describe the set of all controllers
that stabilize the plant?” also has a simple answer, given by
equation (16), which gives a description of all controllers,
of any order or structure, that stabilize the plant. In this sub-
section we will consider an example of what happens when
a particular controller structure is specified and the ques-
tion becomes, "How can we describe the set of all con-
trollers that stabilize the plantand are of the specified struc-
ture?”” In some ways this question seems more natural than

To illustrate this difficulty, we consider an example. Con-
sider a plant P,, with transfer function

9s3 + 852+ 9s + 8

Pls) = G o — a7 v 85 — 6

and a two parameter controller K with transfer function

K(s)=_—k.
s—p

The closed-loop system is shown in Fig. 31.

933485249348
344953 -45248s-6

=p

Fig. 31. Stability with a simple two parameter controller.

The condition that the closed-loop system in Fig. 31 is
internally stable is equivalent to the polynomial

s+ 9 - p)s* + (=9 + 9%k — s’
+ {@p + 8k + 8)s* + (~8p + 9k — 6)s + 6p + 8k

having all its roots in the left half plane. This condition can
be checked using a Routh test. The Routh table shows that
internal stability is equivalent to the parameter vector (k,
p) satisfying the following inequalities

9-p>0
9p? - (9% + 81)p + 73k — 44 > 0

4p3 + 27k — 396)p? — (72k? + 274k + 230)p + 584k? — 425k + 134 > 0
134p* — (144k + 1206)p® + (9k* + 1032k — 536)p? + (80k? + 1204k — 1072)p — 1241k? + 1916k — 804 > 0

the one we have answered, ‘“How can we describe the set
of allcontrollers that stabilize the plant?,”” and intuition sug-
gests that it might be easier to solve, since it is a less general
question than the one we have answered. In fact, it is a far
more difficult question to answer.

Consider the problem of finding a value of the param-
eters that yields a stable closed-loop system with a partic-
ular plant P,,. More specifically, assume we choose a fixed
form of the controller, such as

n

Z b,‘sl

i=0
n-1

s"+ 2 as’
i=0

K(s) =

and then try to find a value of the parameter vector (ag,
©**,a,-1, by '+ *, by) that will give a closed-loop stable
system, or determine that none exists. This is a very difficult
problem to solve, and no general solutions are known.
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6p + 8k > 0

In general it is a difficult problem to determine whether a
system of polynomial inequalities in several variables such
as this can be satisfied.* For our particular case the region
of parameters which give closed-loop stability is shown in
Fig. 32. Notice that there are two disconnected regions in
Fig. 32, and each region is itself nonconvex. Figure 32 was
produced manually by solving the above equations for k in
terms of p and finding the intersection of each of the in-
equalities; the equations for the boundaries are quite com-
plex. This extremely specific problem, with only two free
parameters, required considerable effort to solve. A more
general case, where the controller K depends upon a much

*The difficulty is in fact related to the distinction between finding
global minima for convex and nonconvex functions—see section
IX. We also note that deciding whether a set of polynomial in-
equalities can be satisfied is decidable, which means that there is
some Routh-like test which can be applied to the coefficients [47],
[48]. Unfortunately, the size of this Routh-like array is beyond rea-
son, even for small problems,
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Fig. 32. The region of controller parameters k, p that give
a stable closed loop system.

larger number of parameters, would be very difficult to
solve.

VI. PERFORMANCE SPECIFICATIONS AS CONVEX CONSTRAINTS

The previous section showed that the performance spec-
ification of internal stability is an affine constraint on the
closed-loop transfer matrix H. This section introduces spe-
cific examples of the remaining performance specifications
described in section I-A, and shows why many are closed-
loop convex or affine.

For the first few examples we will briefly explain, making
reference to the material in section 1V, why the constraints
are in fact convex. Explanations will not be provided for the
remainder of the examples, but it should be apparent from
similarity to some earlier examples that the constraint in
question is in fact closed-loop convex.

A. Tracking a Reference Input—Time Domain

Often the primary purpose of a feedback control system
is to ensure that one of the regulated outputs (usually
described as ““the output” in classical control), say, z;, be
nearly equal to a reference or command input, one of the
exogenous inputs, say, wy. This is a tracking performance
specification. In many cases the reference input will be con-
stant for long periods of time, and occasionally change
quickly to a new value or “set-point”. Since the closed-loop
system is LTI, its response to such a change in set-point is
readily determined from its response when the reference
quickly changes from zero toone att = 0—a unit step input.

Let s4,(t) denote the unit step response from w; to z4. Let
us list some typical qualitative specifications on this step
response. Immediately following the step, we are con-
cerned with preventing severe undershoot or overshoot
(large negative or positive excursions of sq(t) for small ¢).
We would like a short settling time, that is, we would like
the value of s(f) to converge to within, say, five percent of
one. Finally, we would like the s,4(t) to settle exactly to one
(asymptotic tracking of a step input). As shown in Fig. 33,
all of these specifications can expressed together as fol-
lows:

Smin®) < 511(t) < spa()  fort = 0. (18)
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Fig. 33. Step responses with upper and lower bounds.

Let us verify that the constraint (18) is closed-loop convex.
Consider the set of closed-loop transfer matrices which
meet the constraint (18),

Hiack = {H € I[smin(t) < s41(t) < spadt)  forall t = 0}.

Let H, H € 3Cyack, SO that the corresponding step responses
s11(6) and $44(t) lie between s, (t) and s, (t) for all time as
shown in Fig. 33. Now, if 0 < X < 1, then syy4() = Asyy(8) +
(1 — N §;4(t) also lies between s,in(t) and s, () so that H),
€ Xyack- The case N = 0.5 is shown in Fig. 33.

Placing upper and lower bounds on the response of a
regulated output to any specific reference input r, is also
a closed-loop convex specification.

B. Tracking a Reference Input—Frequency Domain

It is also possible to specify how well the regulated
variable z, tracks the command input w; in the frequency
domain. Let us define z, to be the tracking error, that is, z,(t)
= wy(t) — z4(t); Hy istherefore the closed-loop transfer func-
tion from the command w; to the tracking error z,; roughly
speaking, we require that H,; should be “small” at those
frequencies where the command has significant energy.

Such a specification might take the following form: we
require that the magnitude of Hy( jw) lie below an envelope
Hw),

|Hy(jo)| < lw)  for all w, (19)

where l(w) is small for 0 < » =< wg. An example of such a
constraintis shown in Fig. 34. We can also interpret the con-
straint (19) as requiring a maximum asymptotic tracking
error of l(w) for sinusoidal inputs of frequency w. The reader
can verify that the constraint (19) is closed-loop convex. Fig-
ure 34 shows the magnitudes of two closed-loop transfer
functions H,; and H,; which meet this constraint, together
with the magnitude of the average transfer function (H; +
H,)2.

C. Decoupling

A system may have mulitiple command or reference
inputs, each with a corresponding regulated output it is
intended to command. It may be required that each of two
regulated outputs, say z, and z,, follow its own reference
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Fig. 34. Upper bounds on frequency response magnitudes are convex constraints. Of
course, the magnitude of (Hy; + H,,)/2 is not the average of the magnitudes of H,, and

H,,, although it is no larger than the average.

input, say wq and w,. In this case itisimportant not only that
each output track the appropriate command but also that
each output not be much affected by the command for the
other output. For example, if an autopilot systemis to simul-
taneously track airspeed and altitude rate commands, a
change in commanded airspeed should not severely affect
tracking of the commanded altitude rate, and vice versa.
One possible specification is to require that one com-
mand has no effect on the other regulated outputs, so that
the effect of the system of the reference inputs is decou-

pled. Such a constraint may be

Hi, =0 and Hy = 0.

This constraint is affine.

Complete decoupling may be too strong aconstraint. One
possible weakening of the specification (20) which limits
this interaction for step command signals is shown in Fig.
35. The output signal z, is required to track a step applied
to w4, but reject a step applied to w,, and vice versa for out-
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Fig. 35. Design specifications requiring the decoupling of responses to step commands.
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put z,. From section VI-A each of these step response enve-
lope constraints is closed-loop convex.

D. Disturbance Rejection—General Ideas

It is often critical to design a control system that will
ensure that the effect on the regulated outputs of noises
and disturbances acting on the plant is “small.”

This vague description includes a very broad range of per-
formance specifications whose particular forms depend
heavily on what the designer knows about the disturbance
and what the designer means by “small”. In almostall cases
the specification of a certain level of performance in dis-
turbance rejection will turn out to be a convex constraint
on the closed-loop transfer matrix. The following four sub-
sections will deal with different types of convex constraints
arising from disturbance rejection considerations.

In these four subsections, d will refer to a disturbance
signal or vector of signals that forms part of the exogenous
input vector, while z will refer to part or all of the regulated
output vector.

E. Disturbance Rejection—Simple Frequency-Domain
Constraints

The specification that the response of z to a constant d
tends asymptotically to zero is simply

H,4(0) = 0.

Similarly, disturbance rejection over a frequency band may
be specified:

forall g < w < wy, |Hg(jow)| < o

Both of these constraints are closed-loop convex.

F. Disturbance Rejection—Small RMS Output

Often a statistical model is assumed for the noises and
disturbances entering a system. If these can be modeled
collectively as a wide-sense stationary (vector) process it is
sometimes reasonable to take as a performance index the
root-mean-square value of the component in the output
due to the noises and disturbances. If the relevant output
is a vector, this RMS output value may be weighted by an
appropriate positive definite matrix. It is always possible to
incorporate the necessary coloring filters and weight matri-
ces into the plant model in such a way that the input dis-
turbance vector d is white with power spectral density
matrix equal to /, while the output vector z is such that the
expected (steady-state) value of 7'z is actually the quantity

that the designer would like to keep small. This result
appears in most texts on stochastic control or signal pro-
cessing, for example, [49], [50]; see also [51].

With z and d defined appropriately, the power spectral
density of z is given by H,( jw) HL4(—jw). Requiring the out-
putpower in zto be less than some maximum can be written
as

1 oo
el Lﬂ H,g(jw) Hlg(—jw) dw < a

This is a convex constraint on H, since the quadratic form
in the integrand is positive-semi-definite.

It should be apparent to readers familiar with LQG design
that specifying an upper bound on LQG cost can be posed
in this framework. Figure 36 shows how this can be done:
the LQG cost is

J = lim Ex'(t) Qx(® + u(®)” Ru(®)
o

1 “ . .
=5 Tr S‘m H,q(jw) Hlg(—jw) dw

where the process noise and measurement noise have
power spectral density matrices W and V respectively. The
minimum variance control problem [52] also fits naturally
into this framework.

G. Disturbance Rejection—The H,, Criterion

Suppose that we know only that the disturbance input
has some power less than one:

17
lim = S d@)’ dity dt < 1,
T-w I Jo

(we assume that this limit exists). We wish to insure that the
power in the output is less than some constant o?,

.
o1
lim — S z(t)" z(t) dt < o’
Tow I Jo
Intuition suggests that the effect of the disturbance will be
worst if all of its power is concentrated at the frequency at
which H,4 is largest, and this turns out to be the case. This
leads to the convex constraint
|Hy(jw)| = a  forall w,
in the case that H,4 is a transfer function, or
Hyg(jo) = «  forall w,

inthe case that H,4is atransfer matrix (o(+) means maximum
singular value).

: process :
w{ | Wwi/2 noise RV2 —:—) }z
| |
i ‘
1 1
UL Bt (oI - ) Q2
1 '
| 1
! j !
1 1
1 4+ '
v ) v measurement + 1 v

Fig. 36. The LQG cost is the trace of the integral over w of 1/27 H{jw)H(—jw).
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The quantity maxg <, < e | Hzg{ j@)| OF MaXg <, < o 6(H g jw))
is referred to as the H,-norm of a stable transfer function
or matrix, and is denoted || H||.. (There is a more technical
definition of the H,-norm for a broad class of functions on
the complex plane, but the one here suffices for rational
transfer matrices.) The H,-norm arises in control theory as
ameasure of disturbance rejection, as shown here, and also
in numerous formulations of problems in robust control,
as will be shown in section VII. The field of H,, control the-
ory came into existence in the early 1980s; since then much
significant work has been done. The design of H.-optimal
controllers is presented in [53]. A recent survey paper with
a large set of references is [54]. In [51], simple state-space
formulas are given for H,-optimal controllers.

H. Disturbance Rejection—Controlling Signal Peaks

In some cases all the designer can confidently say about
the disturbances in the system is that their peaks are
bounded by some values. If the requirement is that some
set of output signals remain within specified bounds when
all exogenous inputs other than the disturbances are zero,
then what results is a fairly simply-described convex con-
straint on the closed-loop transfer matrix. Suppose for
example that for all t,

—5=<di) =5 =-2=dyt) =2, —13=dst) <13,

and itis required that one componentof zdue to d;, d,, and
d; be bounded by 1. The resulting constraint is

©

5 S |h,g ()] dt + 2 S |h,af0)] dt
0 0

+ 1/3 So |h.a®)] dt = 1,
where h, is the impulse response from input d; to output
z. This constraint is closed-loop convex. Constraints of this
type are sometimes called either L or L., constraints, since
the L-norm of a scalar impulse response h is defined as
& |h(t)| dtand the L, norm of h is the gain from the L,-norm
or peak value of the input to the L,-norm or peak value of
the output (see, e.g., [55]). The L-optimal control problem
was posed by Vidyasagar in [56]. Solutions of various ver-
sions have been obtained by Dahieh and Pearson [57]-[60].

1. Actuator Authority

Itis almost desirable to keep the actuator effortin alinear
control system small. By including the actuator signals in
the set of regulated outputs, many specifications of limits
of actuator use can be translated into convex constraints
on the closed-loop transfer matrix. Whenever the specifi-
cation places bounds on the behavior of actuator signals
in response to the behavior of exogenous input signals,
convex constraints arise in exactly the same manner as in
the preceding sections on tracking and disturbance rejec-
tion. We will briefly describe some examples to illustrate
this point.

First consider a time-domain constraint on the peak
actuator use in response to a step in a reference signal. As
shown in Fig. 37, this is setting upper and lower limits for
the step response of a regulated output to an exogenous
input, and so is no different from the constraint described
in section VI-A.
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Fig. 37. Limits on actuator authority during a step com-
mand input.

Next, consider ensuring that actuator signals remain
“small” in the face of noises and disturbances. In our frame-
work this is no different from a “disturbance rejection”
specification of one of the types described above.

J. Other Miscellaneous Convex Constraints

So far, we have shown that a very wide variety of per-
formance specifications are equivalent to convex con-
straints on the closed-loop transfer matrix. Many perfor-
mance specifications other than those described above also
turn out to be convex constraints on the closed-loop trans-
fer matrix. A few such specifications are:

+ Bounds on slew rates. A specification limiting the slew
rate of an actuator signal (or other regulated output)
in response to a specified exogenous input signal.

* ITAE tracking criterion. An upper bound on the inte-
gral of time-multiplied absolute-value of error (ITAE)
[61], defined by {5 t|e(t)| dt, where eis the tracking error
signal.

* Higher-order asymptotic tracking. Specifications that
an output asymptotically track ramp or parabolic
inputs in addition to step inputs.

VIl. ROBUST PERFORMANCE SPECIFICATIONS

In the previous section we considered various specifi-
cations on how the closed-loop system should perform. This
included such important considerations as the response of
the system to commands, noises, and disturbances which
might rise in the system. In this section we focus on another
extremely important consideration: how the system would
perform if the plant were to change.

Some authors feel that the primary benefits of feedback
are those considered in this section—robustness or insen-
sitivity of the closed-loop system to variations or pertur-
bations in the plant. From another point of view, it is often
true that the actual performance of a control system is lim-
ited not by its ability to meet the performance specifications
of the previous section, but rather by its ability to meet the
specifications to be studied in this section, which limit the
sensitivity or guarantee robustness of the system [23].

In this section we will show that some, but by no means
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all, robust performance specifications, can be expressed as
closed-loop convex constraints on the nominal system.

A. Terminology and Notation

Throughout this section, the nominal plant will be
denoted P™™, and the nominal closed-loop transfer matrix
will be denoted H™™:

H™™ = pPlo™ + PReK(I — PO K) TP,

The perturbed plant will be denoted P. If the perturbed plant
depends on some parameter or transfer function, we may
indicate that with a superscript, as in P®. If the perturbed
plant Pis still linear and time-invariant, then H will denote
the perturbed closed-loop transfer matrix,

H = Ppy + PouK(l — PuK) 7 'Pp; (21)

if the perturbed plant is not linear and time invariant, then
of course (21) does not make sense.’

B. Small Differential Sensitivities

Suppose the perturbed plant is LTI, and depends on some
parameter , which might represent the gain of an actuator
transducer, for example. With a = ot,om, the perturbed plant
is the nominal plant, in other words, P~ = P. A small
differential sensitivity specification limits in some way the
partial derivative of the closed loop transfer matrix with
respect to the parameter a, evaluated at the nominal param-
eter value aqom.

Such a constraint cannot in general be expressed as a
convex constraint on the nominal closed-loop transfer
matrix H"™, but in some important special cases it can. In
this section we will present two examples of such differ-
ential sensitivity constraints. In the first example, the dif-
ferential sensitivity constraint can be expressed as a convex
constraint on the nominal closed-loop transfer matrix; in
the second example we will show that it cannot be.

The first example is well-known in classical control. We
consider the sensitivity of the 1/0 transfer function of a sys-
tem with a one-degree-of-freedom controller when the
actuator signal is scaled by the parameter « with a nominal
value of a,om = 1. The system is shown in Fig. 38. The per-
turbed /O transfer function is simply H%;:

H% = aPoKI + aPyK).

SIf the perturbed plant is not LTI, then we can define the per-
turbed operator H, which maps exogenous input signals to the
resulting regulated outputs z. Formula (21) is not correct in this
case.

If we calculate the logarithmic (relative or percentage)
differential sensitivity of H{; with respectto a we find, using
Bode’s notation [5]:

s _ BHIHET 1
T dadngm 1+ Pk

= nom
= Hy

(22)
o = Onom
which is called the sensitivity transfer function of the sys-
tem in classical terminology. We can interpret S, as follows:
its real part gives the sensitivity of the magnitude of the
1/O transfer function (in nepers; 1 neper = 8.7 dB) with
respect to (fractional changes in) «, and its imaginary part
gives the sensitivity of the phase of the I/O transfer function
(in radians) with respect to . Alternatively, we can think of
| S.| as the overall sensitivity of the (complex) /O transfer
function with respect to a. The important fact for us is that
the logarithmic sensitivity of the 1/O transfer function is
equal to a closed-loop transfer function of the nominal sys-
tem—HP™.

It follows that a constraint of the form

Re S.(s¢) = 0,

which guarantees that the magnitude of 1/O transfer func-
tion at the frequency s, is first order insensitive to variations
ina,i.e.,

(23)

8| Hx(so)l

e =0, (24)

@ = anom

can be expressed as the following affine constraint on the
nominal closed-loop transfer matrix:

Re H?M(sg) = 0. (25)
Similarly, the specification
[Suljw)| = 0.10  for0 < w < wp, (26)

which guarantees logarithmic sensitivity less than 0.10 over
the bandwidth of the system (w < wp), is also closed-loop
convex, since it is equivalent to

|H®™(jw)| < 0.10  for0 < & < wg. @7)

Note that the constraint (27) and hence the robust per-
formance constraint (26) can also be interpreted as a per-
formance specification, for example, limiting the response
of y to a disturbance w,. The observation (22) above is often
cited as an example of a benefit of feedback, and asa reason
why the loop gain should be designed to be as large as pos-
sible. Our perspective is slightly different: we cite (22) as an
example of the benefits of feedback, and a reason why a
certain closed-loop transfer function of the nominal system
(H™) should be designed to be as small as possible.

Fig. 38. A plant scaled by a factor a.
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We will now give a simple example where a small dif-
ferential sensitivity robust performance specification can-
not be expressed as a closed-loop convex constraint on the
nominal system. We consider the same system above and
the constraint that the absolute (non-logarithmic) sensitiv-
ity of the closed-loop DC gain not exceed 0.10:

9H(0) =< 0.10. (28)
aa & = Onom
Now
OHYS) PO K
00 g g (11 Pols) K(s)?'

so it is apparent that (28) can be satisfied either by making
the loop gain at DC small or by making it large. In terms of
the nominal closed-loop transfer matrix, (28) can be satis-
fied with the entry Hi3™(0) near one or zero, but not in
between, and thus the set of nominal closed-loop transfer
matrices which satisfy the robust performance specifica-
tion (28) is not convex.

Suppose, for example, that Py = 1/(s + 1) and apom = 1.
The controller K = 9 yields nominal closed-loop transfer
matrix

Hnom:[ 9 s+1]

s+10s + 10
and absolute sensitivity

dH5:(0)

= 0.09
da

@ = anom

and so meets the constraint (28).
The controller K = 0 yields nominal closed-loop transfer
matrix

H™™ =0 1)

and has zero absolute sensitivity of the /O transfer function
with respect to «, and so also satisfies the robust perfor-
mance constraint (28).

But for the controller 9(s + 1)/(2s + 11), which yields a
nominal closed-loop transfer matrix that is the average of
those achieved by the previous two controllers, we find that
the absolute sensitivity is

‘6H 1(0)
da

= 0.2475 > 0.10,

Q= Unom

so this controller does not meet the robust performance
constraint (28). Thus the robust performance specification
(28) cannot be expressed as a convex constraint on the nom-
inal closed-loop transfer matrix.

in the next two sections we examine some robustness
constraints from classical control, applicable to “single-
loop”’ systems (those with asingle actuator and a single sen-
sor). These constraints are expressed in terms of the nom-
inal loop gain L"™ = PJJ™K.

C. Classical Gain and Phase Margins, “Loop Margin”

Perhaps the earliest robust performance specifications
are those which limit in some way how close the Nyquist
plot of the nominal loop gain can come to the critical point
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+1.5Well-known examples are the gain and phase margins,
which express the proximity of the loop gain to +1 for L™"
real and |L"°™| = 1, respectively.

Let us show how classical specifications of minimum gain
and phase margins can be interpreted in our framework as
robust performance specifications. The nominal plant and
controller have loop gain L"™ = P}2™K; the system with
the perturbed plant shown in Fig. 39 has a loop gain

1
1
'
1
T
1
) ppom 1
1
]
1
)
1

Fig. 39. The perturbed plant for gain and phase margin
constraints.

L(s) = A(s) L"™(s). The gain margin constraint
GM = GMp,
can be expressed as the robust performance constraint:
The closed-loop system is stable for all real, constant A
such that 1/GMpin < A < GMpin. 29)

In words, a minimum gain margin guarantees stability of
the closed-loop system despite variations in a real param-
eter which scales the nominal loop gain.

The phase margin constraint

PM = PMpnin
can be expressed as the robust performance constraint
The closed-loop system is stable for all stable all-pass A(s)
such that | 2 A(jw)| < PMy,;, for all w. (30)

In words, a minimum phase margin constraint guarantees
that the closed-loop system will remain stable despite per-
turbations in the loop gain consisting of frequency depen-
dent phase-shift less than PM,;, for all f'requencies.7

For low order systems, limits on the gain and phase mar-
gins usually limit the proximity of L"°™ to +1 for all fre-
quencies; butfor higher order systems there is a greater risk
that this is not the case: it is possible for a system to have
large gain and phase margins, and yet have a loop gain of
L™ (joe) = 0.999 + 0.001j at some frequency wy. Figure 40
shows an example of a loop gain which has comfortable
gain and phase margins, but has a Nyquist plot which comes
uncomfortably close to the critical point.

®In classical control the critical point is —1 since the actuator
signal is minus the controller output, reflecting the tradition that
feedback should be “negative.”

“Itis also possible to view the phase margin constraint as guar-
anteeing stability despite constant unit magnitude complex loop
gain perturbations, which is more analogous to our interpretation
of the gain margin constraint as a robust performance specifica-
tion. Giving aphysicalinterpretation of such a perturbation is quite
difficult, however!
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Fig. 40. A Nyquist plot of a loop gain which has good gain
and phase margins, but a small loop margin.

A measure of robustness we will call loop margin does
not share this “loophole” with the gain and phase margins.
The loop margin M is simply the minimum distance in the
complex plane between the Nyquist plot of the loop gain
and the critical point +1:

M = min dist (L"™™(jw), +1) = min |1 = [™"(w)|. 31
This definition is illustrated graphically in Fig. 40.
A classical specification of minimum loop margin,
M = M, (32

can be interpreted as a robust performance constraint
as shown in Fig. 41. The perturbed loop gain is

Pnom

Fig. 41. The perturbed plant for loop margin constraint. A
is a stable transfer function such that |A(jw)| < 1/M for
all w.

L(s) = L"™(s) + A(s), where A(s) is a stable transfer function.
Such a perturbation is often called an additive loop gain
perturbation, to distinguish it from the multiplicative per-
turbations used in the gain and phase margins above. (32)
is equivalent to:

The closed-loop system is stable for all stable A

such that |Alle < M. (33)

556

In words, meeting a minimum loop margin specification is
equivalent to guaranteeing stability of the closed-loop sys-
tem despite additive perturbations of the nominal loop gain
by any stable transfer function with magnitude less than
1/M for all frequencies. Unlike the phase margin case, the
perturbation transfer function is not restricted to be an all-
pass filter.

Note that the loop margin is small in Fig. 40, despite the
large gain and phase margins. From (33), this means that a
small additive perturbation to the nominal loop gain could
resultin aclosed-loop unstable system, even though it takes
a relatively "“large” real scalar or allpass loop gain pertur-
bation to destabilize the system.

The minimum loop margin (32) is expressed in terms of
an open-loop quantity of the nominal system, the nominal
loop gain L"™, but we will now show that it is in fact equiv-
alent to a convex constraint on the nominal closed-loop
transfer matrix H.

The loop margin is related to the sensitivity transfer func-

tion H?™ = 1/(1 — PJ3™ K) which was introduced in the pre-
ceding subsection. We can write
1 1
M = min |1 = L™M(jw)| = = —.
in | fol ] GEEN
= L"O"'(w)l

(34

Thus, a small loop margin corresponds to peaking of the
sensitivity transfer function at some frequency. It also fol-
lows that (32) can be expressed as

" H?gm”m = 1/Mmin' (35)

a convex constraint on the nominal closed-loop transfer
matrix.

The relation (34) between the loop margin and peaking
of the sensitivity transfer function is well known. Horowitz
[6, p. 148] states (with critical point changed from —1to +1,
to match our notation),

... itis not necessarily a useful practical system, if the locus
[of L] passes very close to the +1 point. In the first place, a
slight change of gain or time constant may sufficiently shift
the locus so as to lead to an unstable system. In the second
place, the closed-loop system response has 1 — L for its
denominator. At those frequencies for which L is close to +1,
1 — Lis close to zero, leading to large peaking in the system
frequency response.

D. Circle Criterion Constraint

The reader may have recognized the minimum loop mar-
gin constraint (32) of the previous section as a special form
of the circle criterion due to Zames [62], Sandberg [63], and
Narendra and Goldwyn [64] (see also [65]-[68]). The circle
criterion requires the loop gain to remain outside a for-
bidden circle in the complex plane; if the circle is centered
at the critical point +1 and has radius M, this is the loop
margin constraint (32).

The circle criterion provides a sufficient condition for
closed-loop stability® despite certain nonlinear plant per-
turbations. The perturbations are time-varying memoryless
nonlinearities in the actuator, as shown in Fig. 42; a() =
f(u(t), t). The time-varying memoryless nonlinearity f sat-

8Suitably defined for nonlinear systems.

PROCEEDINGS OF THE I[EEE, VOL. 78, NO. 3, MARCH 1990



prnom

Fig. 42. System with a time varying nonlinearity f. The per-
turbed plant is nonlinear.

isfies a sector condition: roughly speaking, f multiplies u
by at least « and at most B, i.e., forallt,

ax? = xf(x, t) < Bx%

where we assume 0 < o < 1 < 8.° This is shown graphically
(for a given time instant ty) in Fig. 43.

f(l, to) Ve
L+ " slope is 8
’
.
.
.
’/ 4"
e ”’(\s,lope is a
L
S T
- 7
7
» .
- p

Fig. 43. An example of a sector [a, 8] nonlinearity f.

The circle theorem states that if the nominal system is
closed-loop stable and the Nyquist plot of the nominal loop
gain remains outside the circle symmetric with respect to
the real axis and passing through the points 1/8 and /e,
then the perturbed closed-loop system of Fig. 42 will be sta-
ble. It should be pointed out that the circle criterion is not
generally a necessary condition for stability with such a
nonlinearity in a system, so the specification of a circle cri-
terion constraint is a conservative approximation of the

robust performance specification that the system should
remain stable for all nonlinearities in sector [«, 8]

The circle theorem yields another interpretation of (32)
as a robust performance constraint: (32) and therefore (35)
hold if and only if the circle criterion is satisfied for non-
linearities in sector [1/(1 + M), 1/(1 — M)]. Thus the closed-
loop convex constraint (35) can be viewed as guaranteeing
stability despite time-varying memoryless nonlinear per-
turbations in the loop.

In fact, any circle criterion constraint for a nonlinearity
in sector [a, 8], with 0 < a < 1 < 8, is closed-loop convex.
To see this, we note first that the constraint thatthe nominal
loop gain remain outside the forbidden circle can be
expressed as

dist (L™"(jw), ¢)) > r  forallw (36)

where ¢ = (/o + 1/8)/2 is the center of the circle and r =
(1l = 1/B)/2 is its radius. This constraint on the nominal
loop gain is equivalent to

L™+ 6
“T—LW =1 (37)
if we set
-2 -2
v = 01_+_L and & = a—ﬁ—ﬁ_a_ﬁ. (38)
B -« 8-«

The constraint (37) is clearly closed-loop convex because it
is simply the constraint || H"™|,, < 1 for the nominal sys-
tem with w and z selected as in Fig. 44. The equivalence of
(36) and (37) comes about because with these choices of y
and & the bilinear transformation H = (yL + 8)/(1 — L) maps
the exterior of the critical circle, the permissible region for
L™ in (36), to the interior of the unit circle, the permissible
region for H in (37). This is illustrated in Fig. 45.

A generalization of this idea can be made in the case
where it is desired to insure that the Nyquist plot of the
nominal loop gain L"°™ remain outside a region that is the
union of disks, all of which are symmetric about the real
axis, contain the point +1, and do not cross the imaginary
axis. An example with two such disks is shown in Fig. 46.
From the preceding discussion it should be clear that we
can express the constraint that L"" remain outside the for-
bidden region as

y1P, K + &4 Y,P, K + 6
o . . Hi—— <1 and |22 <1, 39
The limiting case @ = 8 = 1 yields the nominal system. 1= PuK e 1 - PuK lle
ittt -7
1 1
w " 4 z
1 1
1 1
r 1
1 1
1 1
I 1
1 + I
: PV" F :
1 ]
1 !
I I
A : i
. ! ! .
! U | + !
3 1
P K ' * !
_____ e e e e e = -
Fig. 44. |H |l =< 1 for this nominal system if and only if the circle criterion is satisfied.
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Fig. 45. Equivalence of constraints on L and H.
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Fig. 46. Forbidden region for the loop gain L is the union
of two disks.

where v,, 81, v, and &, are obtained from ay, 87, @ and B,
as in (38). The constraint (39) is clearly closed-loop convex
since it requires the simultaneous satisfaction of two con-
vex constraints on the closed-loop transfer matrix.

E. Simultaneous Versus One-at-a-Time Perturbations

We showed in the preceding sections how to express cer-
tain robust performance constraints as convex constraints
on the nominal closed-loop system. There is an important
subtlety involving simultaneous satisfaction of two or more
of these robust performance constraints, which arises par-
ticularly often in systems with multiple actuators and mul-
tiple sensors. Consider, for example, the two-sensor, two-
actuator system shown in Fig. 47.

One way to impose a minimum robustness specification
on this system is to constrain each loop separately—for
example, we may require that the loop gains from point A,
to point B, in Fig. 48(a) and from point A; to point B, in Fig.
48(b) each have a loop margin exceeding 0.5. As seen in sec-
tion VII-C, this requirement can be expressed as a convex
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A+ permissible”
g region for L

W ———> f—————— z
U1 P N
U2 Y2
K

Fig. 47. Two-actuator, two-sensor system.

constraint on the nominal closed-loop transfer matrix—
specifically, a constraint that two appropriate closed-loop
transfer functions have magnitudes less than 2 for all fre-
quencies.

In a single-loop system such a loop margin would indi-
cate robustness to additive loop gain perturbations less than
0.5in magnitude for all frequencies; for this system it means
that the system will remain stable for loop gain perturba-
tions in either loop separately. However, it is entirely pos-
sible that our two-loop system can be destabilized by simul-
taneous, extremely small perturbations (magnitude << 0.5)
in both loops. The large loop margins guarantee only that
the system cannot be destabilized by either a small additive
perturbation in one loop or the other. If the real intention
is to prevent instability when both loops are perturbed
slightly, then we cannot express our specification as two
separate robust performance constraints on each loop. This
subtlety, and the confusion it caused, was part of the moti-
vation for the development of a “modern” framework for
robust performance specifications.

It is interesting to note that this subtlety does not arise
when we consider only differential sensitivities, since the
first order effects of many simultaneous parameter varia-
tions simply add. Thus, the first order sensitivity (derivative)
of some closed-loop transfer function in our two loop sys-
tem above to small variations in the two actuator gains could
be calculated by considering the effects of each pertur-
bation separately. In the terms of differential sensitivity,
then, the subtlety is a higher order effect.

One of the successes of multivariable control theory is
the development of an understanding of how to properly
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Fig. 48. Systems with one or the other loop broken.

generalize the loop margin constraint (32) to multiple-
actuator, multiple-sensor systems. One such generaliza-
tion uses the singular values of the loop gain transfer matrix
Lrom = prem K. A robustness constraint analogous to the
loop margin constraint, introduced in [23], is:

oll"™(jw) — ) = M  forall o, (40)

where o(+) denotes the minimum singular value. This spec-
ification can also be expressed as a convex constraint on
the nominal closed-loop transfer matrix:

4 = o™~ = 1UM. (41)

This robust performance specification is an example of a
“modern’’ robust performance specification.

F. Modern Method—Small Gain Theorem

Amodern framework for robust performance constraints
has been developed by Doyle and Stein and other research-
ers [23], [67]. (See also the IEEE collection edited by Dorato
[70].) Each perturbation is expressed as an additive pertur-
bation inside the plant as shown in Fig. 49; the nominal plant
results when each perturbation is set to zero. The pertur-
bations are then extracted from the plant as shown in Fig.
50.

The resulting system has exactly the same form as the
basic feedback system in Fig. 5, but with the perturbations
substituted for the controller. The vector signal t plays the

°This is the transfer matrix of the loop ‘broken at the sensor;"”
it is not the same as the transfer matrix KP}5™ of the loop “broken
at the actuator.” This is one of the many subtleties involved in
extending concepts from classical, single actuator, single sensor
control systems to multiple-actuator, multiple-sensor systems.

Fig. 49. Two internal additive perturbations.

BOYD et al.: LINEAR CONTROLLER DESIGN

Uy Y1

U2 Y2
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A, B
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role of the sensed output y in Fig. 5; tis the vector of signals
which drive or excite the perturbations in our perturbed
system. The vector signal s plays the role of the actuator
signal u in Fig. 5; s is the vector of signals generated by the
perturbations in our system.

In our framework, it will be convenient to include the
signal s in the exogenous input w, and the signal t in the
regulated output signal z. The closed-loop transfer matrix
of the nominal system from s to tis then a submatrix of H"™;
we denote it by HP™. H®™ is the closed-loop feedback
transfer matrix ““seen’’ by the perturbations when they are
added to the nominal system, as shown in Fig. 51.

The principle tool used to establish robust stability for
such a system is the small gain theorm [71] which, roughly
speaking, states that if the perturbations A and the closed-
loop feedback HY™ ““seen’’ by the perturbations are not too
“large,” then the feedback loop in Fig. 51 is stable, and
hence the closed-loop perturbed system shown in Fig. 49
is also stable. An advantage of this method is its great gen-
erality—the perturbations can be nonlinear and time-vary-
ing, and different ways of measuring what “large” and
“small’”” are for H{°™ and A can yield different conditions
for robust stability.

If the perturbations are LTI and stable, so that the per-
turbed plant is also linear time-invariant, then one way to
express the small gain theorem is:

If GHP™(jw)) 3(A(jw) < 1 for all w,
the perturbed closed-loop system is stable.  (42)

Inclassical terms, the small gain theorem expresses the idea
that if the loop gain has magnitude less than one at all fre-
quencies, then the feedback cannot destabilize the system.
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Fig. 50. Extraction of additive perturbations.

nom
is

A

Fig. 51. The loop for the small gain theorem.

Partly because of the small gain theorem (42), it has
become common to express robust performance con-
straints in the form:

The system remains stable for all perturbations &
such that 5(A(jw)) < lw) for all w. (43)

The small gain theorem shows that the convex constraint
on the nominal closed-loop transfer matrix,

GHPX™(jw) < 1lw) for all w, (44)

is sufficient to guarantee the robust performance specifi-
cation (43), or in other words, the constraint (44) is stronger
than the constraint (43). Doyle observed that in fact the two
constraints are equivalent, so that the closed-loop convex
constraint (44) is necessary and sufficient for robust stability
(43).

The careful reader will notice that in passing from Fig. 50
to the robust performance constraint (43), the set of pos-
sible perturbations quietly grew—specifically, in Fig. 50, the
perturbations have a certain block structure, while in (43)
they do not. Avoiding this growth in the set of possible per-
turbations, and the corresponding unnecessary strength-
ening of the robust performance specification (43) is the
motivation behind Doyle’s introduction of the concept of
the structured singular valve [72]. See [69] for the case where
the perturbation transfer matrix is restricted to be diagonal.

This modern framework allows many different types of
perturbations to be considered, and not just perturbations
on the loop gain. To give one example, consider a system
with a so-called additive plant perturbation, meaning that

P,, = P;3™ + A, with a bound given on the size of the per-
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turbation, say, |l < D. This is shown in Fig. 52. The plant
perturbation could represent errors in modeling the plant,
component variations, or deliberately ignored plant
dynamics.

\ P :
w ——— :
e e
u : Pnom : y o
: o
| |
| > A |
| )
I I
| '
i g '
K

Fig. 52. An additive plant perturbation A.

We consider the following robust performance specifi-
cation:

The closed-loop system requires stable for all
A with Al < D. (45)

Roughly speaking, this specification means that our con-
troller must stabilize all plants with transfer matrices P,,
that differ from the nominal transfer matrix P}J™ by less than
D. Following the method outlined above, we extract the
perturbation as shown in Fig. 53.

Examination of Fig. 53 shows that for the additive plant
perturbation, we have

HE™ = KU = PR™K)™".

Hence the robust performance specification (45) is equiv-
alent to the convex constraint on the nominal closed-loop
transfer matrix,

IHP™ o = 1Kt — PI™K) "l < 1D (46)
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Fig. 53. The additive plant perturbation A extracted from
the plant.

It is interesting to note that (46) can also be interpreted
asaperformance requirement, a bound on actuator author-
ity, since Hy™ can also be interpreted as the closed-loop
transfer matrix from sensor noise to actuator signal. Thus
Doyle and Stein’s observation of the equivalence of our
robust performance specification (45) and (46) tells us that
excessive actuator authority (H°™ large; a performance
constraint) is equivalent to the possibility of system de-
stabilization with a small additive plant perturbation (a
robust performance constraint).

G. A Special Case of Robust Performance

In the previous three sections we considered various
robust performance specifications which guaranteed
closed-loop stability despite certain variations in the plant.
There are very few results available which guarantee sat-
isfaction of other performance specifications, e.g., small
step response overshoot, low actuator authority, or noise
response, despite variations in the plant. In this section we
consider one such result. We will show that it can be
expressed as a convex constraint on the nominal closed-
loop transfer matrix H™™.

The problem and the derivation of the relevant constraint
on a closed-loop transfer matrix is presented in a different
but equivalent form by Francis in [73]. The system in ques-
tion is shown in 54. The perturbed closed-loop transfer
matrix is

1
1+ PK(1 + A)
H* =
PK(1 + A)
1 + PoK( + A)

Its first component is the closed-loop transfer function from
the command w to the tracking error z;, which is also the
classical sensitivity transfer function. Its second compo-
nent is the classical complementary sensitivity transfer
function or 1/O transfer function.

We consider a frequency domain specification of track-
ing:

|H(jw)| < Blw)  for all w. (47)

B(w) is presumably small for those frequencies where the
command w has appreciable power.
The perturbation A is stable and satisfies

|A(w)| < Alw)  forall w (48)

The robust performance specification we consider is:
For all A satisfying (48), the closed-loop system is stable
and satisfies the tracking specification (47).

As seen in section V1I-F, robust stability holds if and only

1
|HP (jo)| <= —

@ for all w. (49)

Rewriting (47) in terms of H7°™ and H3°™ means the robust
tracking specification is equivalent to

H?om(jw)

— | < for all w.

T+ AGo) HI™ () < Blw) or all w (50)
In [73] it is shown that constraints (49) and (50) together are
equivalent to the single constraint

[H" )|

B@) + Alw) |HP*™(jw)| < 1

forallw. (51)
The constraint (51) is clearly closed-loop convex.

VIIl. NoN-Convex DESIGN REQUIREMENTS

The preceding three sections have shown that a large
range of design specifications for LTI feedback systems are
closed-loop convex. Nevertheless there are several design
specifications that are often important and that cannot be
expressed as convex constraintson the closed-loop transfer
matrix. In this section we present three such examples, all
of the type we labeled control law specifications in section
1-B.

A. Open-Loop Stability of the Controller

Consider the system shown in Fig. 55, and letu, w, y,and
z be scalar with P,(s) = 1/(s + 1). Two controllers that sta-
bilize the plant are

s+ 1 . s+ 1
K@s) = =36 57— d Kis) = 6——;
©) Jrs+3 O ts) 6s+8'
_____________________ :
1
—r—> 21
P, = Paom(l + A P

Fig. 54. Stability and tracking performance must be guaranteed as P, varies.
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K z

Fig. 55. H is the sensitivity transfer matrix (/ — P,,K)™".

they result in closed-loop transfer functions from w to z of

2

s°+s+3 - s+ 8
B EE—— d H(s) = ,
s?+ s+ 39 an (s) s+ 2

H(s) =

respectively. Note that both K and K are open-loop stable.
We know that a transfer function from w to z that is the

average of H and H can be achieved with some stabilizing

compensator K, s; computation using equation (8) yields

Kools) = 35+ 1)(s? — 55 — 27)
03T 5% + 62 + 265 + 159

the poles of which are —6.0479 and 0.0240 + j5.1273. So
although H and H are achieved with open-loop stable con-
trollers, the average of H and H is not. Therefore open-loop
stability of the controller is not a closed-loop convex spec-
ification.”

B. Decentralized Controller

Consider again the system of Fig. 55, but now letu, w, y,
and z be two-vectors with

Us 0
Pus) = { }
0.1/s /s

Suppose it is specified that the controller be decentralized,
i.e., that uq is driven only by y; and u, is driven only by y,—
meaning that the controller transfer matrix K is diagonal.
Two controllers that meet this specification and stabilize

the plant are

-1 0 _ -5 0

K(s) = { w and K(s) = { }
0 =1 0 -1

If we calculate the controller K, 5 that stabilizes the plant
and yields a closed-loop transfer matrix that is the average
of the transfer matrices achieved by the controllers K and
K, we find

—3(s + 5/3)

(s +3)
Kos(s) =
0.4(s + 2)

(s +3)

-1

Here u, is driven by both y, and y,, so K5 does not meet
the specification of decentralization. So decentralization is
not a closed-loop convex specification.

"However, for a single-actuator single-sensor system, it can be
shown that the requirement that the controller have no real un-
stable poles, is closed-loop convex.
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C. Controller Order

In the example in section VIII-A, K is second-order and
K is first-order; Ky 5 on the other hand is third-order. In the
example in section VIII-C, K and K are constant matrices,
i.e., zeroth-order controllers, but K, s has first-order dynam-
ics. Finally, in the example of section V-C(1), Kand K are first-
order Pl controllers, but Ky s is third-order. It should be quite
obvious that the specification, ‘“The controller K must have
an order no greater than n,” is not closed-loop convex.

IX. NUMERICAL METHODS FOR THE FUNDAMENTAL PROBLEM

In the previous sections we have shown that many spec-
ifications for a control system can be expressed as convex
constraints on the closed-loop transfer matrix H. Each spec-
ification has the form H € 3C;, and the Fundamental Prob-
lem can be rephrased as the question of whether the set
of closed-loop transfer matrices satisfying all the specifi-
cations,

Hopec = N -+ - N3,

is empty or not. In most cases this is an infinite dimensional
convex feasibility problem.

The purpose of this section is to discuss very briefly a few
of the important issues involved in numerical solution of
the fundamental problem.

A. Finite-Dimensional Approximations

All numerical computations will involve some finite
dimensional approximation of the infinite dimensional
problem. The most obvious approximation is to restrict the
search for an H € 3¢, to a finite dimensional subspace of
transfer matrices 3Cigapp- Thus, instead of determining
whether 3, is empty or not we determine whether Ispec
N 3Cigapp is empty or not. In effect, we have adjoined a fic-
titious additional constraint to our specifications.

It is often possible to make the added constraint Htdapp
meaningful in terms of some of the performance specifi-
cations. Let us consider a simple example. A discrete-time
system has a single actuator and a single sensor, and one
of the performance specifications is a step response bound

t=2012 -+ (53)

Here, w; might be a command input, and z, the variable it
is intended to command. Thus for t = 90, we require that
the step response has settled to within less than 1%. In many
applications, we might consider the inequalities given by
(53) for t = 90 as practically equivalent to the equalities

st =1, t=290091,092 --- (54)

which express that the step response has actually settled
by t = 90. In fact, the specification (54) yields a finite (at most
90) dimensional ¥, so we may take

Higapp = {Hlsn(® =1, t=90,91,92, --}.

1T-09 < s,() = 1+ 0.95,

In this case we can see clearly what restriction the finite
dimensional approximation JC,,, has placed on us—exact
settling versus 1% settling of the step response at t = 90,
and of course less for larger t. This is surely an acceptable
approximation in any real problem.

A general method for generating finite-dimensional
approximation to JC,p.. uses the free parameter represen-
tation (15). In the free parameter representation, Q ranges
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over the infinite dimensional vector space of all stable n,
X Nqens transfer matrices. We may restrict Q to lie in some
finite dimensional subspace, say, the space of linear com-
binations of some finite set of fixed, stable transfer matrices
Q,. This approach is taken in qdes [74].

What exactly does the approximation mean? Since 3Cqpec
N JCiyapp is an inner approximation (subset) of 3Cpe, if we
find that it is nonempty, then we can say with certainty that
the specifications are achievable. If we find that our approx-
imation 3Cspec M JCigapp is empty, on the other hand, then
all we really know is that if there is an H € Jpec, then it
does not satisfy 3Ccgapp-

Several views of this finite-dimensional approximation
can be taken. The designer can simply ignore the approx-
imation—this would be justified in the example above
where the approximation is simply a small perturbation, of
negligible practical significance, to the performance spec-
ifications.

It should also be possible to analytically determine
bounds on the error incurred by the finite-dimensional
approximation, although to our knowledge this has not
been done. On the basis of Ispec N Iigapp = &, WeE could
then conclude that a slightly smaller (tighter) set of spec-
ifications was unachievable. in other words, we could know
that if each specification were tightened slightly, then the
resulting set of specifications is not achievable. This is a
topic for further research.

B. Approximation of Specifications

Even after we have restricted our attention to a finite
dimensional subspace of H's, it may be necessary to approx-
imate some of the constraints. A good example is given by
the convex constraint (51),

| H7™ ()|
B(w)
which arose in section VII-G. There is no analytical method
known to determine whether a given rational 2 x 1transfer
matrix H satisfies the specification (51). Of course, we may
approximate this specification by

| HY"(jom)|
Blwy,)
form=1,..., M, (55)
where w,, - -+, wy is some grid of frequencies.

Some specifications can be checked (in principle) exactly
by an analytical method. An H,, specification can be checked
by determining whether a certain Hamiltonian matrix has
imaginary eigenvalues [75], [76]; an H, constraint can be
exactly checked by solving a Lyapunov equation. Even
though there are analytical methods for determining these
specifications, it may still be desirable to approximate them
as in (55) above.

One goal of research in the area of semi-infinite pro-
gramming is to find efficient methods for picking the fre-
quencies in (55) [28].

+ A | HP™(jw)| =1 forall o,

+ Alwm) | H3* (jw)| < 1

C. On Finite Dimensional Nondifferentiable Convex
Optimization

There are many methods available to solve the resulting
finite dimensional convex nondifferentiable feasibility
problems.
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We will use x € R¥ to denote the decision variables. We
suppose that each specification has the form

3, = {H|¢;(x) = 0} (56)

where ¢, is a convex function from R¥into R. For example,
if
3, = {HlIHl. = 2}

and our finite dimensional approximation is

K
Hrdapp = {H H=T +T X xQ r;}

then we could take

| -

Our optimization problem can now be expressed as

K
$ix) = H T+ T % xQiTs

minimize ¢(x), (57)
xeRK
where ¢(x) = max; ¢;(x). If the minimum in (57) is zero or
negative, then JCqpec N IHigapp is NONEMpty (feasible). If the
minimum in (57) is positive, 3Cspec N ICigapp is eMpty (infeas-
ible). This technique of minimizing the maximum “infeas-
ibility" is a standard approach in feasibility problems.

A discussion of the many numerical algorithms for the
nondifferentiable convex optimization problem (57) is
beyond the scope of this paper, but we shall describe one
extremely simple algorithm—the subgradient method (Shor
[77)), which is a generalization of the standard gradient
method for differentiable problems.

The subgradient algorithm applied to (57) proceeds as
follows: at the kth iteration, one simply picks any active ¢;,
i.e.,jsuch that ¢;(x®) = ¢(x¥). The next x** Vis then formed
as follows:

Ve, (x*)
klIve;(x*)l

X(k*1) (k)

=X

(we may replace V¢, with any subgradient at x' if all the
active ¢; are nondifferentiable). This represents a fixed step
of length 1/k in the direction of the negative gradient of the
active ¢; selected, and may or may not be a descent direc-
tion for the problem (57), meaning that we can have ¢(x“* ")
> ¢(x®). Nevertheless, it can be shown that this simple
algorithm is convergent to the (global) minimum in (57). If
the minimum value of (57) is negative, the subgradient algo-
rithm will produce a feasible point in a finite number of
iterations.

D. Effectiveness

By far the most important attribute of convex optimiza-
tion problems is that there are effective methods for solving
them.

This assertion can be argued on several levels. On a prag-
matic level, we note that very large linear and quadratic con-
vex programs are routinely solved numerically; the growth
of computation time with numbers of variables and con-
straints has been observed empirically to be quite mod-
erate (much less than combinatorically). In constrast, global
solutions of nonconvex programs are attempted only occa-
sionally, and then for much smaller numbers of variables.
These methods generally require extremely large compu-
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tationtimes, which in addition tend to rise combinatorically
with the numbers of variables (see e.g., Pardalos and Rosen
[78]). For this reason, numerical optimization of general
nonconvex programs is mostly restricted to the compu-
tation of local optima, or heuristic methods to compute the
global optimum. In many cases, these local or heuristic
methods produce acceptable solutions, which may even be
globally optimal, but this cannot be guaranteed.

It is also possible to put this notion that convex opti-
mization problems are “‘substantially more tractable” than
nonconvex problems on firm theoretical ground. We very
roughly paraphrase some of the results from the book by
Nemirovsky and Yudin, Problem Complexity and Method
Efficiency in Optimization [79], to which we refer the reader
for complete, precise statements. The minimum number of
“computations”” (function and gradient or subgradient
evaluations) required to compute the global minimum of
a general differentiable function in n variables, within an
accuracy of ¢, necessarily grows like (1/e)"—roughly speak-
ing, the complexity of asearch over an e-grid. If the function
is convex, however, the minimum number of ““computa-
tions”” necessary to compute an e-approximation of the
global minimum has more the flavor of n log (1/e)—roughly
speaking, the complexity associated with a bisection
method. The reader should note the slow growth of this
number with both accuracy (1/¢) and number of variables
(n).

X. AN Exampie OF FINDING THE LiMIT OF PERFORMANCE

The results of this section are taken from [80], to which
we refer the reader for more detail.

ISy = ¥p + dsens, Where dg.,, is a sensor noise. A classical
block diagram of the closed loop system is shown in Fig.
56.

In our framework, we take

d
u
W = | deens |, z = ’
d

Yp

proc

where d is a fictitious exogenous input injected into Yp
which we will use to express a robustness constraint. This
is shown in Fig. 57.

Thus the first row of H consists of the closed-loop transfer
functions from d, dsens, and dy,o to the actuator signal u;
the second row consists of the closed-loop transfer func-
tions from d, dens, and dpq to the plant output y,,.

We take

14-5
Plo) =G0 s’
which consists of a double integrator with some excess
phase from the allpass term (4 — s)/(4 + s). This allpass term
approximates a 1/2 second delay (e "*?) at low frequencies.
We may think of the allpass term (4 — s)/(4 + s) as account-
ing for any and all of a variety of sources of excess phase
in a real control loop, for example, small delays and anti-
alias filters. The idea of using a double integrator system
with some excess phase as a simple but realistic typical sys-
tem with which to explore control design tradeoffs is taken
from a study presented by Gunter Stein in [81].

The plant was discretized using a zero order hold at 10
Hz. The discrete time transfer function is

A. The Plant
) ] ) P (s = —0.00379%z? — 0.7241z — 1.1457)
We consider the design of a regula.tor fora system with o(2) = 27 — 2670327 7 2.34065 — 0.6703
a single actuator (scalar u) which is disturbed by an input-
referred process noise dy,... The scalar output we wish to _ —0.00379(z — 1.492)(z + 0.7679)
regulate is y,, and the only signal available to the controller (z — DXz — 0.6703)
u dproc d
T J*’ _l*'
r=0 . K S Py - Y
M_T_—— dscns
Fig. 56. The regulator system.
d ; |
dsens > —+——>> u
dproc >‘; : Yp
-+ P + + t
0 1
b+ + F \
St 1
1 1
) 1

Fig. 57. The regulator system redrawn.
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We will assume that the discrete time sensor and input
referred process noises are zero mean, white, indepen-
dent, with RMS values

(Edens(t)? = 1

(Edpeoct™"? = 10.

B. The Specifications
The specifications we will explore are:

« Plant output regulation—a maximum RMS response at
the plant output y, due to the process and sensor
noises.

« Actuator effort—a maximum RMS response at the
actuator u due to the process and sensor noises.

+ Robustness to loop gain perturbations—a minimum
loop margin constraint, or equivalently, a minimum
robustness of the closed-loop system to additive loop
perturbations.

+ Robustness to additive plant perturbations—a mini-
mum robustness of the closed-loop system to additive
plant perturbations.

These specifications can be expressed as follows:

Plant output regulation. Assuming K stabilizes P, we can
calculate the RMS value of y, in terms of Hy, and Hy, the
closed-loop transfer functions from the sensor and process
noises to yp,:

[RMS (y)I? = lim Ey,(0°
t— o0

. } 10 (™ )
-1 S | Hyple/®|? d@ + — S | Hye/M|? dQ.
27 J-= 27 J-r

Thus the regulation specification RMS (y,) = « can be
expressed as the convex specification on H:
1o joy2 10 (" o2 2
— | Hop(e!)]" d@ + — |Hp(e™)]" d2 = o
27 J-x 2T J-=
Actuator effort. The actuator authority specification
RMS (u) < § can be expressed as the convex specification
on H:
1 " 2 10 F 2 2
— |Hppe!®[? d2 + — [Hy(e!™|? d2 = 8%
21 J-r 27 J-x
Robustness to loop gain perturbations. From section
VII-C, the robustness specification that the loop margin
exceed M., is equivalent to the closed loop constraint

H H21Hm < 1er\'\inr

since H,, is the classical sensitivity transfer function.
Robustness to additive plant perturbations. We require
that our closed-loop system remain stable if P, is perturbed
to Py + AP, where AP is any stable transfer function with
lAPle < Dumin. From section VII-F, this constraint can be
expressed in terms of the closed-loop transfer matrix H as:

u H12Hoe = 1/Dmin/

where H,, is the closed-loop transfer function from the sen-
sor noise to the actuator signal. We may interpret D = 1/
| Hy,ll as the maximum size (in terms of || - |}) additive plant
perturbation that the closed-loop system can be guaran-
teed to withstand while remaining stable.

A general specification composed from these can be
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expressed as:
RMS (y,) < @, RMS (u) < 8, M = My, D = Dpi.

in general, the robustness requirements that M and D be
large are independent. A system may have good margins
(i.e. large M), but be quite sensitive to additive plant per-
turbations, (i.e. small D), and vice-versa.

C. LQG: An Analytically Computable Tradeoff of RMS
Regulation Versus RMS Control

We first concentrate on the first two specifications, on
regulation and actuator authority. In this section we will
show how LQG theory can be used to determine analytically
exactly which specifications of the form

RMS (u) <« RMS (y,) <8

are achievable by a stabilizing regulator. The boundary
between achievable and unachievable specifications (in the
(a, B) plane) we refer to as the tradeoff curve of regulation
versus actuator authority.

Given a fixed positive p, the LQG optimal regulator min-
imizes (over all stabilizing regulators) the weighted cost
function

J = lim E{ y,(0® + pu(t®} = RMS (y,’* + pRMS w)>.
t—+ o

We now show that this implies that the RMS values of v and
¥, achieved by the LQG regulator give a point on the trade-
off curve between these quantities. If some other LTI reg-
ulator stabilized P and achieved better (smaller) RMS values
of both u and y,,, then it would achieve a cost J smaller than
the LQG regulator (recall that p > 0). This is impossible,
since the LQG optimal regulator gives the smallest/ achiev-
able by any LTI regulator that stabilizes P.

in multi-objective optimization, a point which has the
property that no other point yields lower values for every
objective, is referred to as a Pareto optimal point. We have
justobserved that the LQG regulators correspond precisely
to the Pareto optimal regulators, where the two objectives
are RMS regulation and RMS actuator authority [26], [82].

As p varies, the RMS values of u and y, achieved by the
corresponding LQG optimal regulator sweeps out the
tradeoff curve, as shown in Fig. 58.

Several interpretations of the curve and shaded region
in Fig. 58 can be given:

+ The design specifications RMS (y,) < o, RMS (u) < 8
are achievable with a regulator that stabilizes P if and
only if the point (e, B) lies in the shaded region of Fig.
58.

« Every regulator K that stabitizes P achieves RMS values
of y, and u that lie in the shaded region, on or above
the tradeoff curve.

+ No regulator K that stabilizes P can achieve RMS val-
ues of u and y that lie below the curve. This is true for
regulators of any order, designed by any method.

For example, the simple lead-lag regulator

stabilizes P, and achieves RMS values of u and y, of 27.55
and 5.98, respectively. This is shown in Fig. 59.
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Fig. 58. Tradeoff between achievable RMS noise sensitivities.
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Fig. 59. A simple regulator which achieves performance above the tradeoff curve.

Any regulator K that gives closed-loop performance in the
shaded region in Fig. 59 will achieve the same or better out-
put regulation than the simple lead-lag regulator K (RMS Yp
no worse than 5.98) and use the same or less actuator effort
than K (RMS u no worse than 27.55). One family of such reg-
ulators are the LQG optimal regulators with 1.35 x 10~% <
p =231

From Fig. 58 we may conclude that the specification

RMS(u) < 10, RMS(y,) < 4

can be achieved by a LTI regulator that stabilizes P, while
the specification

RMS(u) =< 3, RMS(y,) <= 5
cannot be achieved by any LTI regulator that stabilizes P.

D. Tradeoff Curves Involving Noise Sensitivity and
Robustness

We now examine how the four different specifications
interact. To simplify matters we will lump the regulation
and actuator authority into one specification, of the form

] = RMS(y,)* + oRMS(u)* < «

where p = 10~ We will refer to / as the noise sensitivity.

If there are no constraints on robustness to plant per-
turbations or robustness to loop gain perturbations, then
the p = 107 LQG regulator K;oc minimizes J over all sta-
bilizing controllers. The LQG optimal (current estimator)
regulator is

45.9747° — 72.792* + 28.138z

Kioc(@) = -

z2 — 0.80612> + 0.7107z — 0.1071

45.974z(z — 0.91305)(z — 0.6703)

(z — 0.17897)(z ~ 0.3136 + 0.7072j)(z — 0.3136 — 0.7072j)"

566

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 3, MARCH 1990



For this regulator, the RMS values of u and y, are 63.73 and
2.0184, respectively. The value of the cost function is J =
4.48.

For K;oc we find that || Hy, ||, = 3.34, so that M = 0.30 is
the closest the Nyquist plot comes to the critical point +1.
This can be seen from the Nyquist plot in Fig. 60, where we

1.5 ‘ " - + .

SRR R I S S S R (¥

real(PL)

Fig. 60. Nyquist plot of p = 107* LQG regulator, with M =
0.30 circle.

have plotted the loop gain in the classical style, with —1as
the critical point. The circle of radius 0.30 centered at —1
is also shown in Fig. 60. The magnitude of the sensitivity
transfer function H,, for K, is shown in Fig. 61. Note that
its maximum is 10.5 dB (= —20 log M).

For K qc, we find that [|Hyll., = 83.02, so D = 1/83.02 =
0.0121. Hence, there are stable plant perturbations AP that
destabilize the system with |AP|, as small as 0.0121. One
destabilizing perturbation is

_ 02152 x 107%(1 - 2)
T 22 - 0.985z + 0.9801°

AP(z)

10

for which ||AP{,, = 0.0125, which is not much above D. The
frequency response magnitude of this AP is plotted in Fig.
62. AP might represent a mechanical resonance that was
ignored when the plant was modeled for the controller
design.

Now we turn to the question: exactly which specifica-
tions of the form

/S /maxl D= Dminr M= Mmin

are achievable by regulators that stabilize P? Unlike the
tradeoff of RMS actuator effort, no exact analytical method
is known that will answer this question, although some work
has been done [83]. A major point of this paper is that it can
be determined numerically.

We computed various “slices”” of the achievable region
in the space of design goals (J, D, M), by fixing Dy, and M i,
and computing the boundary of achievable noise sensitiv-
ities, which we denote /.. For three fixed values of Drin,
the tradeoff between /., and 1/M,,;,, is shown in Fig.63.The
p = 107*LQG regulator is also shown. Since this regulator
achieves 1/D = 83.02, it lies below the 1/Dpin = 10 curve,
and on the 1/D,;, = 83.02 curve. All tradeoff curves with
1Dmin = 83.02 will pass through the LQG performance
point, and be horizontal to the right of it.

Note the interesting fact that by allowing the loop margin
to be less than 0.5, only modest improvement in the noise
response is gained, with the same tolerance D to additive
plant perturbations.

For four fixed values of M., the tradeoff between Jimin
and 1/Dy, is shown in Fig. 64. The p = 10™* LQG regulator
is also shown. Since this regulator achieves 1/M = 3.34, it
lies below the 1/M, = 2.0 curve, and on the 1/M,,,, = 3.34
curve. All tradeoff curves with 1/M,,;, = 3.34 will pass
through the LQG performance point, and be horizontal to
the right of it.

From Fig. 64 we can draw some interesting conclusions.
Consider the 1/M < 3.34 curve, that corresponds to reg-
ulators which yield the same or larger loop margin as the
p = 107* LQG regulator. The curve is relatively flat for 1/D
= 20, meaning that D can be increased to about 0.05 with
relatively small increase in RMS noise response, and the
same or larger loop margin (0.3). For the p = 1074 LQG reg-
ulator, this represents an increase in additive plant per-
turbation tolerance D of a factor of four.

1$(e7%)]

(=]
—

0.01 +

0 05 1

15 3 25
Q=uwT

Fig. 61. Magnitude of sensitivity transfer function of p = 10~* LQG regulator.
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Fig. 63. Tradeoff between RMS noise cost and loop margin.
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Fig. 64. Tradeoff between RMS noise and additive plant sensitivities.

Of course, all regulators that stabilize Pyield a noise sen-
sitivity / = J,qc, so that all curves lie on or above the hor-
izontal asymptote ‘//E = 2.117. Imposing the robustness
constraints will naturally increase the minimum noise sen-
sitivity / achievable with LTI stabilizing regulators. What is

0 10 20 30 40

50 - 60 70 80 90 100
1/D

neither intuitively obvious nor analytically computable is
how much the minimum noise sensitivity / must increase
when we impose the two robustness constraints. Figures
63 and 64 show precisely this tradeoff.

Let us give two examples of specific conclusions we may
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draw from Figs. 63 and 64. First, the specifications
Jj <3, M=05 D =004

can be achieved with a LTI regulator that stabilizes P (this
pointis marked “x" in Fig. 64). This specification represents
an increase in noise response over the LQG regulator (as
any achievable specification must), a moderate improve-
ment in loop margin over the LQG controller, and a sub-
stantial improvement in D, tolerance to additive plant per-
turbation, over the LQG controller:

Ve = 2117, Migg = 03, Digg = 0.0121.

Another improvement conclusion we may draw from Figs.
63 and 64 is that the design goals

Jj<3, M=05 D=008

are not achievable by any LTI regulator that stabilizes pP.

E. Comments About Finding the Limits of Performance

We have given an example demonstrating how the meth-
ods described in this paper can be used to determine
numerically the various tradeoff curves for competing
design goals or objectives. It should be emphasized that the
tradeoff curves shown in Figs. 63 and 64 represent funda-
mental limits of performance: they-do not merety show the
best we can do; they show the best anybody can do with
a LTI regulator of any form or complexity, designed by any
scheme or method. We believe that this information can be
very useful to the designer.

No control engineer would be surprised by the general
shape of the tradeoff curves shown in Figs. 63 and 64: it is
intuitively obvious that some improvement in robustness
can be realized at the cost of some degradation in RMS noise
sensitivity. But even for this very simple, typical plant, the
numerical values of the tradeoffs—how much improve-
ment in robustness can be ‘bought’ for a given increase in
noise response—is not at all obvious. Naturally for a com-
plicated multi-actuator multi-sensor plantandamuch larger
set of design specifications, the tradeoffs would be con-
siderably less obvious, and such computations correspond-
ingly more valuable.

XI. HisTORICAL NOTES

In this section we provide a brief history of some of the
central ideas in this paper. The purpose of this section is
twofold: first, to point out that some concepts relating to
the central ideas of this paper substantially predate the
development of “‘modern” linear control theory; and sec-
ond, to provide additional discussion of and references for
recent work related to the work in this paper.

A. Designing the Closed-Loop Transfer Matrix to Meet
Specifications

The idea of first designing the closed-loop transfer matrix
and then determining the compensation required to
achieve this closed-loop transfer matrix is at least forty years
old. An explicit presentation of a such a method appears
in J. G. Truxal’s Ph.D. thesis [84] in 1950. Chapter 5 of Trux-
al’s 1955 Automatic Feedback Control System Synthesis [85]
contains an exposition of this method, which Truxal attri-
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butes to Guillemin in 1947."% Truxal also cites a 1951 article
by Aaron [86], which presents a similar method.
On pages 278-279 of Truxal’s book we find:

The word synthesis rigorously implies a logical procedure for
the transition from specifications to system. In pure synthesis,
the designer is able to take the specifications and in a straight-
forward path proceed to the final system. In this sense, neither
the conventional methods of servo design nor the root-locus
method is pure synthesis, for in each case the designer
attempts to modify and to build up the open-loop system until
he has reached a point where the system, after the loop is
closed, will be satisfactory.

...Guillemin in 1947 proposed that the synthesis of feedback
control systems take the form. ..
1. The closed-loop transfer function is determined from
the specifications.
2. The corresponding open-loop transfer functionis found.
3. The appropriate compensation networks are synthe-
sized.

Such an approach to the synthesis of closed-loop systems rep-
resents a complete change in basic thinking. No longer is the
designer working inside the loop and trying to splice things
up so that the over-all system will do the job required. On the
contrary, he is now saying, “'l have a certain job that has to
be done. | will force the system to do it.”

The method presented by Truxal consists essentially of
selecting the poles and zeros of the closed-loop transfer
function in such a way that the closed-loop system meets
the performance specifications. He recognizes that the
transfer function of what he calls the “’fixed components”’,
i.e., the plant, places restrictions on the set of achievable
closed-loop transfer functions, but is not clear about what
these restrictions are.

Still, a rudimentary, partial version of the interpolation
conditions form of the parameterization of closed-loop
transfer matrices appears in Truxal’s book on pages 308-
309. There he states that if the plant has a nonminimum-
phase zero, so should the closed-loop transfer function (H
= PK/(1 — PK)). His reasoning is interesting: he argues that
if the closed-loop transfer function does not also vanish at
the unstable plant zero, then an (open loop) unstable con-
troller results, and “practical difficulties make this solution
completely undesirable.”

So Truxal has essentially the right parametrization, at least
for stable plants, but not quite the right justification. He has
confused several issues—in particular open-loop stability
of the controller and stability of the closed-loop system.

B. The Fundamental Problem

An excellent discussion of what we call the Fundamental
Problem appears on pages 28-34 of Analytical Design of Lin-
ear Feedback Controls (1957) by Newton, Gould, and Kaiser
[4]. Here are some crucial passages:

Unfortunately, the trial-and-error design method is
beset with certain fundamental difficulties, which must
be clearly understood and appreciated in order to
employ it properly. From both a practical and theo-
retical viewpoint its principal disadvantages is that it
cannot recognize an inconsistent set of specifications.

2The authors thank Professor D. D. Siljak for bringing this cita-
tion to their attention.
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The analytical design procedure has several advan-
tages over the trial and-error method, the most impor-
tant of which is the facility to detect immediately and
surely an inconsistent set of specifications. The
designer obtains a ““yes” or “‘no” answer to the ques-
tion of whether it is possible to fulfill any given set of
specifications; he is not left with the haunting thought
that if he had tried this or that form of compensation
he might have been able to meet the specifications.

Even if the reader never employs the analytical pro-
cedure directly, the insight that it gives him into linear
system design materially assists him in employing the
trial-and-error design procedure.

What Newton, Gould and Kaiser mean by “analytical
design” is the following:

In place of a relatively simple statement of the allow-
able error, the analytical design procedure employs a
more or less elaborate performance index. The objec-
tive of the performance index is to encompass in a sin-
gle number a quality measure for the performance of
the system.

They note:

Offsetting the above advantages of the analytical design
procedureare two important disadvantages. First of all,
itis unfortunate that many performance indices which
have engineering usefulness lead to analytically insolv-
able problems. Thus one if forced to compromise his
choice of performance index in order to obtain a solu-
tion to the design problem. The other major disad-
vantage is that...many practical problems lead to
involved solutions requiring considerable numerical
calculation. )

This paper is about how convex optimization theory and
recent developments in control theory allow us to develop
a new method of dealing with the Fundamental Problem.
This method, together with enormous increases in avail-
able computing power, helps us to overcome many of the
stated disadvantages of analytical control design.

C. Parametrization of Closed-Loop Transfer Functions:
Interpolation Conditions

The first essentially correct and explicit statement of the
interpolation conditions appear in a 1956 paper by Bertram
on discrete-time feedback control [87]. Another early expo-
sition, citing Bertram, can be found in chapter 7 of Ragazzini
and Franklin’s 1958 book, Sampled-Data Control Systems
[88]. In particular, on pp. 157-8 they give acomplete descrip-
tion of the interpolation conditions (on H = PKI(1 — PK))
for SISO plants:

Inwords, itis necessary that the specified over-all pulse
transfer function [H(z)] contains as its zeros all those
zeros of the plant pulse transfer function which lie out-
side or on the unit circle in the z-plane and that [1 -
H(2)] contain as its zeros all those poles of the plant
which lie outside or on the unit circle of the z-plane.

The equivalent interpolation conditions for continuous-
time systems first appear in a 1958 paper by Bigelow [89].

Thejustification for the interpolation conditions given by
Bertram is
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Unfortunately, perfect cancellation is impossible in any
practical system. It has previously been shown [here
Bertram cites work by Barker in 1950 [90]] that any
attempt to cancel a zero of [the plant] in the z-plane
outside the unit circle leads to a system which is un-
stable in practice.

The explanations provided by Ragazzini and Franklin and
by Bigelow are essentially the same. What is interesting is
that these authors have an understanding of the essential
idea of internal stability for single-input single-output sys-
tems, which is that the unstable poles and zeros of the plant
impose restrictions on the closed-loop transfer function.
This understanding comes long before the appearance of
any formal definition, and well before the widespread use
of state-space methods and the notion of controllability and
observability.

Youla, Bongiorno, and Jabr present the interpolation
conditions as necessary for the avoidance of unstable hid-
den modes in 1976 [91].

For multivariable systems, the necessary appearance of
non-minimum-phase plant zeros in the closed-loop trans-
fer matrix is shown in [92]. Multivariable interpolation con-
ditions appear in [93] and are more completely discussed
in [94].

Finally, a slightly different but equivalent form of the
interpolation conditions, derived from Desoer’s formal def-
inition of internal stability, is presented in a paper by Zames
and Francis [95].

D. Parametrization of Closed-Loop Transfer Matrices:
Factorization and MIMO Systems

The interpolation conditions for single-sensor, single-
actuator systems result naturally from the idea that un-
stable pole-zero cancellations result in unstable closed-loop
behavior. In the case of multiple sensors or multiple actua-
tors, this kind of simple intuitive reasoning is impossible,
The results on parametrization of achievable closed-loop
transfer matrices in the multiple-actuator, multiple-sensor
case depend on factorizations of transfer matrices. Early
treatments of the factorization of transfer matrices in terms
of matrices of polynomials are [96] and [97]; extensive dis-
cussion appears in [20]. The first parametrization of closed-
loop transfer matrices achievable with MIMO controllers
appearsin Youla, Jabr, and Bongiorno’s 1976 article on Wie-
ner-Hopf design for MIMO controllers [98]; the factori-
zation is in terms of matrices of polynomials. A complete
discussion of achievable closed-loop transfer matrices, in
terms of polynomial matrix factorizations, can be found in
[94].

A more recent version of the parametrization uses fac-
torization in terms of stable transfer matrices, and appears
first in Desoer, Liu, Murray, and Saeks [39], although the-
idea used in Vidyasagar [99]. Vidyasagar [42, ch. 3, 5] con-
tains a complete and thorough treatment of the parame-
trization of achievable closed-loop transfer matrices in
terms of stable factorizations. A clear and compact expo-
sition can be found in Francis [41, ch. 4].

E. Convex Optimization for Linear Feedback Control
Design

The proposed use of convex optimization in linear feed-
back control design dates back at least as far as 1964, when
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the first of an interesting series of papers by K. A. Fegley
and colleagues appeared.

in [100], Fegley presents a linear programming solution
to the problem of designing a feedback controller for a dis-
crete-time system. He restricts the closed-loop systemto be
deadbeat, i.e., have a transfer function of the form E-,
A,z™'; the decision variables of the linear program are the
coefficients A;. Constraints on the difference between the
output and a specific reference input appear as affine con-
straints on the closed-loop transfer function.

A longer paper by Porcelli and Fegley [101] expands and
generalizes the approach taken in [100]. Once again, the
problem is discrete-time control with the closed-loop trans-
fer function restricted to be deadbeat, but this time a wider
range of constraints is presented, including a constraint
corresponding precisely to the interpolation conditions as
they appear in Ragazzini and Franklin’s book. So, embry-
onic versions of four central ideas of the present paper
appear in [101): designing the closed-loop system directly;
noting the restrictions placed by the planton theachievable
closed-loop system; expressing performance specifications
as closed-loop convex constraints; and using numerical
convex optimization to obtain a solution.

Another two papers in the series also consider discrete
time feedback control design: in [102], quadratic program-
ming is used to handle constrained optimization of quad-
ratic performance indices for tracking reference signals;
and in[103], quadratic programming is used for constrained
optimal design for stochastic inputs with known spectra.
Other papers consider related techniques for open-loop
discrete-time and continuous-time contro! and filter-design
problems [104]-[106]. A summary of most of the results of
Fegley and his colleagues appear in [107].

A series of papers by Desoer and Gustafson [108]-[111]
make a number of proposals for the design of multivariable
feedback systems, based on modern versions of the par-
ametrization of closed-loop transfer matrices and numer-
ical optimization techniques. They pose the problemasone
of optimizing some performance index subject to con-
straints representing performance or robust performance
specifications. They make some highly practical sugges-
tions for avoiding numerical difficulties by doing design
based directly on measurements of the plant.

Recently, Dahleh and Pearson have presented solutions
to several versions of a problem posed by Vidyasagar in [56).
The essential problem is that of finding the feedback com-
pensator that minimizes the peak value of a regulated out-
put in response to a bounded exogenous input. The ver-
sions solved by Dahleh and Pearson are: MIMO discrete-
time plantwith unknown but bounded inputs {57], [59]; SISO
continuos-time plantwith unknown but bounded input{58];
and SISO discrete-time plant with known, bounded input
[60]. All of these are special cases of the general infinite-
dimensional convex optimization problems formulated in
this paper. What is remarkable about the work of Dahleh
and Pearson is that in each case they show that either an
exact solution or an arbitrarily accurate approximate solu-
tion can be obtained by solving a finite-dimensional linear
program.

In his 1986 Ph.D. thesis, Salcudean [112] uses the pa-
rametrization of achievable closed-loop maps to formulate
the multivariable feedback control design problem as a
constrained convex optimization problem. His formulation
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allows constraints corresponding to time-domain and fre-
quency-domain performance specifications; these con-
straints are very similar to some of those developed in sec-
tions VI and VIi of this paper. The advantage of convex
optimization over nonconvex optimization is emphasized.
Salcudean also presents an interesting numerical alogirthm
for solution of his optimization problems and some careful
analysis of the properties of the algorithm. See also [113].

Aprogram called qdes has been developed by theauthors
of this paper and colleagues [74]. It accepts input written
in a control specification language that allows the user to
describe a discrete-time control design problem in terms
of many of the closed-loop convex specifications presented
in this paper. The program uses a simple method to deter-
mine a finite-dimensional linear or quadratic programming
approximation to the control design problem and then
solves this approximation.

A recent paper by Helton and Sideris [114] considers
numerical methods for minimizing the H,-norm of one
closed-loop transfer function of a system subject to convex
time-domain constraints on other closed-loop transfer
functions. The paper explores various alternatives to the
naive approximations by tinear or quadratic programs used
in [74].

The material of this paper will appear in more detail in
[115].

Xil. ConcLustoN
The basic points we have tried to make in this paper are:

« A sensible formulation of the controller design prob-
lem is possible only by considering simultaneously all
of the closed-loop transfer functions of interest—what
we call the closed-loop transfer matrix H. The closed-
loop transfer matrix H should include every closed-
loop transfer function necessary to evaluate a candi-
date controller or compare competing designs, with-
out “side information’ (unstated requirements on
transfer functions notappearing in H). Hwill generally
have many more entries than we have degrees of free-
dom to design (i.e., H will be much bigger than K).

« Itis useful to associate with each design specification
the set of transfer matrices that meet the design spec-
ification. These sets often have simple geometry—
affine or convex. An important example is the speci-
fication that the closed-loop system should be stable—
the recent parametrization of achievable closed-loop
transfer matrices shows that this constraint is affine.
One of the themes of this paper is that many design
specifications are closed-loop convex. More explicitly,
many performance specifications are closed-loop con-
vex; some important robustness specifications are
closed-loop convex, and virtually no control law spec-
ifications (important examples being open-loop stable
controller, decentralized controller, and fixed order
controller) are closed-loop convex.

« When the design specifications are all closed-loop
convex, the Fundamental Problem can be numerically
solved by solving a nondifferentiable convex program.
This is an effective procedure, unlike local methods of
parameter optimization. Parameter optimization
schemes generally cannot determine that aset of spec-
ifications is infeasible—instead they simply fail to find
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XItl.

afeasible point. On the other hand, for a convex prob-
lem, there are effective methods to determine whether
a set of specifications is infeasible or too tight.
There are good reasons not to use these methods to
design controllers, e.g., the inability to specify the
order or structure of the controller, which are con-
straints readily handled by a parameter optimization
method. Still, the methods described in this paper can
be used to check the limits of performance achievable
when there is no constraint on controller complexity
(or any other non closed-loop convex constraints). This
provides an absolute yardstick against which less-
complex or structured controllers can be compared.
Many of the ideas in this paper are not new. The basic
idea of closed-loop design goes back to Truxall and
Guilleman around 1950; the idea of using numerical
convex optimization for feedback controller design
goes back at least as far as the work of Fegley and col-
leagues in the 1960s. On the other hand, the devel-
opment of theory about the set of achievable closed-
loop transfer matrices is more recent. Also recentis the
arrival of cheap and powerful computers and work-
stations for numerical computation. Finally, the idea
of using numerical techniques and a general (matrix)
H is, as far as we know, new.
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