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Abstract. We address the problem of identifying linear relations among variables based on noisy
measurements. This is a central question in the search for structure in large data sets.
Often a key assumption is that measurement errors in each variable are independent.
This basic formulation has its roots in the work of Charles Spearman in 1904 and of
Ragnar Frisch in the 1930s. Various topics such as errors-in-variables, factor analysis, and
instrumental variables all refer to alternative viewpoints on this problem and on ways to
account for the anticipated way that noise enters the data. In the present paper we begin
by describing certain fundamental contributions by the founders of the field and provide
alternative modern proofs to certain key results. We then go on to consider a modern
viewpoint and novel numerical techniques to the problem. The central theme is expressed
by the Frisch—-Kalman dictum, which calls for identifying a noise contribution that allows
a maximal number of simultaneous linear relations among the noise-free variables—a rank
minimization problem. In the years since Frisch’s original formulation, there have been
several insights, including trace minimization as a convenient heuristic to replace rank
minimization. We discuss convex relaxations and theoretical bounds on the rank that,
when met, provide guarantees for global optimality. A complementary point of view to
this minimum-rank dictum is presented in which models are sought leading to a uniformly
optimal quadratic estimation error for the error-free variables. Points of contact between
these formalisms are discussed, and alternative regularization schemes are presented.
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I. Introduction. The standard paradigm in modeling is to postulate that mea-
sured quantities contain a contribution of “accidental deviation” [72] from the other-
wise “uniformities” that characterize an underlying law. Therefore, a key issue when
identifying dependencies between variables is to decide on how to account for the
contribution of noise in the data. Various assumptions on the structure of noise and
of the possible dependencies lead to a number of corresponding methodologies.

The purpose of the present paper is to present from a modern computational
perspective the basic paradigm of identifying linear relations under the assumption
that noise components are independent and to discuss variants and generalizations.
The independence assumption underlies the errors-in-variables model [25, 52, 67, 21]
and factor analysis [6, 5, 55, 39, 44, 68] and has a century-old history [35, 64, 53];
see also [45, 46, 58, 78, 36, 71, 4, 30, 12]. Accordingly, given the long history of this
problem, the paper aims to provide a tutorial flavor.

The precise formulation of the central question has its roots in the work of Ragnar
Frisch in the 1930s. The key assumption is that the noise components are independent
of the underlying variables and that they are mutually independent as well, while
the “noise-free” variables satisfy a set of linear relations. The data are typically
abstracted in the form of an (estimated) covariance matrix. The basic modeling
premise dictates a decomposition of a covariance matrix obtained from the data into
the sum of a covariance matrix corresponding to the “noise free” variables and a
diagonal one corresponding to noise. However, in addition, since there is no uniqueness
in such a decomposition and therefore several alternative sets of linear relations can be
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consistent, a maximal set of simultaneous dependencies is sought as a means to limit
uncertainty and to provide canonical models [45, 46]. These hypotheses define the
Frisch-Kalman scheme and lead to a (nonconvex) rank-minimization problem where
a given covariance matrix is sought to be decomposed into a sum of two covariance
matrices, a singular one of minimal rank and another diagonal corresponding to noise.

In spite of extensive work over half a century by many researchers, exact solutions
for such a decomposition have not been forthcoming, with the exception of a result
due to Reiersgl [64]; see also [45, 52]. This result pertains to the special case where
the number of simultaneous linear relations is equal to 1 and is no greater. Inter-
estingly, this case as well as its complement are generic in that small changes in the
data may leave them unaffected. For the case where there are no two simultaneous
linear relations possible, necessary and sufficient conditions on the data covariance
matrix were provided by Reiersgl over half a century ago. Further, for this case, a
detailed parametrization of all solutions has been obtained. To date no other case is
known that admits such precise necessary and sufficient conditions and closed-form
parametrization of solutions.

In view of the fundamental nature of this problem and the scarcity of exact
solutions, several computational approaches have emerged over the years [68, 69, 22,
8, 79, 9, 59]. A key trend has been to seek numerical decompositions that employ
the trace as a surrogate for the rank [28]. In parallel, attempts have been made to
determine computable a priori lower bounds on the rank of the “noise-free” component
[37, 68, 69]. The rank of the “noise-free” covariance matrix represents the number of
“factors” in factor analysis, and such bounds on the minimum rank, when met, serve
as “certificates” that guarantee optimality. That is, when numerical decomposition
produces a covariance for the noise-free component that attains a lower bound of the
rank, this rank represents the minimum number of independent “factors” while the
co-rank (nullity) represents the maximal number of linear relations consistent with
the assumptions of the Frisch scheme.

Relaxations of modeling assumptions and constraints have been considered
throughout the development of the subject so as to account for statistical errors that
are inherent in empirical covariance estimates and, also, in order to provide insights
into potential underlying algebraic structure in the data [68]. Related in spirit are
recent ideas on minimax robust analysis [48, 77, 47, 51, 27] and the use of error loss
functions together with regularization terms that promote low-rank decompositions
[28, 14, 59, 65, 16, 1]. Our development will draw on some of these ideas and provide
points of contact.

Our exposition begins by motivating Frisch’s error-in-variables paradigm while
explaining the origin of the modeling assumptions (section 3). In section 4 we precisely
define the Frisch problem. We then analyze the special case where the maximal
number of linear dependencies is exactly equal to one (the Reiersgl case). In the same
section (section 4), we also define and develop in parallel a problem due to Shapiro
[68]. Shapiro’s problem differs from Frisch’s in that the requirement for the diagonal
summand to be positive semidefinite is relaxed in order to gain insight into potential
algebraic relations imposed by the off-diagonal elements of the data covariance matrix.
The Frisch and the Shapiro problems are quite similar, and their parallel presentation
helps underscore insights into the structure of the respective solutions. Thus, section 4
details the theory for both problems in parallel. More specifically, in this section we
discuss the well-posedness of the two problems, we present a new geometric principle
that is used to derive and explain the analytic conditions for the Reiersgl case (section
4.1), we develop a certain dual viewpoint for both problems (section 4.2), we derive
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necessary and sufficient conditions as well as a parametrization of solutions for the
special Reiersgl case (sections 4.3, 4.4, and 4.5), and lastly we discuss a generalization
of Frisch’s problem for the case of complex-valued covariances and provide partial
results for an analogue of the Reiersgl case (section 4.6).

In section 5 we turn to convex relaxation methods for the problems of Frisch and
Shapiro. We revisit the trace minimization heuristic for rank-minimization problems.
Since the rank remains invariant under scaling of rows and columns, it is natural to
consider weighted-trace minimization; this is explained in section 5.1. In section 6 we
provide lower bounds for the minimum rank which provide potential certificates for
optimality of solutions which can be computed by convex optimization.

As already indicated, the Frisch scheme centers around a certain decomposition
of estimated covariance statistics. In section 7 we consider what such a decomposi-
tion implies about the data and, in particular, a conformable decomposition of the
data into signal plus noise directly in the time domain. More specifically, we show
that to any Frisch decomposition there corresponds a family of consistent decompo-
sitions of the data into signal plus noise. This family corresponds to a matrix ball
and, under a Gaussian assumption, the “uncertainty matrix radius” coincides with
the variance of the conditional expectation of the “noise-free” variables (section 8).
This analysis is brought in as a prelude to certain alternative relaxations of the Frisch
paradigm; it motivates the related problem of minimizing uniformly the variance of
conditional expectation as an alternative to the Frisch rationale (section 8.1). Thus,
instead of a maximal number of simultaneous linear relations, for certain types of ap-
plications one may seek a uniformly optimal estimator for the unobserved data under
the independence assumption of the Frisch scheme. Thereby, the optimal estimator
can be obtained as a solution to a minmax optimization problem. Points of contact
with certain robust techniques in signal analysis [48, 77, 47, 51, 27] and with trace
regularization are discussed in section 8.2.

In section 9 we consider ways that one may account for the effect of statistical
estimation errors in the sample covariance matrices. To this end, it is natural to
relax the requirement for an exact decomposition of sample statistics. Among the
many possible alternatives, we chose to draw a connection between approximating
Gaussian probability density functions in the 2-Wasserstein metric and a distance
between the corresponding covariance matrices. This can be conveniently expressed
as a semidefinite program. Thus, trace minimization as well as accounting for statis-
tical uncertainty and quadratic performance can all be expressed in a similar format
employing semidefinite programming. An example is discussed in section 9 that helps
underscore the scope and potential limitations of the Frisch scheme and of the for-
malism in this paper. The aim of the paper has been to thread together historical as
well as modern ideas and techniques which have grown around basic ideas in modeling
that have roots in the work of Charles Spearman and Ragnar Frisch. Thus, the main
theme of the Frisch scheme and alternative viewpoints are reiterated in the concluding
remarks (section 10).

2. Notation.
R(-), N(-) range space, null space

Ilx orthogonal projection onto X

>0 (>0) positive definite (resp., positive semidefinite)
Sn ={M|MeR™" M=M}

Snt ={M|MEeS,, M>0}

H, ={M|MeC™" M=M"}
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H,. —{M|MeH,, M>0}
[ee, ([]x) (k, £)th entry (resp., kth entry)
| M| determinant of M € R™*"
ny () number of positive eigenvalues

diag : R™*" - R" : M —d  where [d]; = [M]s fori=1,...,n

diag® : R" - R"™" :d+— D  where D is diagonal and [D]y; = [d]; for i =1,...,n

M=, 0(> 0, <, 0, = 0) the off-diagonal entries are > 0 (resp., > 0, < 0, < 0),
or can be made so by changing the signs of selected
rows and corresponding columns

3. Data and Basic Assumptions. Consider a Gaussian vector x taking values in
R™*! having zero mean and covariance matrix ¥. We assume that it represents an
additive mixture of a Gaussian “noise-free” vector x and a “noise component” x; thus

(3.1) X =X+X.

The entries of x are assumed independent of one another and independent of the
entries of X with both vectors having zero mean and covariance matrices > and X,
respectively. Thus,

(3.2a) E(xx') =: ¥ is diagonal,
(3.2b) Exx') =0,

while

(3.2¢) Y=%+3.

Throughout £(-) denotes the expectation operation and 0 denotes the zero vector/
matrix of appropriate size. The entries of X, which are thought of as “noise-free” vari-
ables, are assumed to satisfy a set of ¢ simultaneous linear relations. The coefficients
of these relations form the columns of a matrix M € R"*? having rank(M) = ¢ > 0
and satisfying M’'x = 0. From an applications standpoint, the modeling problem is to
infer q as well as the parameters specifying such linear relations between the entries
of x from samples of the random vector x.

An equivalent statement to the existence of ¢ independent relations between the
entries of X is that the covariance matrix £(%%x’) =: 3 has

(3.2d) rank(3) = n — g,

in which case ©M = 0. The “noise-free” component may then be expressed as a linear
combination of n — ¢ latent variables referred to as “factors,” which are the entries
of a random vector v, and written in the form X = Fv; the matrix F € R**("~9) is
often referred to as the factor loading. The broader subject of factor analysis is an
especially timely subject due to the growing interest in explaining high-dimensional
data [54, 18, 12]. Comprehensive accounts on the foundation of factor analysis and
variations on this basic scheme can be found in [6, 5, 8, 9], while recent trends to use
factor analysis in time series are seen in [40, 67, 30, 20, 32, 31].

Statistics of a physical variable are estimated based on finite observation records.
To this end, consider a sequence

r, e RV t=1,....T,
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of independent measurements (realizations) of x and, likewise, let Z; and Z; represent
the corresponding values of the noise-free variable and noise components, respectively.
For simplicity, we assume that the mean of all variables is zero. Denote by

X = [xlxg xT} e R™*T

the matrix of observations of x and similarly denote by X and X the corresponding
matrices of the noise-free and noise entries, respectively. Data for identifying relations
among the noise-free variables are typically limited to the observation matrix X and,
neglecting a scaling factor of 1/T, the data are typically abstracted in the form of a
sample covariance X X’. For the most part we will assume that sample covariances
are accurate approximations of true covariance matrices, and hence the modeling
assumptions amount to

(3.3a) XX’ ~ diagonal,
(3.3b) XX'~0,

(3.3¢) rank(X) =n — ¢
since M'X = 0.

The number of possible linear relations among the noise-free variables and the
corresponding coefficient matrix are to be determined from either ¥ or X. If no prior
assumption on the structure of the noise is available, then singular value decomposi-
tion of ¥, also X, often provides a satisfactory decomposition X = X+ X grouped
into components that correspond to the top and bottom singular values of X (see
e.g., [42]). In this, however, the “noise” component fails to satisfy the independence
assumption (3.3a). It is often the case that more is known about the noise and the
independence assumption in the Frisch model represents one of the earliest and most
appealing paradigms.

Thus, the need to decompose data into signal and noise, relying on a structural
prior on the noise statistics, motivates two basic mathematical problems that are for-
mulated in section 4—the Frisch and Shapiro problems. These address decompositions
of the covariance matrix ¥ as in (3.2c¢) where the summands abide by the structural
assumptions (3.2a)—(3.2b).

An alternative line of reasoning, rooted in optimal estimation, is presented in
section 8. This rationale motivates a complementary viewpoint aimed at addressing
estimation problems under modeling uncertainty; we will return to this in section 8.

4. The Problems of Frisch and Shapiro. We begin by formulating the Frisch
problem. This pertains to the decomposition of a covariance matrix ¥ in a way that
is consistent with the assumptions of section 3. These assumptions are somewhat
stringent in that, in practice, ¥ is an empirical sample covariance. This fact motivates
relaxing assumptions (3.2a)—(3.2d) in various ways. In particular, relaxation of the
constraint ¥ > 0 leads to a problem that was studied by Shapiro and others and is
formulated below as well. There is a strong similarity between the two problems, and
the parallel treatment below underscores insights that can be gained.

PROBLEM 1 (the Frisch problem). Given ¥ € S, 4+, determine

mr, (¥) := min{rank(2) | £ = X + %,
(4.1) 3,5 >0, ¥ is diagonal}.



LINEAR MODELS AND THE FRISCH SCHEME 173

PROBLEM 2 (the Shapiro problem). Given ¥ € S,, 1, determine

mr(Y) := min{rank(X) | Z =X 4+ 3,
(4.2) >0, ¥ is diagonal}.

Frisch’s problem has been studied by several researchers for over fifty years (see
[46, 58, 79, 67] and the references therein). On the other hand, Shapiro [68] and
others [56, 38] investigated the relaxed version stated as Problem 2, by removing
the requirement that ¥ > 0, in an attempt to gain understanding of the algebraic
constraints imposed by the off-diagonal elements of ¥ on the decomposition. We
will develop Shapiro’s problem in parallel with Frisch’s problem because of the strong
parallels between the two and the insights this analysis provides.

Either problem requires computing the minimum rank of a partially specified
positive semidefinite matrix. While the computation of the minimum rank for such
partially specified matrices has been recently investigated in the literature (see, e.g.,
[34, 63]), the positive semidefinite requirement brings in an additional element that
impacts the structure of solutions. Below, we will develop in parallel the theory of
the problems of Frisch and Shapiro. This parallel treatment allows insight into the
effect of positivity of the summands and underscores important differences between
the two. Furthermore, it gives us an opportunity to provide a modern exposition of
classical results of the subject.

We first discuss some properties of mry () and mr(-) . We refer to mry () as the
Frisch minimum rank and mr(-) as the Shapiro minimum rank. The former is lower
semicontinuous, whereas the latter is not, as stated next. Naturally, this difference
may turn out to be important in certain cases when dealing with experimental data.

PROPOSITION 1. mry (-) is lower semicontinuous, whereas mr(-) is not.

Proof. Assume that for a given ¥ > 0 there exists a sequence X1, Yo, ... of
positive definite matrices such that ¥; — X, while

mry (%) <mry(X)=r Vi=1,2,....

Decompose ¥; = S + D; with rank(f}i) <r, ¥ > D; >0, and D; diagonal. Then
there exist convergent subsequences ¥;, — X and D;, — D, as k — oo. Since
i, — S+ D= ¥, by the lower semicontinuity of the rank,

rank(3) < lim infrank(3;,) < r = mr (2).

k—o0

This is a contradiction. On the other hand, to see that mr(-) is not lower semicontin-
uous, consider

3 -1 -1 3 -1 -1 . 1/e -1 -1
Y=1-1 3 0 and X = |—1 3 el, Ye=|—1 € €
-1 0 3 -1 € 3 -1 € €

for € > 0. Clearly mr(X) = 2. Also lim.,o X = 2. Yet X, = S + D, while X, has
rank 1 and D, is diagonal (# 0). Hence mr(3.) = 1. O

Assuming that the off-diagonal entries of ¥ > 0 of size n x n are known with
absolute certainty, any “minimum rank” (mr,(-) and mr(-)) is bounded below by the
so-called Ledermann bound, i.e.,

2 1-— 1
MLV < () < e (5),

(4.3)
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which holds on a generic set of positive definite matrices X, that is, on a (Zariski
open) subset of positive definite matrices. Equivalently, the set of matrices ¥ for
which mr(Y) is lower than the Ledermann bound is nongeneric—their entries satisfy
algebraic equations which fail under small perturbation. To see this, consider any
factorization

Y =FF,

with F' € R"*". There are (n—r)r+ w independent entries in F' (when accounting
for the action of a unitary transformation of F' on the right), whereas the value of the
off-diagonal entries of ¥ impose % constraints. Thus, the number of independent
entries in F exceeds the number of constraints when (n — 7)? > n + r, which then
leads to the inequality 2"“% VEntl < . The bound was first noted in [55], while the
independence of the constraints has been detailed in [10]. In general, the computation
of the exact value for mry (¥) and mr(X) is a nontrivial matter. Thus, it is rather
surprising that an exact analytic result is available for both in the special case when
r =n — 1. We review this next in the form of two theorems.
THEOREM 2 (Reiersgl’s theorem [64]). Let ¥ € S,, + and X > 0. Then

mr () =n—-1&%""1~ 0.
THEOREM 3 (Shapiro’s theorem [69]). Let ¥ € S,, 4+ and be irreducible. Then
mr(¥)=n—-1&3 =< 0.

The characterization of covariance/covariance matrices ¥ for which mry (¥) =
n — 1 was first recognized by T. C. Koopmans in 1937 [53] and proven by Reiersgl
[64], who used the Perron—Frobenius theory to improve on Koopmans’ analysis. Later
on, R. E. Kalman streamlined and completed the steps in [45] relying again on the
Perron—Frobenius theorem (see also Klepper and Leamer [52] for a detailed analysis).
Our treatment below takes a slightly different angle and provides some geometric
insight by pointing as a key reason that the maximal number of vectors at an obtuse
angle from one another can exceed the dimension of the ambient space by at most
one (Corollary 6). We provide new proofs where we also utilize a dual formulation
with an analogous decomposition of the inverse covariance.

4.1. A Geometric Insight. We begin with two basic lemmas for irreducible ma-
trices in M € S, ;. Recall that a matrix is reducible if by permutation of rows and
columns it can be brought into a block-diagonal form; otherwise it is irreducible.

LEMMA 4. Let M > 0 and be irreducible. Then

(4.4) M= 0=M"~ 0.
LEMMA 5. Let M > 0 and be irreducible. Then
(4.5) M =<, 0= nullity(M) <1.

Proof. Tt is easy to verify that for matrices of size 2 x 2, (4.4) holds true. Assume
that the statement also holds true for matrices of size up to k x k for a certain value
of k, and consider a matrix M of size (k+ 1) x (k+ 1) with M > 0 and M =, 0.

Partition
A b
=l
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so that c is a scalar, and hence A is of size k x k. Partitioning conformably,

-1 _ F g
M [9’ h]’

where
F=(A-bc W) g=—-A""h, and h = (c—b'A"'b)"! > 0.

For the case where A is irreducible, because A has size k x k and A < 0, invoking
our hypothesis we conclude that A~! = 0. Now, since b has only nonpositive entries
and b # 0, g = —A~1bh has positive entries. Since —bc™'¥' < 0 and A <_ 0, then
A —be7 b =<0 is also irreducible. Thus F = (A — bc=10’)~! has positive entries by
hypothesis.

For the case where A is reducible, permutation of columns and rows brings A
into a block-diagonal form with irreducible blocks. Thus, A~! is also a block-diagonal
matrix with each block entrywise positive. Because M is irreducible, b must have
at least one nonzero entry corresponding to the rows of each diagonal block of A.
Then A — be™ ! is irreducible and < 0. Also A71b has all of its entries negative.
Therefore F' = (A — bc™10')~! and ¢ = —A~'bh have positive entries. Therefore
M=t~ 0. a

Proof. Rearrange rows and columns and partition
B C

v-ls 4

so that A is nonsingular and of maximal size, equal to the rank of M. Then
(4.6) C=BA"'B.

We first show that B’A~!B =, 0. Assume that A is irreducible. Then A=1 =, 0.
At the same time B has negative entries and not all zero (since M is irreducible). In
this case, B’A™!B =, 0. If on the other hand A is reducible, Lemma 4 applied to the
(irreducible) blocks of A implies that A=! = 0. Therefore, in this case, B’A™'B =_ 0.

Returning to (4.6), and in view of the fact that C' < 0 while B’A™'B = 0,
we conclude that either C is a scalar (and hence there are no off-diagonal negative
entries) or both C' and B’A~!B are diagonal. The latter contradicts the assumption
that M is irreducible. Hence, the nullity of M can be at most 1. O

Lemma 5 provides the following geometric insight, stated as a corollary.

COROLLARY 6. In any Euclidean space of dimension n, there can be at most n+1
vectors forming an obtuse angle with one another.

Proof. The Grammian M = [U;CUZ]Z:ZEI of a selection {vy | k= 1,...,n+ ¢} of
such vectors has off-diagonal entries which are negative. Hence, by Lemma 5, the
nullity of M cannot exceed 1. O

The necessity part of Theorem 3 is also a direct corollary of Lemma 5.
COROLLARY 7. Let ¥ € S, 1 and be irreducible. Then

Y= 0=>mrX)=n—-1.

Proof. Let ¥ = S+ f), with % diagonal and $ > 0. ¥ is irreducible since ¥ is
irreducible. From Lemma 5, the nullity of ¥ is at most 1. Thus mr(¥) =n—1. a
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4.2. A Dual Decomposition. The matrix inversion lemma provides a correspon-
dence between an additive decomposition of a positive definite matrix and a decom-
position of its inverse, albeit with a different sign in one of the summands. This is
stated next.

LEMMA 8. Let

(4.7) S=D+FF
with ¥,D € S,, 4+, with ¥,D >0 and F € R**". Then
(4.8) S:=¥Y"1'=F-G¢

for E = D' and G = D-'F(I + F'D-'F)~'Y/2. Conversely, if (4.8) holds with
G € R™ ", then so does (4.7) for D = E~' and F = E7'G(I — G'E~'G)~'/2.
Proof. This follows from the identity (I+MM')~' = IFM(IFM' M)~ M’. O
Application of the lemma suggests the following variation to Frisch’s problem.
PROBLEM 3 (the dual Frisch problem). Given a positive definite n x n symmetric
matriz S, determine the dual minimum rank:

Mgyl (S) := min{rank(S) | S = E — S,
S,E >0, E is diagonal}.

Clearly, if S = ©7! = E — GG’ (as in (4.8)), then E > 0. Furthermore, a
decomposition of S always gives rise to a decomposition ¥ = D + FF’ (as in (4.7))
with the terms FF’' and GG’ having the same rank. Thus, it is clear that

(49) mrJr(E) < mrdual(z_l);

and that the above holds with equality when an optimal choice of D = ¥ in (4.1) is
invertible. However, if D is allowed to be singular, the rank of the summands FF’
and GG’ may not agree. This can be seen using the following example. Take

2 1 1
X=11 2 1

1 1 1
It is clear that ¥ admits a decomposition ¥ = ¥ + S in correspondence with (4.7),
where 3 = D = diag{1, 1,0}, while S = FF as well as F/ = [1, 1, 1] are of rank one.
On the other hand,

1 0 -1
S=x"t'=0 1 -1
-1 -1 3

Taking E = diag{e1, es, es} in (4.8), it is evident that the rank of

e —1 0 1
GG'=E-8S= 0 ey —1 1
1 1 63—3

cannot be less than 2 without violating the nonnegativity assumption for the summand
GG'. The minimal rank for the factor G is 2 and is attained by taking e; = es = 2
and e3 = 5.
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On the other hand, in general, if we perturb X to X + €l and, accordingly, D to
D + el, then

(4.10) Mrqual((E 4+ el)™') <mr (¥) Ve > 0.

Equality in (4.10) holds for sufficiently small value of e. Thus, mry and mrqg,. are
closely related. However, it should be noted that mrgu.(-) fails to be lower semi-
continuous since a small perturbation of the off-diagonal entries can reduce mrqya(-).
Yet, interestingly, an exact characterization of the mrqua1(S) = n — 1 can be obtained
which is analogous to those for mry and mr being equal to n — 1; the condition for
mryua; will be used to prove the Reiersgl and Shapiro theorems.

THEOREM 9. For S € S, 4, with S > 0 and irreducible,

(4.11) mrqual(S) =n—1 5=, 0.

Proof. It S =, 0 and E is diagonal satisfying E > S > 0, then E— S = GG’ < 0.
By invoking Lemma 5 we deduce that if E — S is singular, rank(G) = n — 1. Hence,
Mmrayal(S) =n — 1.

To establish that mrqua(S) = n—1= S =, 0, we assume that the condition
S = 0 fails and show that mrgu.i(S) < n — 1. We first argue the case for a 3 x 3
matrix S = [Sij]?, j=1- Provided S 7, 0, we can assume that it has strictly negative
off-diagonal entries (which can be done by reflecting the signs of rows and columns).
We now let
B Sij Ski
€ = 84 — ———

Sjk

for ¢ € {1,2,3}, with (¢, 7, k) being permutations of (1,2,3). These are all positive.
Let S = diag”(e1, €2, e3). It can be seen that S — S >0, while rank(S’ -S)=1. To
verify the latter observe that S — S = vv’ for

U/:[\/el—sn, Vea — 522, \/63—533}.

This establishes the reverse implication for matrices of size 3 x 3.

We now assume that the statement holds true for matrices of size up to (n—1) x
(n — 1) for some n > 4 and use induction. So let S, S be of size n x n with S ¥, 0
and S diagonal. We need to prove that mrayuai(S) < n — 1. We partition

A b 5 E 0
s=lp 5[0 )
with A, E being (n —1) x (n — 1). For any S such that S — 8 >0, e cannot be equal

to ¢; otherwise b = 0 and S is reducible. Further, S — S > 0 if and only if e > ¢ and
M:=E—(A+ble—c)~ ) >0.

The nullity of S — S coincides with that of M. To prove our claim, it suffices to show
that A, := A+ b(e — ¢)"1V #. 0, or that A, is reducible for some e > ¢ (since, in
either case, by our hypothesis the nullity of M for a suitable E exceeds 1).

We now consider two possible cases where S >, 0 fails. First, we consider the
case where already A %, 0. Then obviously A, 7, 0 for e — ¢ sufficiently large. The
second possibility is S %, 0, while A > 0. But if A is (transformed into) element-
wise nonnegative, then bb’ must have at least one pair of negative off-diagonal entries.
Then consider A, = A+ \bb for A = (e —c)~! € (0,00). Evidently, for certain values
of A, entries of A, change sign. If a whole row becomes zero for a particular value of
A, then A, is reducible. In all other cases, there are values of A for which A. %, 0.
This completes the proof. a
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4.3. Proof of Reiersgl’s Theorem (Theorem 2). We first show that X~ = 0
implies mr; (X) = n — 1. From the continuity of the inverse, (X + €eI)~! =, 0 for
sufficiently small € > 0. Applying Theorem 9, we conclude that

mraua (S +el)™') =n—1.

Since mry () > mrqua((X + el)~1) as in (4.10), we conclude that mry (X) =n — 1.

To prove that mry (X) =n—1= %71 = 0, we show that assuming £~ £, 0 and
mry (X) =n — 1 together leads to a contradiction. From the continuity of the inverse
and the lower semicontinuity of mry(-) (Proposition 1), there exists a symmetric
matrix A and an € > 0 such that

(C+eA)P A 0 and mry (Y +eA)=n—1.
Then, from Theorem 9, mraua (X + €A)™1) < n — 1, while from (4.9)
mr (X + €A) < mrgua((E 4 €A)™H).

Thus, we have a contradiction and therefore =1 > 0. O

It is well known that zero entries in the inverse covariance matrix of a multivariate
normal distribution imply the conditional independence of the corresponding variables
given the remaining ones; see [26, 23]. Interestingly, a single zero element in the
inverse covariance violates the condition in the Reiersgl’s theorem and in this case
mry (X) <n-—2.

4.4. Proof of Shapiro’s Theorem (Theorem 3). Given ¥ > 0, consider A > 0
such that AT —3 > 0, a diagonal D, and let E := AI—D. Since ¥—D = E— (A -Y),

(4.12) mr(¥) = mraua (A — ).

If ¥ is irreducible and £ <, 0, then A\I — ¥ is irreducible and A\l — X >, 0. It follows
(Theorem 9) that mrgya (A — ) =n — 1, and therefore mr(X) =n — 1 as well.

For the reverse direction, if mr(X) = n — 1, then mrgua(A — ¥) = n — 1, which
implies that Al — X > 0 and therefore that ¥ < 0. 0

The original proof in [69] claims that for any ¥ > 0 of size n X n with n > 3 and
¥ A, 0, there exists an (n — 1) x (n — 1) principle minor that is A, 0. This statement
fails for the following sign pattern:

+ —
0 —

+
-+ 0

| + o
+o+ |

This matrix cannot transformed to have all nonpositive off-diagonal entries, yet all
its 3 x 3 principle minors <_ 0.

4.5. Parametrization of Solutions under Reiersgl’s and Shapiro’s Conditions.
For either the Frisch or the Shapiro problem, a solution is not unique in general. The
parametrization of solutions to the Frisch problem when mry(3) = n — 1 has been
known and is briefly explained below (without proof). Interestingly, an analogous
parametrization is possible for Shapiro’s problem, and this is given in Proposition 11
below, and both are presented here for completeness of the exposition.

For the Frisch problem, and assuming that > satisfies Reiersgl’s condition, the
set of nonnegative definite diagonal matrices D such that > — D > 0 and singular is
homeomorphic to the simplex of probability vectors. The precise result is stated next
(without proof).
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PROPOSITION 10. Let ¥ € S, with ¥ >0 and X7 =_ 0. The following hold:

(i) For D > 0 diagonal with ¥ — D > 0 and singular, there is a probability vector
p (p has entries > 0 that sum up to 1) such that (¥ — D)X "1p = 0.

(ii) For any probability vector p,

D = diag* <[[Z[_p]1;]i,z‘— 1n]>

satisfies X — D > 0 and ¥ — D is singular.
Proof. See [45, 52]. a
Thus, solutions of Frisch’s problem under Reiersgl’s conditions are in bijective
correspondence with probability vectors. A very similar result holds true for Shapiro’s
problem and is stated next.
PROPOSITION 11. Let ¥ € S, 1 be irreducible and have < 0 off-diagonal entries.
The following hold:
(i) For D diagonal with ¥ — D > 0 and singular, there is a strictly positive vector
v such that (¥ — D)v = 0.
(ii) For any strictly positive vector v € R"*1,

(4.13) D = diag* (pi}’]’z=1n])

satisfies that X — D > 0 and ¥ — D is singular.
Proof. To prove (i), we note that if (¥ — D)v = 0, then v is elementwise positive.
To see this consider (X — D +€l)~! for € > 0. From Lemma 4,

(X —D+el) = 0,

and since v is an eigenvector corresponding to its largest eigenvalue, a power iteration
argument concludes that v is elementwise positive.

To prove (ii), it is easy to verify that the diagonal matrix D in (4.13) for v =, 0
satisfies (¥ — D)v = 0. We only need to prove that ¥ — D > 0. Without loss of
generality we assume that all the entries of v are equal. (This can always be done by
scaling the entries of v and scaling accordingly rows and columns of ¥.) Since v is a
null vector of ¥ — D and since M := X — D has < 0 off-diagonal entries,

[M]ii =Y |[M];].

J#

Gersgorin’s circle theorem (e.g., see [76]) now states that every eigenvalue of M lies
within at least one of the closed discs {Disk([M];;, > i [M];;]),i=1,...,n}. No
disc intersects the negative real line. Therefore ¥ — D > 0. d

4.6. Decomposition of Complex-Valued Matrices. Complex-valued covariance
matrices are commonly used in radar and antenna arrays [75]. The rank of ¥ — D,
for noise covariance D as in the Frisch problem, is an indication of the number of
(dominant) scatterers in the scattering field. If this is of the same order as the number
of array elements (e.g., n — 1), any conclusion about their location may be suspect.
Thus, it is natural to seek conditions for mr; (X) = n — 1 analogous to those given by
Reiersgl, for the case of complex covariances, as a possible warning. This we do next.
We note in passing that a version of the Frisch problem for complex-valued covariance
matrices is also relevant in the context of multivariate time series [67].
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Consider complex-valued observation vectors xy = y; + iz, t = 1,...,T, where
i=+/—1andy,z € R"™!, and set

X=[z1, ..., zp] =Y +1iZ,
with Y =[y1, ..., yr|, Z = [21, ..., 2r]. The (scaled) sample covariance is
Y=XX"=%+1i% € Hy 4,

where the real part X, :=YY’ + ZZ' is symmetric, the imaginary part %; := ZY’ —
Y Z' is antisymmetric, and “x” denotes complex-conjugate transpose. As before, we
consider a decomposition

L =3+D,

with £ > 0 singular and D > 0 diagonal. We refer the reader to [3, 19] for the special
case where mr (X)) = 1. In this section we present a sufficient condition for a Reiersgl
case where mr; (¥) =n — 1.

Before we proceed we note that recasting the problem in terms of the real-valued

DI
R = [ Oy, ] ESQn7+

does not allow taking advantage of earlier results. The structure of R with antisym-
metric off-diagonal blocks implies that if [a’, 0]’ is a null vector, then so is [V, a']
(since, accordingly, a + ib and ia — b are both null vectors of 3). Thus, in general,
the nullity of R is not 1 and the theorem of Reiersgl is not applicable. Further, the
corresponding noise covariance is diagonal with repeated blocks.

The following lemmas for the complex case echo Lemmas 4 and 5.

LEMMA 12. Let M € H,, 1 be irreducible. If the argument of each nonzero off-
diagonal entry of —M 1is in (—%, 21), then each entry of M~ has an argument in
(5+7 8- %)

Proof. 1t is easy to verify the lemma for 2 x 2 matrices. Assume that the statement
holds for sizes up to n x n and consider an (n + 1) x (n + 1) matrix M that satisfies
the conditions of the lemma. Partition

=[],

b* ¢

where A is of size n X n, and conformably

71_F9
wio[ ).

By assumption nonzero entries of —A and —b have their argument in (—QT’L, 2%)
Then, by bounding the possible contribution of the respective terms, it follows that the

s s

argument of each of the entries of —A+bc™1b* is in (_Fv 2—) Then the argument of

each entry of ' = (A—bc 1b*)lisin (—% + 9%, 5 — 21), this follows by assumption

since F' is n x n. Clearly, (—% + 9w, 5 — 21) - (—% + 55T, 5 — 2%) Regarding
g, by bounding the possible contribution of respective terms, we similarly conclude
that the argument of each of its nonzero entries is in (—g + saET, 5 — 2—’11) O

LEMMA 13. Let M € H, 4 be irreducible. If the argument of each nonzero

off-diagonal entry of —M is in (—%, 21), then rank(M) > n — 1.
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Proof. First rearrange rows and columns of M, and partition as

w-[i 2]

B* C

so that A is nonsingular and of size equal to the rank of M, which we denote by 7.
Then

(4.14) C=B*A"'B

and has size equal to the nullity of M. We now compare the argument of the off-
diagonal entries of C' and B*A~!B and show they cannot be equal unless C is a
scalar. Since the off-diagonal entries of —A have their argument in (—1, 1,) C
(—%, 21), the off-diagonal entries of A~! have their argument in (—% + 35, 5 — ¢
from Lemma 12. Now, the (k,¢) entry of B*A~'B is

[B* A" Blee = Y 1B TwilA™ i [Blie,

4,9

and the phase of each summand is

) . T R R T
arg([B”Jki[A™ij[Blje) € (—5 to Ty Tt —2n71) :

Thus, the nonzero off-diagonal entries of B* A~ B have positive real part, while

T
arg(~[Clie) € (—3m+ 37) -
Hence, either the off-diagonal entries of B*A~!'B and C' are zero, in which case these
are diagonal matrices and M must be reducible, or B*A~!B and C are both scalars.
This concludes the proof. O

THEOREM 14. Let ¥ € H,, 4 be irreducible. If the argument of each nonzero
off-diagonal entry of —% is in (—%, 2%), then mr(X) =n — 1.

Proof. The matrix % — D is irreducible since D is diagonal. If X — D > 0 and
singular, and since the argument of each nonzero off-diagonal entry of —(X — D) is in
(—%, 21), Lemma 13 applies and gives that rank(X — D) =n — 1. O

Clearly, since mr4 (X) > mr(X), under the condition of Theorem 14, mry (X) =
n — 1. It is also clear that for S € H,, | irreducible with all nonzero off-diagonal

entries having argument in (—%, 21), we also conclude that mrqua(S) =n — 1.

5. Trace-Minimization Heuristics. The rank of a matrix is a nonconvex function
of its elements, and the problem of finding the matrix of minimal rank within a given
set is a difficult one, in general. Therefore, certain heuristics have been developed
over the years to obtain approximate solutions. In particular, in the context of factor
analysis, trace minimization has been pursued as a suitable heuristic [56, 68, 69],
thereby relaxing the Frisch problem into

rrgn{trace(E —-D)|X>D>0}

for a diagonal matrix D, with a relaxation of D > 0 corresponding to Shapiro’s
problem. The theoretical basis for using the trace and, more generally, the nuclear
norm for nonsymmetric matrices as a surrogate for the rank was provided by Fazel,
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Hindi, and Boyd [28], who proved that these constitute convex envelopes of the rank
function on bounded sets of matrices.

The relation between minimum-trace factor analysis and minimum-rank factor
analysis goes back to Ledermann in [56] (see [22] and [66]). Herein we only refer to
two propositions which characterize minimizers for the two problems, Frisch’s and
Shapiro’s, respectively.

PROPOSITION 15 (see [22]). Let ¥ = S+ Dy >0 for a diagonal D1 > 0. Then

(5.1a) (21, D) = argmin{trace(¥) | L =%+ D >0, ¥ >0, diagonal D > 0}

AL [Ai]ie =1 if [Di]u > 0,
< dA >0 ¢ Z1A1—Oand{ [Al]”21 if[Dﬂn‘:O.

PROPOSITION 16 (see [66]). Let X = Sy 4+ Dy > 0 for a diagonal Dy. Then,

(5.1b) (39, Dy) = argmin{trace(X) | X =%+ D > 0, ¥ > 0, diagonal D}
& 4 A2 >0 : iQAQ =0 and [AQ]M‘ =1Vi.

Evidently, when the solutions to these two problems differ and D; # Do, then
there exists k € {1,...,n} such that

[DQ]kk < 0 and [Dl]kk =0.

Further, the essence of Proposition 16 is that a singular ) originates from such a
minimization problem if and only if there is a correlation matrix in its null space.
The matrices A; and As appear as Lagrange multipliers in the respective problems.

Factor analysis is closely related to low-rank matriz completion as well as to sparse
and low-rank decomposition problems. Typically, low-rank matrix completion asks for
a matrix X which satisfies a linear constraint A(X) = b and has low/minimal rank
(A(-) denotes a linear map A : R"*™ — RP). Thus, factor analysis corresponds to
the special case where A(-) maps X onto its off-diagonal entries. In a recent work
by Recht, Fazel, and Parrilo [63], the nuclear norm of X was considered as a convex
relaxation of rank(X) for such problems, and a sufficient condition for exact recovery
was provided. However, this sufficient condition amounts to the requirement that the
null space of A(-) contain no matrix of low rank. Therefore, since in factor analysis
diagonal matrices are in fact contained in the null space of A(:) and include matrices
of low rank, the condition in [63] does not apply directly. Other works on low-rank
matrix completion (see, e.g., [15]) mainly focus on assessing the probability of exact
recovery and on constructing efficient computational algorithms for large-scale low-
rank completion problems [49, 50]. On the other hand, since diagonal matrices are
sparse (most of their entries are zero), the work on matrix decomposition into sparse
and low-rank components by Chandrasekaran et al. [16] is very pertinent. In this, the
/1 and nuclear norms were used as surrogates for sparsity and rank, respectively, and
a sufficient condition for exact recovery was provided which captures a certain “rank-
sparsity incoherence”; an analogous but stronger sufficient “incoherence” condition
which applies to problem (5.1b) is given in [66].

5.1. Weighted Minimum-Trace Factor Analysis. Both mr(X) and mr(3) in
(4.1) and (4.2), respectively, remain invariant under scaling of rows and the corre-
sponding columns of ¥ by the same coefficients. On the other hand, the minimizers
in (5.1a) and (5.1b) and their respective ranks are not invariant under scaling. This
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fact motivates weighted-trace minimization,
(5.2) min {trace(Wf]) |2 =%+ D, %> 0, diagonal D > 0} ;

given ¥ > 0 and a diagonal weight W > 0. As before the characterization of mini-
mizers relates to a suitable condition for the corresponding Lagrange multipliers.

PROPOSITION 17 (see [69]). Let X = 3 + Dy > 0 for a diagonal matriz Dy > 0
and consider a diagonal W > 0. Then

(5.3) (20, Do) = argmin{trace(W) | S =%+ D >0, £ >0, diagonal D >0}
S [Aolic = Wl if [Dolui > 0,
= Ao >0 : E()Ao =0 and { [AO]“ > [W]“ Zf [Do]ii —0.

A corresponding sufficient and necessary condition for (f], D) to be a minimizer
in Shapiro’s problem is that there exists a Grammian in the null space of 3 whose
diagonal entries are equal to the diagonal entries of W.

Minimum-rank solutions may be recovered as solutions to (5.3) using suitable
choices of weight. However, these choices depend on ¥ and are not known in advance;
this motivates a selection of certain canonical ¥-dependent weight as well as iteratively
improving the choice of weight. One should note that since D is diagonal, letting W
be a not necessarily diagonal matrix does not change the problem—only the diagonal
entries of W determine the minimizer.

We first consider taking W = X ~!. A rationale for this choice is that the minimal
value in (5.2) bounds mr () from below, since for any decomposition ¥ = 3 + D,

rank(3) = trace(2T%)
> trace((X + D)71Y)
(5.4) = trace(21%),
where T denotes the Moore-Penrose pseudoinverse. Continuing with this line of anal-
ysis,
rank(3) = trace(313)
(5.5) > trace((X + el) ')

for any € > 0 suggests the iterative reweighting process

(5.6) D(j41) := arg mDintrace (S =Dy +el) 1 (2 - D))

for k =1,2,... and Dy := 0. In fact, as pointed out in [29], (5.6) corresponds to
minimizing log det(X — D + €I) by local linearization.

Next we provide a sufficient condition for 3 to be such a stationary point (5.6),
ie., for ¥ to satisfy

(5.7) argméntrace ((f)—i—e])*l(f)—D)) =0.
The notation o used below denotes the elementwise product between vectors or matri-

ces which is also known as the Schur product [41] and, likewise, for vectors a, b € R"*1,
aobe R with [aob]; = [a];[b];.
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PROPOSITION 18. Let S € Sn.+ and let the columns of U form a basis of R(f])

If
(5.8) RU o U) C R(ILy(sy) © Wyrsyy)

then 3 satisfies (5.7) for all € € (0, €1) and some €1 > 0.
We first need the following result which generalizes [70, Theorem 3.1].

LEMMA 19. For A € R™P and B € R™ Y having columns ai,...,a, and
bi,...,byq, respectively, we let
C =laiobi,a10by,...,a20by,...,a,0b, € R"*PI,

¢: R" —R" dw— diag(AA'diag"(d)BB’), and
¥ RPXC S R™ A s diag(AAB').

Then R(¢) = R(¢) = R((AA") o (BB')) = R(C).
Proof. Since diag(AA’ diag™(d)BB’) = ((AA") o (BB'))d, it follows that

R(¢) = R((AA") o (BB')).

i=1

Moreover, diag(AAB') = 37, >27_, a; o b;j[A];, and then R(y) = R(C). We only
need to show that R(C) = R((AA") o (BB’)). This follows from

(AA)o (BB') = (asaf) o (b;15)

-
)=

@
I
—
<.
I
-

(ai ] bj)(ai 9} bj)/ = CC’

[
M-
M=

s
Il
i

<.
Il
—

Thus R(C) = R((AA") o (BB')). 0

Proof of Proposition 18. Assume that 3 satisfies (5.7). If rank(¥) = r, let
31 = USU’ be the eigendecomposition of 3 with S = diag*(s) with s € R”. Let the
columns of V be an orthogonal basis of the null space of 3, i.e., HJ\/(i) = VV'. Then

. . . 1
—1 -1
Ste) ™ =S+ elgg +ellys) " = (S +ellgg) + “Tys)
and

arg min trace ((f) +el)7H(E - D))
D:i$>D

=arg min trace ((e(ﬁ] + GHR(S))T + HN(E)) (= — D)) .
D:$>D

From Proposition 17, (5.7) holds if there is M € S,,_, 1 such that
(5.9) diag(VMV') = diag (e(i t el s))l +11 N@)) .

Obviously, if e = 0, M = I satisfies the above equation. We consider the matrix M
of the form M = I + A. When (5.9) holds, we need diag((2 + €llg)") to be in the
range of 1 for

¥:S, > R" A diag(VAV).
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From Lemma 19, R(¢) = R(ILy; s © Il (s;)). On the other hand, since

~ Nt . € € /
o8+ el =g ([ e ]) o
then diag(e(® + eHR(i))T) € R(U oU). So if (5.8) holds, there is always a A such
that M = I + A satisfies (5.9). Moreover, it is also required that I + A > 0. Since
the map from € to A is continuous, for small enough ¢, i.e., in an interval (0, ¢1), the
condition I + A can always be satisfied. O
We note that (5.8) is a sufficient condition for 3 to be a stationary point of (5.7)
in both Frisch’s and Shapiro’s settings.

6. Certificates of Minimum Rank. It is of interest to know whether the attained
rank of 3 which in turn is obtained by numerical optimization (e.g., using (5.6)) is
minimal. Thus, in this section we are interested in determining bounds on mr (X).
These bounds, when met, can serve as “certificates” to ascertain minimality of rank.

The following two bounds were proposed in [78] and follow from Theorem 2.
However, both of these bounds require exhaustive search, which may be prohibitively
expensive when n is large.

COROLLARY 20. Let ¥ € S, 1 and ¥ > 0. If there is an s1 X s1 principle minor
of ¥ whose inverse is positive, then

(6.1a) mry(X) >s; — 1.
If there is an sy X so principle minor of X1 which is elementwise positive, then
(6.1b) mry (X) > s2 — 1.

Other criteria that also require exhaustive search are given in [6] for the special
case when mr () < "TH Next we discuss three bounds that are computationally
tractable; the first two were proposed by Guttman [37]. Guttman’s bounds are based
on a conservative assessment for the admissible range of each of the diagonal entries
of D= —-X.

PROPOSITION 21. Let ¥ € S,, 4 and let

D, := diag"(diag(X)),
Dy = (diag*(diag(£ 1)) "

Then the following hold:

(6.1c) mry (X)) > ny (X — Dy),
(6.1d) mry (2) > ny (X — Da).

Further, ny (X — D) < ny (X — D).

Proof. The proof follows from the fact that ¥ > D implies D < Dy < D;. See
[37] for details. O

It is also easy to see that mr(X) > n4 (X — Dy), which provides a lower bound for
the minimum rank in Shapiro’s problem. Next we return to a bound noted earlier in

(5.4).
PROPOSITION 22. Let ¥ € S, . Then the following holds:
> mi -y
(6.1e) mry (X) > Lo trace(X™ (X — D)).

Proof. The statement follows readily from (5.4). O
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Evidently an analogous statement holds for mr(3). We note that (6.1c) and
(6.1d) remain invariant under scaling of rows and corresponding columns, whereas
(6.1e) does not; hence these two cannot be compared directly.

7. Correspondence between Decompositions. We now return to the decom-
position of the data matrix X = X + X and its relation to the correspondlng sample
covariances. The decomposition of X into “noise-free” and “noisy” components im-
plies a corresponding decomposition for the sample covariance, but in the converse
direction, a decomposition ¥ = 4+ 3 leads to a family of compatible decompositions
for X, which corresponds to the boundary of a matrix ball. This is discussed next.

PROPOSITION 23. Let X € R™T and ¥ := X X'. If

(7.1) Y=%+3,

with &, symmetric and nonnegative definite, there exists a decomposition

(7.2a) X=X+X
for which
(7.2b) XX =0,
(7.2¢) S =XX',
(7.2d) ¥ =XX'
Further, all pairs (X, X) that satisfy (7.2a)—(7.2d) are of the form
(7.3) X =327'X + RV?V, X =Sx'X — R?y,
with
(7.4a) R:=%-3¥y7'%
(7.4b) =y -3y1y
IS
=7y

and V € R™T such that VV' =1, XV' =0

Proof. The proof relies on a standard lemma [24, Theorem 2] which states that
if Ae R™T B¢ R™™ with m < T such that AA’ = BB’, then A = BU for some
U € R™*T with UU' = I. Thus, we let A := X,

[z 0
s.[o E}

and B := [I I] S1/2 where S1/2 is the matrix-square root of S. It follows that there
exists a matrix U as above for which A = BU, and therefore we can take

X| _ o2
]

This establishes the existence of the decomposition (7.2a).
In order to parameterize all such pairs (X, X), let U, be an orthogonal (square)
matrix such that

XU, =[2Y%0].



LINEAR MODELS AND THE FRISCH SCHEME 187
Then XU, and XU, must be of the form

(7.5) XU, = [X, A], XU, = [X; -A],

with X7, X7 square matrices. Since

then

(7.6a) X1 X+ AN =3,
(7.6b) X1 X, - AA =0,
(7.6¢) X X+ AN =3

Substituting XJ?{ for AA’ into (7.6a) and using the fact that X1 = X; — X; with
X, = X2, we obtain that

X, =3nY2
Similarly, using (7.6¢) instead, we obtain that
X, =552
Substituting into (7.6b), (7.6a), and (7.6¢), we obtain the following three relations:

AA" =

Since AA’ and the X’s are all symmetric,
AN =¥y

as well. Thus, A = ARI/ 2V; with V1V = I. The proof is completed by substituting
the expressions for X; and A into (7.5). O

Interestingly,
; ]) = rank ([ %): g ]) = rank(2) + rank(2),

and hence the rank of the “uncertainty radius” R of the corresponding X and X
matrix spheres is

™M M

rank(R) + rank(X) = rank ([

rank(R) = rank(3) + rank(3) — rank(X).

In cases where one identifies X from the data matrix X, different criteria may be used
to quantify uncertainty. One such case is the rank of R, while another is its trace,
which is the variance of estimation error in determining X. This topic is considered
next, and its relation to the Frisch decomposition is highlighted.
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8. Uncertainty and Worst-Case Estimation. The basic premise of the decom-
position (7.1) is that, in principle, no probabilistic description of the data is needed.
Thus, under the assumptions of Proposition 23, R represents a deterministic radius
of uncertainty when interpreting the data. On the other hand, if “signal” and “noise”
are assumed probabilistic in nature and jointly Gaussian, assuming that [%’,x’]" has
zero mean and covariance

DDy
E

the conditional expectation of the noise-free component x given observations x is
E{x|x} = ¥¥~!x and the variance of the estimation error is

E{(x-I07x)(x - 227 x)} =¥ - En7IS
= R,

which is precisely the radius of the deterministic uncertainty set; cf. [26, p. 116].
Either way, it is of interest to assess how this radius depends on the decomposition
of 3, and we discuss this next.

8.1. Uniformly Optimal Decomposition. The uncertainty radius R relates to
the minimum mean-squared error (MMSE) estimation. Thus, suppose we seek to
estimate X using a linear estimator Kx for K € R"*". The mean-squared error
(MSE) corresponds to the expression given by

E{|% — Kx]||?} = trace (2 ~KS-SK'+ KZK’) .

If X, ¥ are known and ¥ is positive definite, then the optimal estimator corresponds
to K = Y21 and, as noted earlier, the covariance matrix of the estimation error is
precisely R.

Considering that % is unknown as in the Frisch problem, the MSE also depends
on the decomposition of ¥. Thus, it is natural to consider the MSE loss function

(8.1) L(K,$,5) := trace (2 _KS-SK'+ K&+ f))K’)

and seek an estimator that is uniformly optimal for all admissible pairs (2, ¥) in the
uncertain set

S(X) = {(f],f]) X =343 % ¥>0and X is diagonal}.
This leads to the following min-max problem:
(8.2) min  max L(K,3,%).
K (,9)es(®)

Analogous min-max formulations for a variety of assumptions on the uncertainty sets
have been widely used as a robust technique in signal processing [48, 77, 47, 51, 27].
Below, we focus on the relation between the optimal estimator and the corresponding
decomposition of ¥ as in the Frisch problem.

By switching the order of min and max in (8.2), we obtain

(8.3a) min  max L(K,%,%)> max minL(K,3,%)
K (£5)es(x) (EDesE) K
(8.3b) = max trace (f] — 22_123)
(E,2)es(x)
(8.3¢) = max trace (f) — 22712) .

(E2)es®)



LINEAR MODELS AND THE FRISCH SCHEME 189

Here, in (8.3b), we have used that the optimal K for a pair (£,%)is K =201 =
I — Y%~ The functions to maximize in (8.3b) and (8.3c) are both strictly concave
in ¥ and X. Therefore the maximizer is unique. Thus, we denote

(8.4) (Kopt, Zopts Zopt) = arg _ max minL(K,f),f)),
=DesE) K

where Kopt = f]optE’l, and Kopex is viewed as an estimate of x.

In general, the decomposition suggested by the uniformly optimal estimation
problem does not lead to a singular signal covariance 3. The condition for when
that happens is given next. Interestingly, the condition is expressed in terms of the
candidate noise covariance in one of the Guttman bounds (Proposition 21).

PROPOSITION 24. Let 3 > 0, and let

(8.5) Dy = %diag* (diag(z~1)) ™"

(which is equal to %DQ defined in Proposition 21). If ¥ — Dy > 0, then

(8.6a) Sopt = Do and Sopy = % — D.
Otherwise,
(8.6b) iopt < Dg and f]opt is singular.

Proof. From (8.3c),

L(Kopt,iopt, iopt) = max{i S Iy | ¥ > ¥ >0,%is diagonal}
(8.7) < max {XN] —YE7IY | 2is diagonal}
1
= §trace(D0),

with the maximum attained for > = Dy. Then (8.6a) follows. In order to prove
(8.6b), consider the Lagrangian corresponding to (8.3c),

L(2, Ao, A1) = trace(X — BN TIN + Ag(X — ) + A%,

where Ay, A; are Lagrange multipliers. The optimal values satisfy

(8.8a) [[—22" 00 — Ao+ A =0 YE=1,...,n,
(8.8b) AoSopt =0, Ag >0,
(8.8¢) Aliopt =0, A; > 0 and is diagonal.

If X — Dy # 0, we show that f)opt is singular. Assume the contrary, i.e., that f)opt > 0.
From (8.8b), we see that Ag = 0, while from (8.8a), [I — 2X"'3,¢]kx < 0. This gives
that

5 1

[(Zopt|kk > m = [Dolkk

for all £ = 1,...,n, which contradicts the fact that ¥ — Dy # 0. Therefore f)opt is

singular. We now assume that » £ Dg. Then there exists k such that [iopt]kk >
[Dolxr- From (8.8c) and (8.8a), we have that

[Al]kk =0 and [I - 227120pt]kk >0,
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which contradicts the assumption that [ opt)kk > [Dolkk. Therefore Eopt < Dy and
(8.6b) has been established. O
We remark that while the matrix-valued error variance

E{(x—Kx)x—Kx)'} =S — K% - YK + KXK'

is matrix-convex in K and has a unique minimum for K = £ for which the optimal
value equals )Y 3) i 12 the optimal error covariance 3 — B¥-13 as a function of
¥ may not have a unique maximum in the positive semidefinite sense. To see this,
consider 3 = [2 1]. In this case Dy = %I, f)opt = [5/4 ! ], and

1 5/4
(8.9) Sopt — Sopt S S = { 33//186 33//186 ]
On the other hand, for 3 = [3{2 3}2]7 then
S Sl [ 11//132 11//132 } |

which is neither larger nor smaller than (8.9) in the sense of semidefiniteness. This is
a key reason for considering scalar loss functions of the error covariance as in (8.1).
Next we note that there is no gap between the min-max and max-min values in
the two sides of (8.3a).
PROPOSITION 25. For ¥ € S,, 4, then

(8.10) min  max L(K,ﬁ],i): max minL(K,i,i).
K (85)es(x) EDesE) K

Proof. We observe that for a fixed K, the function L(K, 33,%) is a linear function
of (£,%). For fixed (£,%), the functlon is a convex functlon of K. Under these
conditions it is standard that (8.10) holds; see, e.g., [13, p. 281]. d

It is interesting to note that when Dy = %diag* (diag(E’l))f1 is admissible as
noise covariance, i.e., X — Dy > 0, the optimal signal covariance is f)opt = X — Dy,
and the gain matrix Kopy = SoptX ! = I — DoX~! has all diagonal entries equal
to 3. Thus, with Kopy in (8.1) the MSE loss is independent of % and equal to
trace (2D0 - X+ KoptZKopt) for any admissible decomposition of ¥. We also point
out that the key condition (Proposition 24)

T .
¥ > 3 diag (dlag )
& 2diag* (diag(E7")) > 27

can be equivalently written as ¥~ o (21 — 11’) > 0 and, interestingly, amounts to
the positive semidefiniteness of a matrix formed by changing the signs of all off-
diagonal entries of 1. The set of all such matrices, {S | S >0, So (2] —11’) > 0},
is convex, invariant under scaling rows and corresponding columns, and contains the
set of diagonally dominant matrices {S' | S >0, [S];i > >_,, [[S]i;] for all 4}

We conclude this section by showing that trace(Ropt), with

Ropt = XA:opt - XA:optzilioptv
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represents the matrix radius confining all admissible matrices 3 about f]opt. Thus, R
quantifies the distance between admissible decompositions of X as stated next.
PROPOSITION 26. For ¥ > 0 and any pair (X,%) € S(X),

trace ((E — Sopt) D THE - f)opt)’) < trace(Ropt)-

Proof. Clearly trace(f)E_lf)) < trace(f)), while from Proposition 25,
(8.11) L(Kopt, %, 8) = trace(X — 28,p 8718 + Sope X718, L)
< trace(Ropt)-
Thus, trace(SX 718 — 25, 718 4 S X1

opt) < trace(Ropt ). a

8.2. Uniformly Optimal Estimation and Trace Regularization. The decompo-
sition of ¥ in accordance with the min-max estimation problem of the previous section
often produces an invertible signal covariance 3. On the other hand, as argued earlier,
it is often desirable to obtain a decomposition where 3 is singular and of relatively low
rank. Thus, following [28, 14, 59, 65, 16, 1], we may combine the MSE loss function
with a regularization term that promotes low rank for the signal covariance S.A
corresponding problem is of the form

(8.12) J:=min max (L(K, 3,8) —A- trace(i)) ,
K (£9)es(®)
with A > 0.
As noted in Proposition 25 (see [13, p. 281]), here too there is no gap between
the min-max and the max-min, and therefore

max min {L(K,i,i) —/\trace(fl)}
= DesE) K

= max mintrace ((1 —ANE - KY-SK' + K(E+ E)K')
EDesE) K

(8.13a) = max trace ((1 —NE-B(E 4+ i)*lf])
(£.£)es(x)

(8.13b) = max trace (—/\Z FAENE-SE i)*li) .
(E,2)es(%)

Note that (8.13a) is obtained by substituting 3(3 + %)~! for K. Since (8.13a) and
(8.13b) are strictly concave functions of ¥ and ¥, respectively, there is a unique set of
optimal values (K opt, )y Aopt) by aopt). For sufficiently large A the optimal value for
3 is singular. The following provides one such condition.

PROPOSITION 27. For ¥ > 0, let

Dy = % (diag* diag(Z_l))fl7

let Amin De the smallest eigenvalue of DJ%ZD(;%, and let (K opts ZA],\ppt, i,\ppt) as
defined above. If X > Apin — 1, then XA],\ppt s singular.

Proof. The trace of (—AX 4 (14+ X)X — XX ~!%) is maximal for the diagonal choice
N = (14 A)Dg. For any A > Apin — 1, ¥ — (1 4+ A) Dy fails to be positive semidefinite.
Thus, the constraint ¥ — ¥ > 0 in (8.13b) is active and 2>\70pt is singular. d

Note that ¥ — 2Dy 2 0 (unless ¥ is diagonal), and therefore A\ynin < 2. Hence, for
A>1, XA)A,Opt is singular. When A — 0 we recover the solution in (8.4), whereas for
A — oo we recover the solution in Proposition 15.
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9. Accounting for Statistical Errors. The impetus for some of the early work
on the Frisch problem was provided by the need for reliable models in econometrics—
a subject which was characterized by Ragnar Frisch as the application of statistical
and mathematical methods in economics [73, p. 266]. A history of the subject and
the pivotal contributions of Frisch, Koopmans, Haavelmo, Anderson, and others, as
well as a brief reference to the modern critique by R. E. Kalman, is recounted by
Madala [73, pp. 265-283]. Perhaps the key stumbling block, going back to the work
of Tintner [74] and an issue often raised by R. E. Kalman, has been the sensitivity of
models to statistical uncertainty and the well-posedness of the Frisch problem (which
was discussed earlier). In the present section we discuss how we may account for
uncertainty in the data in the context of the Frisch paradigm. The section concludes
with an example that highlights the difficulties of conclusively ascertaining the number
of linear relations when statistical uncertainty is present. The examples helps highlight
tradeoffs and the relevance of the theory of the Frisch viewpoint in practice.

From an applications standpoint, ¥ represents an empirical covariance which is
obtained on the basis of the finite observation record in the data matrix X. Hence,
the assumptions (3.3a) and (3.3b) as well as the decomposition ¥ = 3 + % can only
be expected to hold approximately; the sample covariance ¥ may not have a low-
rank decomposition even if the underlying true covariance matrix does. Statistical
errors can then be taken into account in the min-max formulation (8.2) and (8.12) by
replacing the uncertainty set S(X) with

(9.1) S(2):={(2,%) | d(X+%,%) < with £, >0, and % diagonal}.

Here € > 0 and d(-, ) represents a distance between 3+ % and ¥. One should note
that the distance between (sets of) coefficients of linear relations corresponding to
different elements in S.(X) is on the order of € [67, section 3.2].

Several candidate distance measures d(-, -) have been used to compare covariance
matrices [17, 11, 33, 62, 7, 57, 2]. Examples include the Frobenius norm [57], the
affine invariant metric [11, 2, 7], Jensen-Bregman divergences [17], the Wasserstein
distance between corresponding distributions [61], and others. While we do not make
any claim as to the appropriateness of one distance versus the other, for specificity,
we make use of the 2-Wasserstein distance and seek a Gaussian distribution closest
to one which agrees with the sample statistics. Below we provide a brief account of
the Wasserstein distance between Gaussian distributions. We express this distance
as the solution to an optimization problem expressed in terms of the corresponding
covariances [61].

Consider two zero-mean Gaussian random vectors x,y € R™ having covariance
matrices ¥, and X, respectively. The squared 2-Wasserstein distance between the
respective density functions is defined as

(9.2) Igin5pxy(|\X—YIl2),

where &, denotes expectation with respect to a joint distribution p,,; i.e., the min-
imization is over Gaussian densities p,, that agree with the given marginals specified
by their respective covariances ¥, and X,. If we let X, := &, (xy’) represent the
unknown correlation between the two vectors,

Ep., (Ix = y?) = trace(Ta + By — Tay — 37,
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while ¥, is only constrained to satisfy

It follows that the minimization in (9.2) can be expressed directly in terms of the
corresponding covariance matrices [61]. The optimal value in (9.2) now also represents
the square of a metric between the respective covariance matrices ¥, and ¥,. We use
this distance measure to quantify dissimilarity between 3 + 3 and ¥, defining

(9.3) dW2(2+i,Z):mCin (trace(Z—l—i—l—i—C—C’H [ 25,2 g } 20),

with the optimization in the form of a semidefinite program.

In order to account for statistical errors, we may now modify the optimization
problem (8.12) to include the uncertainty set Sc(X) in the place of S(X); note that in
(9.1) we use dyy, as the corresponding distance. Thus, we consider

Jo:=min  max (L(K, 3, f)) - )\trace(f))) ,
K (5,5)es(%)

which incorporates tradeoffs between the dimension of the signal subspace, MSE loss,
and statistical errors. For reasons similar to those in (8.13), the order of max-min
and min-max can be reversed. This gives that the optimal value is

Je= _ max trace ((1 — ) -N(E 4 i)*li) .
(E,2)eS (%)

We reformulate the last optimization problem as follows:

. Q )
(9.4) (2,2)123‘?((2)@ {trace ((1 —AD)X - Q) | [ S S4s ] > 0} .

Putting together (9.3) and (9.4), we obtain that

(9.5a) Je = max trace ((1 Y ) Q)
£,5,Q,C
subject to
(9.5b) @ E >0, £>0,% >0, and 3 diagonal
. i - + i — Y — Y% - Y g )
(9.5¢) trace(E+ X +5 - C —C') <e, [ Zg—/Z g } > 0.

Note that (9.5¢) reflects the constraint dy, (2 + %, %) < e.

An alternative approach to obtaining suitable decompositions is to seek pairs
(2, %) such that d(3 + %, %) is minimal while & has a prespecified rank; likelihood-
based methods are based on such an approach [6, 43]. In this case, statistical tests can
be used to identify a suitable value for the rank [6]; for high-dimensional observations
and under mild assumptions the rank may be estimated using principle component
analysis [30, 32].
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We conclude with an example to highlight the potential and limitations of the
framework. We generate data X in the form

X=FV+X,

where F € R™", V e R™*T and X € R™7 with n = 50, » = 10, T = 100.
The elements of F and V are generated from normal distributions with mean zero
and unit covariance. The columns of X are generated from a normal distribution
with mean zero and diagonal covariance, itself having (diagonal) entries which are
uniformly drawn from interval [1,10]. The matrix ¥ = X X’ is subsequently scaled
so that trace(X) = 1. We determine the optimal value of (9.5a) and tabulate below a
typical set of values for the rank of the minimizer ¥ (Table 9.1) as a function of A and
€. We observe a “plateau” where the rank stabilizes at 10 over a small range of values
for € and A. Naturally, such a plateau may be taken as an indication of a suitable
range of parameters. Although the current setting where a small perturbation in the
empirical covariance ¥ is allowed, the bounds for the rank in (6.1d) and (6.1e) are still
pertinent. In fact, for this example, in 7 out of 10 instances where the rank(i) =10,
the bound in (6.1d) (computed based on the perturbed covariance ¥ + %) has been
tight and is thus a valid certificate. For the same range of parameters, the bound in
(6.1e) has been lower than the actual rank of 3. In general, the bounds in (6.1d) and
(6.1e) are not comparable as either one may be tighter than the other.

Table 9.1 rank(3) as a function of A and e.

A ¢ 0 0.08 | 0.10 | 0.12 | 0.14 | 0.16
1 46 26 24 23 22 22
5 46 17 14 10 10 9
10 45 16 12 10 10 8
20 45 15 12 10 10 8
50 45 15 12 10 10 8
100 45 15 11 10 10 8

10. Conclusions. Our aim has been to provide an overview of the theory and
techniques that are relevant for the problem of identifying linear relations among
variables based on noisy measurements—a classical problem of major importance
in the current era of “big data.” Novel numerical tools and increasingly powerful
computers have made it possible to successfully treat a number of key issues in this
topic in a unified manner.

Thus, the thrust of the paper has been to present and develop in a unified man-
ner key ideas of the theory of noise-in-variables linear modeling including an account
of key foundational contributions. In particular, we considered two complementing
viewpoints for linear modeling under the assumption of independent noise. Starting
from covariance data that are exact and known, we first developed classical results on
the Frisch problem, which asks for the maximum number of simultaneous linear rela-
tions that is consistent with the data. Our analysis provides a geometric insight into
a fundamental theorem of Reiersgl, results on the structure of solutions and the well-
posedness of the Frisch and Shapiro problems, bounds on the corresponding minimum
rank, and a generalization to complex-valued matrices. We then provide an account
of trace minimization heuristics and of iterative reweighting trace minimization as a
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technique for obtaining solutions of low rank and of computationally tractable lower
bounds which can serve as certificates to guarantee that the minimum rank has been
achieved. Addressing statistical uncertainty, we discuss min-max estimation problems
and how to quantify uncertainty while seeking minimum rank models in a convex opti-
mization setting. In this we integrate various objectives (low-rank, minimal worst-case
estimation error) and explain their effectiveness and caveats in a numerical example.

In recent years, techniques such as the ones presented in this work are becoming
increasingly important in subjects where one has very large noisy data sets. Typical
examples include medical imaging, genomics/proteomics, and finance. It is our hope
that the material we presented in this paper will be found useful in this context. It
must be noted that throughout the present work we emphasized independence of noise
in individual variables. Evidently, more general and versatile structures for the noise
statistics can be treated in a similar manner, and these may become important when
dealing with large data sets.

An important topic for future research is that of dealing with errors in estimating
empirical statistics. It is common to quantify distances using standard matrix norms—
as is done in the present paper. Alternative distance measures such as the Wasserstein
distance mentioned in section 9 and others [2, 7, 33, 17, 60]) may become increasingly
important. Finally, we raise the question of the asymptotic performance of certificates
such as those presented in section 6. It is important to know how the tightness of the
certificate to the minimal rank of linear models relates to the size of the problem.
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