
Distributed Average Consensus with Least-Mean-Square Deviation

Lin Xiao, Stephen Boyd, and Seung-Jean Kim

Abstract— We consider a stochastic model for distributed
average consensus, which arises in applications such as load
balancing for parallel processors, distributed coordination
of mobile autonomous agents, and network synchronization.
In this model, each node updates its local variable with a
weighted average of its neighbors’ values, and each new value
is corrupted by an additive noise with zero mean. The quality
of consensus can be measured by the total mean-square
deviation of the individual variables from their average,
which converges to a steady-state value. We consider the
problem of finding the (symmetric) edge weights that result in
the least mean-square deviation in steady state. We show that
this problem can be cast as a convex optimization problem, so
the global solution can be found efficiently. We describe some
computational methods for solving this problem, and compare
the weights and the mean-square deviations obtained by this
method and several other weight design methods.

Keywords— average consensus, distributed algorithm, least
mean square, convex optimization, eigenvalue optimization.

I. INTRODUCTION

A. Asymptotic distributed average consensus

Let G = (N , E) be an undirected connected graph with
node set N = {1, . . . , n} and edge set E , where each
edge {i, j} ∈ E is an unordered pair of distinct nodes. Let
xi(0) be a real scalar assigned to node i at time t = 0.
The distributed average consensus problem is to compute
(iteratively) the average (1/n)

∑n
i=1 xi(0) at every node,

allowing only local communication on the graph. Thus,
node i carries out its update, at each step, based on its
local state and communication with its neighbors Ni =
{j | {i, j} ∈ E}.

Distributed average consensus is an important problem
in algorithm design for distributed computing. It has been
extensively studied in computer science, for example in
distributed agreement and synchronization problems (see,
e.g., [1]). It is a central topic for load balancing (with
divisible tasks) in parallel computers (see, e.g., [2], [3]).
More recently, it has also found applications in distributed
coordination of mobile autonomous agents (e.g., [4], [5],
[6], [7]), and distributed data fusion in sensor networks
(e.g., [8], [9], [10]).

Appearing in Proceedings of the 17th International Symposium on
Mathematical Theory of Networks and Systems (MTNS), Kyoto, Japan,
July 24-28, 2006.

Lin Xiao is with the Center for the Mathematics of Information,
California Institute of Technology, Pasadena, CA 91125-9300, USA.
Email: lxiao@caltech.edu

Stephen Boyd and Seung-Jean Kim are with the Department of
Electrical Engineering, Stanford University, Stanford, CA 94305-9510,
USA. Emails: boyd@stanford.edu, sjkim@stanford.edu

The following linear iterative algorithm is widely used
in the applications cited above:

xi(t+ 1) = xi(t) +
∑

j∈Ni

Wij(xj(t)− xi(t)), (1)

for i = 1, . . . , n, and t = 0, 1, Here Wij is a
weight associated with the edge {i, j}. These weights are
algorithm parameters. Since we associate weights with
undirected edges, we have Wij =Wji. (It is also possible
to consider nonsymmetric weights, associated with ordered
pairs of nodes.) Setting Wij = 0 for j /∈ Ni and Wii =
1−

∑

j∈Ni
Wij , the algorithm in (1) can be expressesd as

x(t+ 1) =Wx(t), t = 0, 1, . . . ,

with initial condition x(0) = (x1(0), . . . , xn(0)). By
construction, the matrix W satisfies

W =WT , W1 = 1, W ∈ S, (2)

where 1 denotes the vector of all ones, and S denotes the
set of matrices with sparsity patterns compatible with the
graph:

S = {W ∈ Rn×n |Wij = 0 if i 6= j and {i, j} /∈ E}.

To achieve asymptotic average consensus no matter what
the initial node values are, we must have

lim
t→∞

x(t) = lim
t→∞

W tx(0) = (1/n)11Tx(0)

for all x(0); equivalently limt→∞W t = (1/n)11T . The
(rank one) matrix on the right is the averaging matrix:
(1/n)11T z is the vector all of whose components are the
average of the entries of z. We will use this matrix often,
so we will denote it as

J = (1/n)11T .

The condition that we have asymptotic average consensus,
in addition to those in (2), is

‖W − J‖ < 1, (3)

where the norm is the spectral or maximum singular
value norm (see, e.g., [11]). The norm ‖W − J‖ gives a
measure of the worst-case, asymptotic rate of convergence
to consensus. Indeed, the Euclidean deviation of the node
values from their average is guaranteed to be reduced by
the factor ‖W − J‖ at each step:

‖x(t+ 1)− Jx(0)‖ ≤ ‖W − J‖‖x(t)− Jx(0)‖,

(The vector norm here is the Euclidean norm, ‖u‖ =
(uTu)1/2.)

Weights that satisfy the basic constraints (2), as well as
the convergence condition (3), always exist. For example,
we can take the Metropolis-Hastings weights:

Wij =







1/(max{di, dj}+ 1) {i, j} ∈ E
1−

∑

j∈Ni
1/(max{di, dj}+ 1) i = j

0 otherwise
(4)

where di = |Ni| is the degree of node i in the graph [11].
Many variations of the model (1) have also been stud-

ied. These include problems where the weights are not
symmetric, problems where final agreement is achieved,
but not necessarily to the average (e.g., [4], [6], [7])
Convergence conditions have also been established for dis-
tributed consensus on dynamically changing graphs (e.g.,
[4], [6], [8], [7]) and with asynchronous communication
and computation ([12], [13]) Alternative algorithm for
average consensus has been studied in, e.g., [14].

In [11], we formulated the fastest distributed linear
averaging (FDLA) problem: choose the weights to obtain
fastest convergence, i.e., to minimize the asymptotic con-
vergence factor ‖W −J‖. We showed that (for symmetric
weights) this FDLA problem is convex, and hence can
be solved globally and efficiently. In this paper we study
a similar optimal weight design problem, based on a
stochastic extension of the simple averaging model (1).

B. Distributed average consensus with additive noise

We now consider an extension of the averaging itera-
tion (1), with a noise added at each node, at each step:

xi(t+ 1) = xi(t) +
∑

j∈Ni

Wij(xj(t)− xi(t)) + vi(t), (5)

for i = 1, . . . , n, and t = 0, 1, Here vi(t), i = 1, . . . , n,
t = 0, 1, . . . are independent random variables, identically
distributed, with zero mean and unit variance. We can write
this in vector form as

x(t+ 1) =Wx(t) + v(t),

where v(t) = (v1(t), . . . , vn(t)). In the sequel, we will
assume that W satisfies the conditions required for asymp-
totic average consensus without the noises, i.e., that the
basic constraints (2) and the convergence condition (3)
hold.

With the additive noise terms, the sequence of node
values x(t) becomes a stochastic process. The expected
value of x(t) satisfies Ex(t + 1) = W Ex(t), so it
propagates exactly like the node values without the noise
term. In particular, each component of the expected value
converges to the average of the initial node values. But
the node values do not converge to the average of the
initial node values in any useful sense. To see this, let
a(t) = (1/n)1Tx(t) denote the average of the node values.
Thus, a(0) is the average of xi(0), and we have

a(t+ 1) = a(t) + (1/n)1T v(t),

using 1
TW = 1

T . The second term (1/n)1T v(t) is a
sequence of independent, zero mean, unit variance random

variables. Therefore the average a(t) undergoes a random
walk, starting from the initial average value a(0) =
(1/n)1Tx(0). In particular, we have

E a(t) = a(0), E(a(t)−E a(t))2 = t.

This shows that the additive noises induce a (zero mean)
error in the average, which has variance that increases
linearly with time, independent of the particular weight
matrix used. In particular, we do not have average consen-
sus (except in the mean), for any choice of W .

There is, however, a more useful measure of consensus
for the sequence x(t). We define z(t) to be the vector of
deviations of the components of x(t) from their average.
This can be expressed in component form as zi(t) =
xi(t)− a(t), or as

z(t) = x(t)− Jx(t) = (I − J)x(t).

We define the (total) mean-square deviation as

δ(t) = E

n
∑

i=1

(xi(t)− a(t))2 = E ‖(I − J)x(t)‖2.

This is a measure of relative deviation of the node values
from their average, and can also be expressed as

δ(t) =
1

n
E

∑

i<j

(xi(t)− xj(t))
2,

i.e., it is proportional to the average pairwise expected
deviation among the node values (the exact average need
a factor 2/(n(n− 1)) instead of 1/n). Therefore δ(t) can
be interpreted as a measure of how far the components of
x(t) are from consensus.

We will show that, assuming W satisfies (2) and (3), the
mean-square deviation δ(t) converges to a finite (steady-
state) value as t→∞, which we denote δss:

δss = lim
t→∞

δ(t).

This steady-state mean-square deviation is a function of
the weights W , so we will denote it as δss(W). It is
a measure of how well the weight matrix W is able to
enforce consensus, despite the additive noises introduced
at each node at each step.

C. Least-mean-square consensus problem

In this paper we study the following problem: given the
graph, find edge weights that yield the smallest steady-state
mean-square deviation. This can be posed as the following
optimization problem:

minimize δss(W)
subject to W =W T , W1 = 1

‖W − J‖ < 1, W ∈ S,
(6)

with variable W ∈ Rn×n. We call the problem (6) the
least-mean-square consensus (LMSC) problem.

For future use, we describe an alternative formulation
of the LMSC problem that is parametrized by the edge
weights, instead of the weight matrix W . We enumerate the

edges {i, j} ∈ E by integers k = 1, . . . ,m, where m = |E|.
We write k ∼ {i, j} if the edge {i, j} is labeled k. We
assign an arbitrary direction or orientation for each edge.
Now suppose k ∼ {i, j}, with the edge direction being
from i to j. We associate with this edge the vector aij in
Rn with ith element +1, jth element −1, and all other
elements zero. We can then write the weight matrix as

W = I −
∑

{i,j}∈E

Wijaija
T
ij = I −

m
∑

k=1

wkaka
T
k , (7)

where wk denotes the weight on the kth edge. It can be
verified that the parametrization (7) of W automatically
satisfies the basic constraints (2), and that conversely,
any W that satisfies the basic constraints (2) can be
expressed in the form (7). Thus, we can express the LMSC
problem (6) as

minimize δss

(

I −
∑m

k=1 wkaka
T
k

)

subject to
∥

∥I − J −
∑m

k=1 wkaka
T
k

∥

∥ < 1,
(8)

with variable w ∈ Rm. In this formulation the only
constraint is ‖W − J‖ < 1.

D. Applications

The model of average consensus with additive noises (5)
and the LMSC problem (6) arise naturally in many prac-
tical applications. Here we briefly discuss its role in
load balancing, coordination of autonomous agents, and
network synchronization.

In the literature of load balancing, most work has
focused on the static model (1), which is called a diffusion
scheme because it can be viewed as a discretized diffusion
equation (Poisson equation) on the graph [3]. Nevertheless,
the stochastic version (5) is often more relevant in practice,
in particular, for dynamic load balancing problems where
a random amount of (divisible) tasks are generated during
the load balancing process. In fact, one of the first models
for a diffusion scheme proposed in [2] is of this kind:

qi(t+ 1) = qi(t) +
∑

j∈Ni

Wij(qj(t)− qi(t))− c+ ui(t).

Here qi(t) is the amount of (divisible) tasks waiting to
be processed at node i at time t (the queue length), c
is the constant number of tasks that every processor can
complete in unit time, and ui(t) is a nonnegative random
variable that accounts for new tasks generated at time t for
processor i. The quantity Wij(qj(t)− qi(t)) is the amount
of tasks transfered from processor j to i (a negative number
means transfering in the opposite direction). As discussed
in [2], the most interesting case is when Eui(t) = c,
and this is precisely the model (5) with the substitutions
vi(t) = ui(t) − c and xi(t) = qi(t) − qi(0). (Instead
of adding the constraint qi(t) ≥ 0, we asumme the
initial queue lengths qi(0) are large so that qi(t) remain
nonnegative with very high probability.)

In dynamic load balancing problems, it is desirable to
keep the mean-square deviation as small as possible, i.e.,

to distribute the loads most evenly in a stochastic sense.
This is precisely the LMSC problem (6), which (to our
knowledge) has not been addressed before.

For distributed coordination of autonomous vehicles, the
variable xi(t) can represent the position or velocity of each
individual vehicle (e.g., in the context of [4], [5]). The
additive noises vi(t) in (5) can model random variations,
e.g., caused by disturbances on the dynamics of each local
vehicle. Here the LMSC problem (6) is to obtain the
best coordination in steady-state by optimizing the edge
weights.

Another possible application of the LMSC problem
is drift-free clock synchronization in distributed systems
(e.g., [15]). Here xi(t) represents the reading of a local
relative clock (with the constant rate deducted), corrupted
by random noise vi(t). Each node of the network adjusts
its local clock via the diffusion scheme (5). The LMSC
problem (6) amounts to finding the optimal edge weights
that give the smallest (mean-square) synchronization error.

E. Outline

In §II, we derive several explicit expressions for the
steady-state mean-square deviation δss(W), and show that
the LMSC problem is a convex optimization problem.
In §III we discuss computational methods for solving
the LMSC problem, and explain how to exploit problem
structure such as sparsity in computing the gradient and
Hessian of δss. In §IV, we consider a special case of
the LMSC problem where all edge weights are taken to
be equal, and illustrate its application to edge-transitive
graphs. In §V, we present some numerical examples of the
LMSC problem, and compare the resulting mean-square
deviation with those given by other weight design methods,
including the FDLA weights in [11].

II. STEADY-STATE MEAN-SQUARE DEVIATION

In this section we give a detailed analysis of the steady-
state mean-square deviation δss, including several useful
and interesting formulas for it. We start with

x(t+ 1) =Wx(t) + v(t)

where W satisfies the basic constraints (2) and the conver-
gence condition (3), and vi(t) are independent, identically
distributed random variables with zero mean and unit
variance. The deviation vector z(t), defined as z(t) =
(I − J)x(t), satisfies 1

T z(t) = 0, and the recursion

z(t+ 1) = (W − J)z(t) + (I − J)v(t). (9)

Therefore we have

E z(t) = (W − J)t E z(0) = (W − J)t(I − J)x(0),

which converges to zero as t→∞, since ‖W − J‖ < 1.
Let Σ(t) = E z(t)z(t)T be the second moment matrix

of the deviation vector. The total mean-square deviation
can be expressed in terms of Σ(t) as

δ(t) = E ‖z(t)‖2 = TrΣ(t).

By forming the outer products of both sides of the equa-
tion (9), we have

z(t+ 1)z(t+ 1)T = (W − J)z(t)z(t)T (W − J)

+(I − J)v(t)v(t)T (I − J)

+2(W − J)z(t)v(t)T (I − J).

Taking the expectation on both sides, and noticing that
v(t) has zero mean and is independent of z(t), we obtain
a difference equation for the deviation second moment
matrix,

Σ(t+ 1) = (W − J)Σ(t)(W − J) + (I − J)I(I − J)
= (W − J)Σ(t)(W − J) + I − J.

(10)
(The second equality holds since (I − J) is a projection
matrix.) The initial condition is

Σ(0) = E z(0)z(0)T = (I − J)x(0)x(0)T (I − J).

Since ‖W − J‖ < 1, the difference equation (10)
is a stable linear recursion. It follows that the recursion
converges to a steady-state value Σss = limt→∞ Σ(t), that
is independent of Σ(0) (and therefore x(0)), which satisfies
discrete-time Lyapunov equation

Σss = (W − J)Σss(W − J) + (I − J). (11)

We can express Σss as

Σss =

∞
∑

t=0

(W − J)t(I − J)(W − J)t

= (I − J) +

∞
∑

t=1

(

W 2 − J
)t

=

∞
∑

t=0

(

W 2 − J
)t
− J

=
(

I + J −W 2
)−1

− J.

In several steps here we use the conditions (2) and (3),
which ensure the existence of the inverse in the last line.
We also note, for future use, that I + J −W 2 is positive
definite, because it can be expressed as I + J − W 2 =
(Σss + J)−1.

A. Expressions for steady-state mean-square deviation

Now we can write the steady-state mean-square devia-
tion as an explicit function of W :

δss(W) = TrΣss = Tr
(

I + J −W 2
)−1

− 1, (12)

which we remind the reader holds assuming W satisfies
the consensus averaging conditions W = W T , W1 = 1,
and ‖W − J‖ < 1. This expression shows that δss is an
analytic function of W , since the inverse of a matrix is a
rational function of the matrix (by Cramer’s formula). In
particular, it has continuous derivatives of all orders.

We give another useful variation of the formula (12).
We start with the identity

I + J −W 2 = (I − J +W)(I + J −W),

which can be verified by multiplying out, and noting that
J2 = J and JW =WJ = J . Then we use the identity

((I −B)(I +B))
−1
=
1

2
(I +B)−1 +

1

2
(I −B)−1,

with B =W − J to obtain
(

I + J −W 2
)−1

=
1

2
(I+W −J)−1+

1

2
(I−W +J)−1.

Therefore we can express δss(W) as

δss(W) =
1

2
Tr(I+J−W)−1+

1

2
Tr(I−J+W)−1−1.

(13)
The condition ‖W − J‖ < 1 is equivalent to −I ≺ W −
J ≺ I , where ≺ denotes (strict) matrix inequality. These
inequalities can be expressed as

I + J −W Â 0, I − J +W Â 0.

This shows that the two matrices inverted in the expres-
sion (13) are positive definite. We can therefore conclude
that δss is a convex function of W , since the trace of the
inverse of a positive definite symmetric matrix is a convex
function of the matrix [16, exercise 3.57]. This, in turn,
shows that the LMSC problem (6), and its formulation in
terms of the edge weights (8), are convex optimization
problems.

Finally, we give an expression for δss in terms of the
eigenvalues of W . From (13), and using the fact that the
trace of a matrix is the sum of its eigenvalues, we have

δss(W) =
1

2

n
∑

i=1

1

λi(I + J −W)

+
1

2

n
∑

i=1

1

λi(I − J +W)
− 1,

where λi(·) denotes the ith largest eigenvalue of a sym-
metric matrix. Since W1 = 1 (which corresponds to the
eigenvalue λ1(W) = 1), the eigenvalues of I+W −J are
one, together with λ2(W), . . . , λn(W). A similar analysis
shows that the eigenvalues of I−W −J are one, together
with −λ2(W), . . . ,−λn(W). Therefore we can write

δss(W) = (1/2)
n
∑

i=2

1

1− λi(W)
+ (1/2)

n
∑

i=2

1

1 + λi(W)

=
n
∑

i=2

1

1− λi(W)2
. (14)

This simple formula has a nice interpretation. To achieve
asymptotic average consensus, the weight matrix W is
required to have λ1(W) = 1, with the other eigenvalues
strictly between −1 and 1 (since ‖W − J‖ < 1). It is
the eigenvalues λ2(W), . . . , λn(W) that determine the dy-
namics of the average consensus process. The asymptotic
convergence factor is given by

‖W − J‖ = max{λ2(W),−λn(W)},

and so is determined entirely by the largest (in magni-
tude) eigenvalues (excluding λ1(W)=1). The formula (14)

shows that the steady-state mean-square deviation is also
a function of the eigenvalues (excluding λ1(W)=1), but
one that depends on all of them, not just the largest
and smallest. The function 1/(1 − λ2) can be consid-
ered a barrier function for the interval (−1, 1) (i.e., a
smooth convex function that grows without bound as the
boundary is approached). The steady-state mean-square
deviation δss is thus a barrier function for the constraint
that λ2(W), . . . , λn(W) must lie in the interval (−1, 1).
In other words, δss grows without bound as W approaches
the boundary of the convergence constraint ‖W −J‖ < 1.

B. Some bounds on steady-state mean-square deviation

Our expression for δss can be related to a bound obtained
in [2]. If the covariance matrix of the additive noise v(t)
is given by σ2I , then it is easy to show that

δss(W) =
n
∑

i=2

σ2

1− λi(W)2
.

The upper bound on δss in [2] is

δss(W) ≤
(n− 1)σ2

1− ‖W − J‖2
,

which is a direct consequence of the fact

|λi(W)| ≤ ‖W − J‖, i = 2, . . . , n.

We can give a similar bound, based on both the spectral
norm ‖W − J‖ (which is max{λ2(W),−λn(W)}), and
the Frobenius norm ‖W − J‖F ,

‖W − J‖2F =
n
∑

i,j=1

(W − J)2ij =
n
∑

i=2

λi(W)2.

For |u| ≤ a < 1, we have

1 + u2 ≤
1

1− u2
≤ 1 +

1

1− a2
u2.

Using these inequalities with a = ‖W − J‖ and u = λi,
for i = 2, . . . , n, we obtain

n− 1 +
n
∑

i=2

λi(W)2 ≤ δss(W) =

n
∑

i=2

1

1− λi(W)2

and

δss(W) ≤ n− 1 +
1

1− ‖W − J‖2

n
∑

i=2

λi(W)2.

Thus we have

n− 1 + ‖W − J‖2F ≤ δss(W) ≤ n− 1 +
‖W − J‖2F

1− ‖W − J‖2
.

C. Computing the steady-state mean-square deviation

Here we briefly discuss methods that can be used to
compute δss for a fixed W (the weight matrix) or w (the
vector of edge weights). One straightforward method is
to compute all the eigenvalues of W , which allows us to
check the convergence condition ‖W − J‖ < 1, as well
as evaluate δss(W) using (14). If we exploit no structure
in W (other than, of course, symmetry), the computational
cost of this approach is O(n3).

A more efficient method is based on formula (13), where
we can exploit the sparse plus rank-one structure of the
matrices I+J−W and I−J+W . Let N be the number of
nonzero elements in the Cholesky factor, after re-ordering
to reduce the fill-in, of I+W (which is sparse and positive
definite). We can compute δss(W) with a total flop count
O(nN) and storage requirement O(N). When N is on the
order of n, this gives an O(n2) algorithm, one order faster
than the methods that do not exploit sparsity. For details,
see [17].

D. Derivation via spectral functions

In this section we show how convexity of δss(W), with
the expression (14), can be derived using the theory of
convex spectral functions [18, §5.2]. For y ∈ Rn, we
write [y] as the vector with its components rearranged into
nonincreasing order; i.e., [y]i is the ith largest component
of y. A function g : Rn → R is called symmetric if
g(y) = g([y]) for all vectors y ∈ Rn. In other words,
a symmetric function is invariant under permutation of its
arguments. Let g be a symmetric function and λ(·) denote
the vector of eigenvalues of a symmetric matrix, arranged
in nonincreasing order. The composite function g ◦ λ is
called a spectral function. It is easily shown that a spectral
function is orthogonally invariant; i.e.,

(g ◦ λ)(QWQT) = (g ◦ λ)(W)

for any orthogonal Q and any symmetric matrix W in
Rn×n.

A spectral function g◦λ is closed and convex if and only
if the corresponding symmetric function g is closed and
convex (see, e.g., [19] and [18, §5.2]). Examples of convex
spectral functions include the trace, largest eigenvalue, and
the sum of the k largest eigenvalues, for any symmetric
matrix; and the trace of the inverse, and log determinant of
the inverse, for any positive definite matrix. More examples
and details can be found in, e.g., [19], [20].

From the expression (14), we see that the function
δss(W) is a spectral function, associated with the sym-
metric function (with y1 = 1 always)

g(y) =











n
∑

i=2

1

1− y2
i

, if − 1 < yi < 1, i = 2, . . . , n

+∞, otherwise.

Since g is closed and convex, we conclude that the spectral
function δss is also closed and convex. Furthermore, δss

is twice continuously differentiable because the above
symmetric function g is twice continuously differentiable.

III. SOLVING THE LMSC PROBLEM

In this section we describe computational methods for
solving the LMSC problem (6). We will focus on the
formulation (8), with edge weights as variables. We have
already noted that the steady-state mean-square deviation
δss is a barrier function for the convergence condition
‖W − J‖ < 1, which can therefore be neglected in the
optimization problem (8), provided we interpret δss as ∞
when the convergence condition does not hold. In other
words, we must solve the unconstrained problem

minimize f(w) = δss

(

I −
∑m

k=1 wkaka
T
k

)

, (15)

with variable w ∈ Rm, where we interpret f(w) as ∞
whenever ‖I −

∑m
k=1 wkaka

T
k − J‖ ≥ 1.

This is a smooth unconstrained convex optimization
problem, and so can be solved by many standard methods,
such a gradient descent method, quasi-Newton method,
conjugate gradient method, or Newton’s method. These
methods have well known advantages and disadvantages in
speed of convergence, computational cost per iteration, and
storage requirements; see, e.g., [21], [22], [16], [23]. These
algorithms must be initialized with a point, such as the
Metropolis-Hastings weight (4), that satisfies f(w) < ∞.
At each step of these algorithms, we need to compute the
gradient ∇f(w), and for Newton’s method, the Hessian
∇2f(w) as well. In the next few sections we derive
expressions for the gradient and Hessian, and describe
methods that can be used to compute them.

A. Gradient

We start with the formula (13). With the substitution
W = I −

∑m
l=1 wlala

T
l , we have

f(w) =
1

2
TrF (w)−1 +

1

2
TrG(w)−1 − 1,

where

F (w) = 2I−
m
∑

k=1

wkaka
T
k −J, G(w) =

m
∑

k=1

wkaka
T
k +J.

Suppose that weight wk corresponds to edge {i, j}, i.e.,
k ∼ {i, j}. Then we have

∂f

∂wk
= −

1

2
Tr

(

F−1 ∂F

∂wk
F−1

)

−
1

2
Tr

(

G−1 ∂G

∂wk
G−1

)

=
1

2
Tr
(

F−1aka
T
k F

−1
)

−
1

2
Tr
(

G−1aka
T
kG

−1
)

=
1

2
‖F−1ak‖

2 −
1

2
‖G−1ak‖

2

=
1

2

∥

∥(F−1):,i − (F
−1):,j

∥

∥

2

−
1

2

∥

∥(G−1):,i − (G
−1):,j

∥

∥

2
, (16)

where (F−1):,i denotes the ith column of F−1 (and
similarly for G). In the first line, we use the fact that
if a symmetric matrix X depends on a parameter t, then

∂X−1

∂t
= −

(

X−1 ∂X

∂t
X−1

)

.

The formula (16) gives us the optimality conditions for
the problem (15): a weight vector w? is optimal if and
only if F (w?) Â 0, G(w?) Â 0, and, for all {i, j} ∈ E ,
we have

∥

∥

∥

(

F (w?)−1
)

:,i
−
(

F (w?)−1
)

:,j

∥

∥

∥
=

∥

∥

∥

(

G(w?)−1
)

:,i
−
(

G(w?)−1
)

:,j

∥

∥

∥
.

The formula (16) also gives us a simple method for
computing the gradient ∇f(w). We first compute F−1

and G−1. Then for each k = 1, . . . ,m, we compute
∂f/∂wk, using the last line of (16). For each k, this
involves subtracting two columns of F−1, and finding the
norm squared of the difference, and the same for G−1,
which has a cost O(n), so this step has a total cost O(mn).
Assuming no structure is exploited in forming the inverses,
the total cost is O(n3+mn), which is the same as O(n3),
since m ≤ n(n−1)/2. It is also possible to compute F−1

and G−1 more efficiently by exploiting their sparse plus
rank-one structure (see §II-C).

B. Hessian

From the gradient formula above, we can derive the
Hessian of f as

∂2f

∂wl∂wk
=

∂

∂wl

(

1

2
‖F−1ak‖

2 −
1

2
‖G−1ak‖

2

)

= aTk F
−1 ∂F

−1

∂wl
ak − aTkG

−1 ∂G
−1

∂wl
ak

= aTk F
−1
(

F−1ala
T
l F

−1
)

ak

+ aTkG
−1
(

G−1ala
T
l G

−1
)

ak

= (aTk F
−1al)(a

T
k F

−2al)

+ (aTkG
−1al)(a

T
kG

−2al).

Suppose that weight wl corresponds to edge {p, q}, i.e.,
l ∼ {p, q}. Then we have

∂2f

∂wl∂wk
= α

(

(F−1):,i−(F
−1):,j

)T(

(F−1):,p−(F
−1):,q

)

+β
(

(G−1):,i−(G
−1):,j

)T(

(G−1):,p−(G
−1):,q

)

,

where

α = akF
−1al = (F

−1)i,p−(F
−1)i,q−(F

−1)j,p+(F
−1)j,q,

β = akG
−1al = (G

−1)i,p−(G
−1)i,q−(G

−1)j,p+(G
−1)j,q.

Once the matrices F−1 and G−1 are formed, for each
k, l = 1, . . . ,m, we can compute ∂2f/∂wl∂wk using the
last formula above, which has a cost O(n). The total cost
of forming the Hessian is O(n3 + m2n), which is the
same as O(m2n), irrespective of the sparsity of the graph
(and hence W). The computational cost per Newton step is
O(m2n+m3), which is the same as O(m3) (the Hessian
is fully dense even when the graph is sparse).

IV. LMSC WITH CONSTANT EDGE WEIGHT

In this section we consider a special case of the LMSC
problem, where all edge weights are taken to be equal.
This special case is interesting on its own, and in some
cases, the optimal solution of the general LMSC problem
can be shown to occur when all weights are equal.

When the edge weights are equal we have wk = α, so

W = I − α

m
∑

k=1

aka
T
k = I − αL,

where L is the Laplacian matrix of the graph, defined as

Lij =







−1 {i, j} ∈ E ,
di i = j,
0 otherwise.

(17)

The Laplacian matrix is positive semidefinite, and since we
assume the graph is connected, it has a single eigenvalue
λn(L) = 0, with associated eigenvector 1. We have

λi(W) = 1− αλn−i+1(L), i = 1, . . . , n,

so the convergence condition ‖W − J‖ < 1 is equivalent
to 0 < α < 2/λ1(L).

In this case, the steady-state mean-square deviation is

δss(I − αL) =

n−1
∑

i=1

1

1− (1− αλi(L))2

=

n−1
∑

i=1

1

λi(L)α

1

2− λi(L)α
.

Thus the LMSC problem reduces to

minimize
n−1
∑

i=1

1

λi(L)α

1

2− λi(L)α
, (18)

with scalar variable α, and the implicit constraint 0 < α <
2/λ1(L). The optimality condition is simply ∂δss/∂α = 0,
which is equivalent to

n−1
∑

i=1

1

λi(L)

1− λi(L)α

(2− λi(L)α)2
= 0. (19)

The lefthand side is monotone decreasing in α, so a simple
bisection can be used to find the optimal weight α. A
Newton method can be used to obtain very fast final
convergence.

From (19) we can conclude that the optimal edge weight
α? satisfies α? ≥ 1/λ1(L). To see this, we note that the
lefthand side of (19) is nonnegative when α = 1/λ1(L)
and is −∞ when α = 2/λ1(L). Thus we have

1

λ1(L)
≤ α? <

2

λ1(L)
. (20)

So we can always estimate α? within a factor of two, e.g.,
with α = 1/λ1(L).

A. LMSC problem on edge-transitive graphs

For graphs with large symmetry groups, we can exploit
symmetry in the LMSC problem to develop far more ef-
ficient computational methods. In particular, we show that
for edge-transitive graphs, it suffices to consider constant
edge weight in the (general) LMSC problem.

An automorphism of a graph G = (N , E) is a per-
mutation π of N such that {i, j} ∈ E if and only if
{π(i), π(j)} ∈ E . A graph is edge-transitive if given any
pair of edges there is an automorphism which transforms
one into the other. For example, rings and hypercubes are
edge-transitive.

For edge-transitive graphs, we can assume without loss
of generality that the optimal solution to the LMSC prob-
lem is a constant weight on all edges. To see this, let w?

be any optimal weight vector, not necessarily constant on
all edges. Let π(w?) denote the vector whose elements are
rearranged by the permutation π. If π is an automorphism
of the graph, then π(w?) is also feasible. Let w denote
the average of such vectors induced by all automorphisms
of the graph. Then w is also feasible (because each π(w)
is feasible and the feasible set is convex), and moreover,
using convexity of δss, we have δss(w) ≤ δss(w

?). It fol-
lows that w is optimal. By construction, w is also invariant
under the automorphisims. For edge-transitive graphs, this
implies that w is a constant vector, i.e., its components
are equal. (See [16, exercise 4.4].) More discussion of
exploiting symmetry in convex optimization problems can
be found in [24], [25], [26].

B. Edge-transitive examples

In this section we consider several examples of graphs
that are edge-transitive. The optimal weights are therefore
constant, with value α (say) on each edge.

1) Rings: For rings with n nodes, the Laplacian matrix
is circulant, and has eigenvalues

2

(

1− cos
2kπ

n

)

, k = 0, . . . , n− 1.

Therefore we have

δss =

n−1
∑

k=1

1

1−
(

1− 2
(

1− cos kπn
)

α
)2 .

For n even, λ1(L) = 4 so by (20) we have 1/4 ≤ α? <
1/2. For n odd, λ1(L) = 2(1 + cos(π/n)), so we have

1

2(1 + cos(π/n))
≤ α? <

1

1 + cos(π/n)
.

2) Meshes: Consider a two-dimensional mesh, with n
nodes in each direction, with wraparounds at the edges.
This mesh graph is the Cartesian products of two n-
node rings (see, e.g., [27]). The Laplacian is the Kroneker
product of two circulant matrices, and has eigenvalues

4

(

1− cos
(k+j)π

n
cos

(k−j)π

n

)

, k, j = 0, . . . , n− 1.

Therefore δss =

−1 +
n−1
∑

k,j=0

1

1−
(

1− 4
(

1− cos (k+j)π
n cos (k−j)π

n

)

α
)2 .

Again we can bound the optimal solution α? by (20). For
example, when n is even, we have λ1(L) = 8, therefore
1/8 ≤ α? < 1/4.

3) Stars: The star graph with n nodes consists of one
center node and n − 1 peripheral nodes connected to the
center. The Laplacian matrix has three distinct eigenvalues:
0, n, and 1. The eigenvalue 1 has multiplicity n − 2. We
have

δss =
1

2nα− n2α2
+

n− 2

2α− α2
.

The optimality condition (19) boils down to

1− nα?

n(2− nα?)2
+ (n− 2)

1− α?

(2− α?)2
= 0.

This leads to a cubic equation for α?, which gives an
analytical (but complicated) expression for α?. In any case,
the bounds (20) give 1/n ≤ α? < 2/n.

4) Hypercubes: For a d-dimensional hypercube, there
are 2d vertices, each labeled with a binary word with
length d. Two vertices are connected by an edge if their
words differ in exactly one component. The Laplacian
matrix has eigenvalues 2k, k = 0, 1, . . . , d, each with
multiplicity

(

d
k

)

(e.g., [27]). Substituting these eigenvalues
into (18), we find that

δss =
d
∑

k=1

(

d

k

)

1

4kα− 4k2α2
,

with domain 0 < α < 1/d. The bounds (20) give 1/(2d) ≤
α? < 1/d.

According to our numerical experiments, we conjecture
that the optimal solution is α? = 1/(d+1), but we haven’t
been able to prove this yet. The value α = 1/(d + 1) is
also the solution for the FDLA problem studied in [11]
(see also [2], [27], [26]).

V. EXAMPLES

In this section, we give some numerical examples of the
LMSC problem (6), and compare the solutions obtained
with the Metropolis weights (4) and weights that yield
fastest asymptotic convergence, i.e., a solution of

minimize ‖W − J‖
subject to W ∈ S, W =W T , W1 = 1.

(21)

This FDLA problem need not have a unique solution, so
we simply use an optimal solution. (See [11] for details of
the FDLA problem.)

For each example, we consider a family of graphs that
vary in the number of nodes or edges. For each graph
instance, we report both the average mean-square deviation

0 20 40 60 80 100
0

5

10

15

20

PSfrag replacements

n

δ s
s
/n

τ

LMSC
FDLA
Metropolis

Metropolis

Fig. 1. Average MSD δss/n for rings with n nodes.

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

PSfrag replacements

n

δss/n

τ

LMSC
FDLA

Metropolis

Metropolis

Fig. 2. Convergence time τ for rings with n nodes.

(MSD) δss/n, which gives the asymptotic MSD per node.
We also report the convergence time, defined as

τ =
1

log(1/‖W − J‖)
.

This gives the asymptotic number of steps for the error
‖x(t) − Jx(0)‖ to decrease by a factor e, in the absence
of noise. The FDLA weights minimize the convergence
time τ .

Figures 1 and 2 show δss/n and τ , respectively, for ring
graphs with a number of nodes ranging from 3 to 100. We
see that the LMSC weights achieve much smaller average
MSD than the FDLA weights, and the Metropolis weights
(in this case a constant weight 1/3 on all edges) have
an MSD in between. In terms of the convergence time,
however, there is not much difference between the LMSC
weights and FDLA weights, with the Metropolis weights
giving much slower convergence.

As a second example, we generate a random family of
graphs, all with 100 nodes, as follows. First we generate
a symmetric matrix R ∈ R100×100, whose entries Rij , for
i ≤ j, are independent and uniformly distributed on [0, 1].
For each threshold value c ∈ [0, 1] we construct a graph
by placing an edge between vertices i and j for i 6= j if

200 400 600 800 1000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

PSfrag replacements

m

δ s
s
/n

τ

LMSC
FDLA
Metropolis

Metropolis

Fig. 3. Average MSD δss/n of a random family of graphs. Here the
horizontal axis shows the number of edges (with fixed number of nodes).

200 400 600 800 1000
0

2

4

6

8

10

12

14

PSfrag replacements

m

δss/n

τ

LMSC
FDLA

Metropolis

Metropolis

Fig. 4. Convergence time τ of a random family of graphs. The horizontal
axis shows the number of edges (the number of nodes n is fixed).

Rij ≤ c. By increasing c from 0 to 1, we obtain a family
of graphs. This family is monotone: the graph associated
with a larger value of c contains all the edges of the graph
associated with a smaller value of c. We start with a large
enough value of c that the resulting graph is connected.

Figures 3 and 4 show δss/n and τ , respectively, for
the graphs obtained with ten different values of c (in the
range [0.05, 0.2]). Of course both the average MSD and
convergence time decrease as the number of edges m
increases. For this random family of graphs, the Metropolis
weights often give smaller mean-square deviation than the
FDLA weights.

More numerical examples are given in [17].

ACKNOWLEDGMENTS

We thank Devavrat Shah and Anders Rantzer for helpful
discussions.

REFERENCES

[1] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San
Francisco, 1996.

[2] G. Cybenko. Load balancing for distributed memory multiproces-
sors. Journal of Parallel and Distributed Computing, 7:279–301,
1989.

[3] J. Boillat. Load balancing and Poisson equation in a graph.
Concurrency: Practice and Experience, 2:289–313, 1990.

[4] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions Automatic Control, 48(6):988–1001, June 2003.

[5] R. Olfati-Saber and R. M. Murray. Consensus problems in net-
works of agents with switching topology and time-delays. IEEE
Transactions on Automatic Control, 49(9):1520–1533, 2004.

[6] L. Moreau. Stability of multi-agent systems with time-dependent
communication links. IEEE Transactions on Automatic Control,
50(2):169–182, 2005.

[7] W. Ren and R. W. Beard. Consensus seeking in multi-agent
systems under dynamically changing interaction topologies. IEEE
Transactions on Automatic Control, 50(5):655–661, 2005.

[8] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed
sensor fusion based on average consensus. In Proceedings of the
4th International Conference on Information Processing in Sensor
Networks, pages 63–70, Los Angeles, California, USA, April 2005.

[9] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Distributed sensor
fusion using dynamic consensus. Submitted to the 16th IFAC World
Congress, 2005.

[10] D. S. Scherber and H. C. Papadopoulos. Locally constructed
algorithms for distributed computations in ad-hoc networks. In
Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks, pages 11–19, Berkeley, CA, April
2004.

[11] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging.
Systems and Control Letters, 53:65–78, 2004.

[12] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed
asynchronous deterministic and stochastic gradient optimization
algorithms. IEEE Transactions on Automatic Control, 31(9):803–
812, September 1986.

[13] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis.
Convergence in multiagent coordination, consensus, and flocking.
In Proceedings of the Joint 44th IEEE Conference on Decision and
Control and European Control Conference, Seville, Spain, 2005.

[14] C. C. Moallemi and B. Van Roy. Consensus propagation. Draft,
2005.

[15] B. Patt-Shamir and S. Rajsbaum. A theory of clock synchronization.
In Proceedings of the 26th Annual ACM Symposium on Theory of
Computing, pages 810–819, Montreal, Canada, 1994.

[16] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004. Available online at http://
www.stanford.edu/˜boyd/cvxbook.html.

[17] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus
with least-mean-square deviation. Submitted to Journal of Par-
allel and Distributed Computing, 2005. Available at http://
www.stanford.edu/˜boyd/lms_consensus.html.

[18] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Op-
timization, Theory and Examples. Canadian Mathematical Society
Books in Mathematics. Springer-Verlag, New York, 2000.

[19] A. S. Lewis. Convex analysis on the Hemitian matrices. SIAM
Journal on Optimization, 6:164–177, 1996.

[20] M. L. Overton and R. S. Womersley. Optimality conditions and
duality theory for minimizing sums of the largest eigenvalues
of symmetric matrices. Mathematical Programming, 62:321–357,
1993.

[21] D. G. Luenberger. Introduction to Linear and Nonlinear Program-
ming. Addison-Wesley, Reading, MA, 2nd edition, 1984.

[22] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second
edition, 1999.

[23] J. Nocedal and S. J. Wright. Numerical Optimization. Springer
Series in Operations Research. Springer, New York, 1999.

[24] K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite
programs, and sums of squares. Journal of Pure and Applied
Algebra, 192:95–128, 2004.

[25] S. Boyd, P. Diaconis, P. Parrilo, and L. Xiao. Symmetry analysis of
reversible Markov chains. Internet Mathematics, 2(1):31–71, 2005.

[26] S. Boyd, P. Diaconis, P. A. Parrilo, and L. Xiao. Fastest mixing
Markov chain on graphs with symmetries. Manuscript in prepara-
tion, 2005.

[27] B. Mohar. Some applications of Laplace eigenvalues of graphs.
In G. Hahn and G. Sabidussi, editors, Graph Symmetry: Algebraic
Methods and Applications, NATO ASI Ser. C 497, pages 225–275.
Kluwer, 1997.

