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Abstract

We show that control system design via classical loop shaping and singular

value loop shaping can be formulated as a closed-loop convex problem [4, 5, 22,

15]. Consequently, loop shaping problems can be solved by e�cient numerical

methods. In particular, these numerical methods can always determine whether

or not there exists a compensator that satis�es a given set of loop shaping

speci�cations. Problems such as maximizing bandwidth subject to given margin

and cuto� speci�cations can be directly solved. Moreover, any other closed-loop

convex speci�cations, such as limits on step-response overshoot, tracking errors,

and disturbance rejection, can be simultaneously considered.

These observations have two practical rami�cations. First, closed-loop con-

vex design methods can be used to synthesize compensators in a framework that

is familiar to many control engineers. Second, closed-loop convex design meth-

ods can be used to aid the designer using classical loop shaping by computing

absolute performance limits against which a classical design can be compared.

To appear as a chapter in Advances in Control Systems, edited

by C. T. Leondes, 1993.

�Research supported in part by NSF under ECS-85-52465 and AFOSR under 89-0228.
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1 Introduction

We give a brief overview of classical and singular value loop shaping, which also serves

to describe our notation.

1.1 Classical loop shaping

We �rst consider the standard classical one degree-of-freedom single-actuator, single-

sensor (SASS) control system shown in �gure 1. Here u is the actuator signal, y is the

output signal, e is the (tracking) error signal, r is the reference or command signal,

and dsensor is a sensor noise. The plant and compensator are linear and time-invariant

(LTI), with transfer functions given by P and C, respectively. The plant is given and

the compensator is to be designed.
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Figure 1 Classical 1-DOF control system.

In classical loop shaping, the designer focuses attention on the loop transfer func-

tion, given by

L
�
= PC:

Many important aspects of closed-loop control system performance can be expressed

in terms of L. For example, stability of the closed-loop system can be determined

from L (provided there are no unstable pole-zero cancellations between P and C).

Several important closed-loop transfer functions can be expressed in terms of L.

The transmission or input/output (I/O) transfer function

T
�
= L=(1 + L)

is the closed-loop transfer function from the reference input r to the output y. Its

negative, �T , is the closed-loop transfer function from the sensor noise dsensor to the

output y.

The sensitivity transfer function is given by

S
�
= 1=(1 + L):
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S is the transfer function from the reference input r to the tracking error e. The

sensitivity derives its name from the important fact, observed by Bode [2], that to

�rst order, the relative change in T is S times the relative change in P :

�T (s)

T (s)
' S(s)

�P0(s)

P0(s)
;

or, equivalently, S is the �rst order percentage change in the I/O transfer function

divided by the percentage change in the plant transfer function.

Classical loop shaping design is based on two important observations:

� the loop transfer function L has a very simple dependence on the compensator

transfer function C, especially in a logarithmic (gain and phase) representation.

� many important requirements for the closed-loop system can be approximately

re
ected as requirements on the loop gain L.

Loop-shaping speci�cations constrain the magnitude and possibly the phase of the

loop transfer function at each frequency. There are three basic types of loop-shaping

speci�cations, which are imposed in di�erent frequency bands:

� In-band speci�cations. At these frequencies we require jLj to be large, so that S
is small and T � 1. This ensures good command tracking, and low sensitivity

to plant variations, two of the most important bene�ts of feedback.

� Cuto� speci�cations. At these frequencies we require jLj to be small, so that

T is small. This ensures that the output y will be relatively insensitive to the

sensor noise dsensor, and that the system will remain closed-loop stable in the

face of plant variations at these frequencies, for example, excess phase from

small delays and unpredictable (or unmodeled) resonances.

� Crossover (margin) speci�cations. Crossover or transition band speci�cations

are imposed between the control bands (where L is large) and cuto� bands

(where L is small). At these frequencies the main concern is to keep L a safe

distance away from the critical point �1 (closed-loop stability depends on the

winding number of L with respect to �1). Classical speci�cations include gain
margin and phase margin. More natural \modern" speci�cations exclude L

from some circle about �1. These modern speci�cations directly correspond to

limiting the peaking of some closed-loop transfer function such as S or T .

The Nyquist criterion (which constrains the winding number of L about �1) is also

included as an implicit speci�cation that ensures closed-loop stability.

In many systems the in-band region is at low frequencies, from ! = 0 to ! = !B,

the cuto� region is at high frequencies, ! > !C , and the crossover region lies in
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between, from ! = !B to ! = !C . In some designs, however, there may be more than

one crossover region and one or more in-band and cuto� regions.

A typical set of loop shaping speci�cations is:

jL(j!)j � l(!) for 0 � ! � !B = 2;

jL(j!)j � u(!) for ! � !C = 5;

�150� � 6 L(j!) � 30
�

for !B = 2 � ! � !C = 5

where l and u are the frequency dependent constraint functions shown in �gure 2.

The in-band and cuto� constraints, which consist of frequency dependent restrictions

on the magnitude of L, are conveniently shown on a Bode magnitude plot, while the

margin constraint, which is often independent of frequency, is conveniently shown on

a Nyquist plot (see �gure 3).
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Figure 2 A typical set of in-band and cuto� speci�cations. In the in-band
region, ! � !B, the loop gain magnitude jLj is required to exceed the frequency
dependent lower bound l(!). In the cuto� region, ! � !C , the loop gain
magnitude jLj is required to be below the upper bound u(!). In the crossover
region, !B < ! < !C , the loop gain crosses jLj = 0dB.

In this example, the in-band region is ! � !B. Over this region, the large loop

gain will ensure good command tracking (T � 1), and low sensitivity (jSj � 1).

In the cuto� region, ! � !C , the small loop gain ensures that sensor noise will not

a�ect the output, and small time-delays and variations in P will not destabilize the
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Figure 3 A typical margin speci�cation requires the phase of the loop transfer
function to lie between �150� and +30� over the frequency band !B � ! � !C .
The dotted circles shown correspond to the magnitude constraints jL(j!)j >
+10dB and jL(j!)j< �10dB which must be satis�ed for ! � !B and ! � !C ,
respectively.

closed-loop system. In the in-band region, L cannot be close to the critical point �1
since jLj exceeds +10dB there; similarly, in the cuto� region, jLj is less than �10dB
and so cannot be close to �1. The margin speci�cation ensures that L cannot be too

close to �1 in the transition region !B � ! � !C by constraining 6 L. Of course, the

phase bounds in the margin constraint can be frequency dependent.

While many important closed-loop properties can be speci�ed via L, some cannot.

For example, loop shaping does not explicitly include speci�cations on C=(1 + PC)

(actuator e�ort) and P=(1+PC) (e�ect of input-referred process noise on y). A design

will clearly be unsatisfactory if either of these transfer functions is too large. The

speci�cation that these transfer functions should not be too large is usually included

as implicit \side information" in a classical loop shape design. Speci�cations that

limit the size of these transfer functions are closed-loop convex, however, and so are

readily incorporated in a closed-loop convex formulation.

Given a desired set of loop shaping speci�cations, the compensator C is typically

synthesized by adding dynamics until the various requirements on the loop transfer

function L are satis�ed (or until the designer suspects that the loop shaping speci�-

5



cations cannot be met).

Classical loop shaping is described in many texts; see, for example, [2, 16, 21,

8, 17, 13]. The discussions found in these references emphasize techniques that help

the engineer \do" loop-shaping design. With the exception of Bode's work on opti-

mal cuto� characteristics and integral constraints, these references do not consider

questions such as:

� Is there a compensator that meets a given set of loop-shaping speci�cations?

� For a given set of in-band and margin speci�cations and shape of the cuto�

speci�cation, what is the smallest cuto� frequency that can be achieved?

� For a given set of cuto� and margin speci�cations, how large can the loop gain

be made in the in-band region?

The main point of this paper is that such questions are readily answered.

1.2 Singular value loop shaping

We now consider the case in which there are multiple actuators and multiple sensors

(MAMS) in the control system shown in �gure 1. The plant P and compensator C

are given by transfer matrices: P is nsens by nact and C is nact by nsens, where nsens is

the number of sensors, and nact is the number of actuators.

Unlike the SASS case, there is no longer a unique choice for the \loop transfer

function." A common choice is the loop transfer matrix cut at the sensors:

L
�
= PC:

The transmission or input/output (I/O) transfer matrix is

T
�
= (I + L)�1L;

and the sensitivity transfer matrix is given by

S
�
= (I + L)�1:

These transfer matrices have interpretations that are are similar to those in SASS

case. For example, if the plant transfer matrix P changes to (I + �)P , then the

I/O transfer matrix T , to �rst order, changes to (I + S�)T . (Note that � can be

interpreted as the output-referred the output-referred fractional change in the I/O

transfer matrix T is then given b S� [6, 4].)

In contrast, the loop transfer matrix cut at the actuators is denoted ~L, the com-

plementary loop transfer matrix:

~L
�
= CP:
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Note that the loop transfer matrix and the complementary loop transfer matrix may

have di�erent dimensions: L is nsens by nsens, while ~L is nact by nact. Moreover, loop

speci�cations on L and ~L are in general di�erent and inequivalent. For example, it

is possible for L to be \large" (in the sense to be described below), while ~L is not

\large."

A second di�culty with the extension of SASS loop shaping is choosing a measure

for the \size" of the loop transfer matrix. Provided the individual sensor signals are

scaled appropriately, a natural (and widely used) measure of the size is based on the

singular values of the loop transfer matrix. (The singular values of a matrix M are

the square roots of the eigenvalues of the Hermitian matrix M�M .) Speci�cally, if

all the singular values of the loop transfer matrix are large, then the loop transfer

matrix is \large in all directions," and it follows that the sensitivity transfer matrix

S is small and T � I. Similarly, if all the singular values of the loop transfer matrix

are small, then the loop transfer matrix is \small in all directions," and it follows

that T is small and S � I. These important ideas are discussed in, for example,

[11, 6, 14, 19, 18, 4].

At in-band frequencies, singular value loop shaping speci�cations have the form

�min(L(j!)) � l(!) > 1;

where l is some frequency dependent bound. For cuto� frequencies, singular value

loop shaping speci�cations have the form

�max(L(j!)) � u(!) < 1;

where u is some frequency dependent bound.

These speci�cations are often depicted on a singular value Bode plot, as in �gure 4.

(This discussion assumes that there are at least as many actuators as actuators,

i.e., nact � nsens. If not, the in-band speci�cations above are guaranteed to be in-

feasible since at all frequencies at least one singular value of L is zero. In this case,

similar speci�cations can be imposed on ~L.)

It is di�cult to formulate margin speci�cations that are directly analogous to the

gain or phase margin constraints used in the SASS case. The general idea is to ensure

that L+ I stays \su�ciently invertible" in the crossover band. One e�ective method

simply limits the minimum singular value of this matrix:

�min(L+ I) � r > 0;

or equivalently,

�max(S) � 1=r:
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Figure 4 Examples of in-band and cuto� speci�cations on the loop gain L in
a system with two sensors. In the in-band region, ! � !B, both singular values
of L are required to exceed the lower bound. In the cuto� region, ! � !C , both
singular values of L are required to be below the upper bound. In the crossover
region each singular value of L crosses 0dB.

2 A Closed-Loop Convex Formulation

A design speci�cation is closed-loop convex if it is equivalent to some closed-loop

transfer function or matrix (e.g., the sensitivity S) belonging to a convex set.

As a speci�c example, consider the speci�cation

jL(j!)j � 3 for 0 � ! � 1: (1)

We will see that this is equivalent to

jS(j!)� 1=8j � 3=8 for 0 � ! � 1: (2)

Now, the set of transfer functions S that satisfy (2) is convex, since if S(a)
and S(b)

both satisfy (2), then so does (S(a)
+S(b)

)=2. Therefore the speci�cation (1) is closed-

loop convex. See [4, 5] for extensive discussions.

The main result of this paper is that many classical and singular value loop-shaping

speci�cations are closed-loop convex.
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2.1 SASS case

2.1.1 In-band speci�cations

We �rst consider the in-band speci�cation jL(j!)j � �, where � > 1. It is closed-loop

convex since it is equivalent to the following convex speci�cation on the sensitivity S,

(a closed-loop transfer function):

jL(j!)j � � > 1 ()

�
�
�
�S(j!)�

1

�2 � 1

�
�
�
� �

�

�2 � 1

: (3)

In other words, requiring jLj � � > 1 is equivalent to requiring the sensitivity to lie

inside a circle centered at 1=(�2 � 1) with radius �=(�2 � 1). Note that requiring L

to be large corresponds to restricting the sensitivity S to lie in a disk that includes

the point 0, but is not exactly centered at 0. Figure 5 illustrates this correspondence

for � = 2.
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Figure 5 The region jLj � 2 in the L-plane is shown in (a). The loop shaping
speci�cation jLj � 2 requires the Nyquist plot of L to lie in the shaded region
in (a). The corresponding region in the S-plane is shown in (b), which is a disk
that includes but is not centered at 0. This region is convex, and hence the
loop gain speci�cation jLj � 2 is closed-loop convex.

2.1.2 Cuto� speci�cations

We now consider the cuto� speci�cation jL(j!)j � �, where � < 1. It is also

closed-loop convex since it is equivalent to the following convex speci�cation on the

sensitivity:

jL(j!)j � � < 1 ()

�
�
�
�S(j!)�

1

1� �2

�
�
�
� �

�

1 � �2
: (4)
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In other words, requiring jLj � � < 1 is equivalent to requiring the sensitivity to lie

in a disk centered at 1=(1 � �2
) with radius �=(1 � �2

). Note that requiring L to

be small corresponds to restricting the sensitivity S to lie in a disk that includes the

point 1, but is not exactly centered at 1. Figure 6 illustrates this correspondence for

� = 0:5.
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Figure 6 The region jLj � 0:5 in the L-plane is shown in (a). The loop shaping
speci�cation jLj � 0:5 requires the Nyquist plot of L to lie in the shaded region
in (a). The corresponding region in the S-plane is shown in (b), which is a disk
that includes but is not centered at 1. This region is convex, and hence the
loop gain speci�cation jLj � 0:5 is closed-loop convex.

The results (3) and (4) are easily established. Since we give a careful proof for

the more general MAMS case, we give a simple discussion here. The in-band loop

speci�cation (3) requires L to lie outside a circle of radius � in the complex plane.

Since � > 1, the critical point �1 lies in the interior of this circle. Since S and L

are related by the bilinear transformation S = 1=(1 + L), this circle maps to another

circle in the S-plane. To �nd this circle, we note that the points L = �� map

to S = 1=(1 � �), and the circle must be symmetric with respect to the real axis.

Moreover since the critical point �1 is mapped to S =1, the exterior of the jLj = �

circle maps to the interior of the circle in the S-plane.

The argument in the case of the cuto� speci�cation (4) is similar, except that the

critical point �1 is outside the jLj = � circle and so its interior maps to the interior

of the corresponding circle in the S-plane.

We note that the speci�cations requiring L to be \not too big,"

jL(j!)j � � where � > 1;
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and requiring L to be \not too small,"

jL(j!)j � � where � < 1;

are not closed-loop convex, since these speci�cations are equivalent to S(j!) lying

outside of the shaded disks in �gures 5(b) and 6(b). These speci�cations, however,

are not likely to be used in a practical design. It is interesting that the sensible

speci�cations on jLj, given in (3) and (4), turn out to coincide exactly with the

speci�cations on jLj that are closed-loop convex.

2.1.3 Phase margin speci�cations

A common form for a margin speci�cation limits the phase of the loop transfer func-

tion in the crossover band:

�min � 6 L(j!) � �max:

where �180� < �min < 0
�
and 0

� < �max < 180
�
. It turns out that such a speci�cation

is closed-loop convex if and only if �max � �min � 180
�
, in which case S must lie in

the intersection of two disks:

�min � 6 L(j!) � �max () j2S(j!)� (1 + j= tan �max)j � 1= sin �max and(5)

j2S(j!)� (1 + j= tan �min)j � 1= sin��min: (6)

This is shown in �gure 7 for the case �min = �150�, �max = 10
�
. The phase margin

speci�cation �150� � 6 L � 10
�
is equivalent to requiring the sensitivity S to lie in

the convex set shown in �gure 7(b).

2.1.4 General circle speci�cations

All of the speci�cations above|in-band, cuto�, and phase margin, are special cases

of general circle speci�cations. Consider any generalized circle in the complex plane

(i.e., a circle or a line, which we consider a \circle" centered at 1) that does not

pass through the critical point �1. Such a circle divides the complex plane into two

regions, one of which includes the critical point �1. The speci�cation that the loop

transfer function must lie in the region that does not contain �1 is what we call a

generalized circle constraint, and is readily shown (by a mapping argument) to be

closed-loop convex since it is equivalent to S lying inside a circle or half-plane.

The in-band and cuto� speci�cations are of this form with the circle given by

jLj = �; in each case the speci�cation requires that the loop transfer function avoid

the region that includes the critical point �1. The phase margin constraint can be

expressed as the simultaneous satisfaction of the two generalized circle constraints

corresponding to the lines that pass through the origin at the angles �min and �max,
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Figure 7 The region �150� � 6 L � 10� in the L-plane is shown in (a). The
phase margin speci�cation �150� � 6 L � 10� requires the Nyquist plot of L to
lie in the shaded region in (a). The corresponding region in the S-plane is the
intersection of two disks, shown in (b), and hence the phase margin speci�cation
�150� � 6 L � 10� is closed-loop convex.

respectively. This explains why the phase margin constraint is equivalent to the

sensitivity lying inside the intersection of two disks (see (6)).

We note that generalized circle constraints have appeared in many contexts. Ex-

amples include the circle criterion, used in stability and robustness analysis of nonlin-

ear systems (see [30, 20, 27, 24]), the Popov criterion (with a �xed Popov parameter)

[23], and many of the speci�cations in [7, 29, 1]. In the remainder of this section we

discuss two particular generalized circle constraints.

One useful generalized circle constraint excludes L from a disk about the critical

point �1:

jL(j!) + 1j � �; (7)

where � > 0. This speci�cation is equivalent to

jS(j!)j � 1=�;

which is just a limit on the magnitude of the sensitivity. The case � = 1 is shown in

�gure 8.

Speci�cations of the form (7) can be used to guarantee a classical phase margin.

Since the bounds l(!) and u(!) are not equal to one in the in-band and cuto� regions,

jL(j!)j can equal one only in the transition regions. If the speci�cation (7) is imposed

at all frequencies in the transition regions, then whenever jL(j!)j = 1, we have
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jL(j!) + 1j � �, which implies a phase margin of at least 2arcsin(�=2) (and 180
�
for

� > 2).
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Figure 8 The region jL + 1j � 1 in the L-plane is shown in (a). The speci-
�cation jL + 1j � 1 requires the Nyquist plot of L to lie in the shaded region
in (a), i.e., to maintain a distance of at least 1 from the critical point �1. The
corresponding region in the S-plane is shown in (b), which is a disk around
0. This region is convex, and hence the loop gain speci�cation jL + 1j � 1 is
closed-loop convex.

As another example, we consider the speci�cation

<L(j!) � ��; (8)

where 0 < � < 1, which can be expressed in terms of the sensitivity as

<L(j!) � �� () j2S(j!) � 1=(1 � �)j � 1=(1 � �):

The case � = 0:5 is shown in �gure 9.

If the speci�cation (8) is imposed at all frequencies, then the closed-loop system

will remain stable even if the loop gain is increased by up to 1=�. Thus it can be

interpreted as enforcing a (positive) gain margin of 20 log10(1=�)dB.

The speci�cation (8), imposed at all frequencies, can also be interpreted as a circle

criterion condition that guarantees the system will remain stable if any memoryless

nonlinearity in sector [0; 1=�] is introduced into the loop. For example, if the spec-

i�cation (8) is imposed at all frequencies (for any � < 1) then actuator or sensor

saturation cannot destabilize the control system.
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Figure 9 The region <L � �0:5 in the L-plane is shown in (a). The gain
margin speci�cation <L � �0:5 requires the Nyquist plot of L to lie in the
shaded region in (a). The corresponding region in the S-plane is the disk
shown in (b), and hence the gain margin speci�cation <L � �0:5 is closed-loop
convex.

2.2 MAMS Case

2.2.1 In-band and Cuto� Speci�cations

The analogous results for the MAMS case are:

for � < 1: �max(L) � � () �max((1 � �2
)S � I) � �; (9)

for � > 1: �min(L) � � () �max((1 � �2
)S � I) � � (10)

(we have suppressed the frequency arguments for simplicity). Note that the right-

hand sides of (9) and (10) are the same. Thus, the inequality on the right-hand side

expresses in one formula all reasonable in-band and cuto� loop shaping speci�cations:

�max((1 � �2
)S � I) � � both in-band (� > 1) and cuto� (� < 1). (11)

(The same correspondences hold with ~L and ~S.)

We now establish (9). Since � < 1, S is nonsingular, and we have

�max(L) � � () �max(S
�1 � I) � �

() (S�1 � I)�(S�1 � I) � �2I:

Multiplying the last inequality by S� on the left and S on the right, and multiplying

by 1� �2 > 0 (since � < 1), gives

�max(L) � � () (1� �2
)
2S�S � (1� �2

)S� � (1� �2
)S + I � �2I

() �max((1 � �2
)S � I) � �;

14



which is (9).

The in-band result (10) is established in a similar manner. Since � > 1, S is

nonsingular, and so

�min(L) � � () �min(S
�1 � I) � �

() (S�1 � I)�(S�1 � I) � �2I:

We proceed as before, except that 1 � �2 < 0 (since � > 1), so the inequality is

reversed:

�min(L) � � () (1� �2
)
2S�S � (1 � �2

)S� � (1� �2
)S + I � �2I

() �max((1 � �2
)S � I) � �;

which is (10).

2.2.2 General sector speci�cations

The in-band and cuto� speci�cations (9) and (10) are special forms of general sector
speci�cations, which we now describe. Given complex matrices C and R such that

(I + C)�(I + C) > R�R, the speci�cation

(L� C)�(L� C) � R�R (12)

is closed-loop convex. This speci�cation can be interpreted as requiring L to be in a

neighborhood of \radius" R about the \center" C that excludes �I. The speci�ca-
tion (12) reduces to (9) when C = 0 and R = �I.

Similarly, given complex matrices C and R such that (I + C)�(I + C) < R�R,

then

(L� C)�(L� C) � R�R (13)

is closed-loop convex. This speci�cation can be interpreted as requiring L to be out-

side a neighborhood of \radius" R about C that includes �I. The speci�cation (13)

reduces to (10) when C = 0 and R = �I.

The speci�cations (12) and (13) are closely connected to the conic sector conditions

developed by Zames [31] and Safonov [24]. For example, if C, R, R�1, and L are stable

transfer matrices and (12) is imposed at all frequencies, then, using the terminology

of Safonov, (12) implies that Graph(L) is inside Cone(C; R). These sector conditions

form the basis of various MAMS generalizations of classical frequency domain stability

and robustness criteria.

With C = �I and R = �I, (13) excludes L from a neighborhood about the critical

point �I:

�min(L+ I) � �:
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This is equivalent to

�max(S) � 1=�; (14)

which limits the size of the closed-loop sensitivity transfer matrix. Speci�cations

such as (14) that limit the size of a closed-loop transfer matrix, when imposed at all

frequencies, can be interpreted as circle criterion constraints that guarantee robustness

in the face of various types and locations of nonlinearities.

2.3 Some Convex and Quasiconvex Functionals

We have so far considered loop-shaping speci�cations, which are constraints that a

given loop transfer function or matrix either satis�es or not. When these speci�ca-

tions are closed-loop convex, then we can use (numerical) nondi�erentiable convex

optimization methods to determine whether or not the speci�cations can be achieved

[4]. Practical design problems, however, are more often expressed using a combi-

nation of hard constraints (speci�cations) and soft objectives (performance indices),

for example: \maximize the bandwidth subject to a �xed set of crossover and cuto�

speci�cations." Of course such a problem can be solved by repeatedly determining

whether �xed sets of speci�cations are feasible, for example, using a bisection on

the objective. Many of the performance indices associated with loop-shaping design

are closed-loop quasiconvex (when they are to be minimized) or closed-loop quasi-
concave (when they are to be maximized), which means that these problems can

be directly solved. We refer the reader to [4] for a precise de�nition of these terms

and descriptions of numerical methods (e.g., the ellipsoid method) that directly solve

compensator design problems that are expressed in terms of closed-loop quasiconvex

and quasiconcave performance indices.

Many of these performance indices are constructed in the following general way.

We have a family of loop-shaping speci�cations that is indexed by some number u,

in such a way that the speci�cations always become tighter as the parameter u is

decreased. Our performance index is then given by the smallest value of u that

the current design satis�es the corresponding speci�cation. Similarly, when smaller

values of u correspond to looser speci�cations, we take the performance index to be

the largest value of u such that the corresponding speci�cation is satis�ed.

For example, consider the family

jL(j!)j � 10 for ! � u (15)

which is indexed by the number u. As u is decreased, the speci�cation (15) becomes

looser, that is, if a given compensator satis�es (15) for a given value of u then it

satis�es it for any ~u � u. In (15), u can be thought of as the 20dB control bandwidth.

The performance index, or 20dB control bandwidth, is the largest value of u such

that (15) is satis�ed.

16



Similarly, consider the family

jL(j!)j � u for ! � 1: (16)

The parameter u can be thought of as the minimumloop gain over the �xed bandwidth

0 � ! � 1. The performance index, or in-band disturbance rejection, is the largest

value of u such that (16) is satis�ed.

If the loop shaping speci�cations in the family indexed by u are all closed-loop con-

vex, then the performance indices described above are closed-loop quasiconcave (when

the largest u gives the performance index) and closed-loop quasiconvex (when the

smallest u gives the performance index). For example, the 20dB control bandwidth,

given by the largest u such that (15) holds, is closed-loop quasiconcave; whereas the

in-band disturbance rejection, given by the minimum loop gain over the bandwidth

0 � ! � 1, is closed-loop quasiconvex.

Common performance indices associated with loop shaping design that are closed-

loop quasiconvex or quasiconcave, as appropriate, include:

� Bandwidth, i.e., the smallest frequency for which jL(j!)j is less than 3dB, is

quasiconcave.

� System type, i.e., the multiplicity (possibly zero) of the pole in L at s = 0, is an

integer valued quasiconcave performance index. In terms of loop shaping spec-

i�cations, system type is constrained by forcing l(!) to grow as 20tdB/decade

for small !, where t is the type. (System type determines the multiplicity of

the zero in S at s = 0.)

� Classical error constant, given by the absolute value of the �rst nonvanishing

derivative of S at s = 0, is convex (and hence quasiconvex).

� Cuto� frequency, de�ned as the smallest frequency such that jL(j!)j is less than
some number � < 1 (�3dB is typical), is quasiconvex.

� Cuto� rollo� rate, i.e., the asymptotic rate at which jL(j!)j decreases, (which

for rational plants is a multiple of �20dB/decade), is quasiconcave.

3 Conclusions

We have shown that many classical and singular value loop shaping problems are

closed-loop convex. Consequently, loop shaping problems can be solved by e�cient

numerical methods. In particular, it can be determined whether or not a compensator

exists that satis�es a given set of loop shaping speci�cations. Loop shaping design

problems that are formulated as classical optimization problems, e.g., maximizing
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bandwidth subject to given margin and cuto� speci�cations, can be solved by direct

numerical methods for quasiconvex optimization.

A consequence of these observations is that closed-loop convex design methods

can be used to do compensator design in a classical loop shaping framework which

is familiar to many control engineers. In contrast with classical compensator design

methods, in which the designer must decide how to vary parameters (such as poles,

zeros, and gain) in such a way that the loop transfer function meets the speci�cations,

the designer can directly manipulate the loop shaping speci�cations, since the step of

�nding a suitable compensator, or determining that none exists, can be automated.

We comment, however, that classical loop shaping is an indirect design technique

originally developed before the advent of computers, and is not a particularly good

method for compensator design, and especially, computer-aided compensator design.

In our opinion, every speci�cation that can be expressed in terms of the loop transfer

function or matrix can be more directly expressed in terms of some closed-loop transfer

function or transfer matrix, so that compensator design directly from closed-loop

(convex) speci�cations is more direct and natural (see [3, 4]).

A closed-loop convex formulation of a classical design technique such as loop-

shaping, even if it is indirect, does have an important practical use: it makes use of

the large investment we currently have in teaching, understanding, experience with,

and engineering intuition about, classical loop shaping.

We close by noting two important limitations of loop shaping via closed-loop

convex methods. The �rst is that closed-loop convex methods generate high or-

der compensators (see, for example, [4, 3]), whereas one of the main advantages of

classical loop shaping design is that the designer uses \only as much compensator

complexity as is needed to meet the speci�cations." However, the advent of cheap,

high performance, digital signal processors has substantially reduced the relevance of

compensator order. Also, even if a compensator designed by closed-loop convex meth-

ods is not implemented, knowledge that particular loop shaping speci�cations can or

cannot be achieved is very valuable information to the designer. The designer then

knows exactly how much performance is given up by using a low order compensator,

or some other design method.

The second, and in our opinion more important, drawback of closed-loop convex

loop shaping is that margin speci�cations for MAMS systems that are expressed in

terms of singular values or more general sector conditions are often overly conservative

when one considers more detail about the types of plant variations that can occur (see

[9, 25, 26, 28, 12]). Scaling can greatly reduce the conservatism of these speci�cations.

While a �xed scaling preserves the closed-loop convexity of loop shaping speci�cations,

speci�cations involving optimal (variable) scaling are not closed-loop convex.

This drawback is not present for SASS control systems. In this case, very general

robust performance problems turn out to be closed-loop convex (see [4, p246], [10,

x4.3]). In chapters 7 and 8 of [10], these closed-loop convex problems are approxi-
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mately transformed into classical loop shaping speci�cations.
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