Interactive Loop-Shaping Design of MIMO Controllers

Craig Barratt

Stephen Boyd*

Information Systems Lab.
Durand 111 Stanford University
Stanford CA 94305

March 17, 1992

Abstract

We show that control system design via classical loop shap-
ing and singular value loop shaping can be formulated as
a closed-loop convez problem (3, 4, 11]. Consequently, loop
shaping problems can be solved by efficient numerical meth-
ods. In particular, these numerical methods can always
determine whether or not there exists a compensator that
satisfies a given set of loop shaping specifications. Problems
such as maximizing bandwidth subject to given margin and
cutoff specifications can be directly solved. Moreover, any
other closed-loop convex specifications, such as limits on
step-response overshoot, tracking errors, and disturbance
rejection, can be simultaneously considered.

These observations have two practical ramifications.
First, closed-loop convex design methods can be used to
synthesize compensators in a framework that is familiar to
many control engineers. Second, closed-loop convex design
methods can be used to aid the designer using classical loop
shaping by computing absolute performance limits against
which a classical design can be compared.

1 Introduction

We give a brief overview of classical and singular value loop
shaping, which also serves to describe our notation.

1.1 Classical loop shaping

We first consider the standard classical one degree-of-
freedom single-actuator, single-sensor (SASS) control sys-
tem shown in figure 1. Here u is the actuator signal, y is
the output signal, e is the (tracking) error signal, r is the
reference or command signal, and deeneor is @ sensor noise.
The plant and compensator are linear and time-invariant
(LT1), with transfer functions given by P and C, respec-
tively. The plant is given and the compensator is to be
designed.
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Figure 1 Classical 1-DOF control system.

In classical loop shaping, the designer focuses attention
on the loop transfer function, given by

L2 PC.

The transmission or input/output (1/O) transfer func-
tion

T2L/(1'+1L)

is the closed-loop transfer function from the reference input
r to the output y. Its negative, —T, is the closed-loop
transfer function from the sensor noise dyensor to the output

y.
The sensitivity transfer function is given by

S&1/0+1L). -

S is the transfer function from the reference input r to the
tracking error e.

Classical loop shaping design is based on two important
observations:

¢ the loop transfer function L has a very simple depen-
dence on the compensator transfer function C, espe-
cially in a logarithmic (gain and phase) representation.

¢ many important requirements for the closed-loop sys-
tem can be approximately reflected as requirements on
the loop gain L.

Loop-shaping specifications constrain the magnitude and
possibly the phase of the loop transfer function at each fre-
quency. There are three basic types of loop-shaping speci-
fications, which are imposed in different frequency bands:

o In-band specifications. At these frequencies we require
|L| to be large, so that S is small and T ~ 1. This
ensures good command tracking, and low sensitivity
to plant variations, two of the most important benefits
of feedback.
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o Cutoff specifications. At these frequencies we require
|L] to be small, so that T is small. This ensures that
the output y will be relatively insensitive to the sensor
noise dyensor, and that the system will remain closed-
loop stable in the face of plant variations at these fre-
quencies, for example, excess phase from small delays
and unpredictable (or unmodeled) resonances.

o Crossover (margin) specifications. Crossover or transi-
tion band specifications are imposed between the con-
trol bands (where L is large) and cutoff bands (where
L is small). At these frequencies the main concern is
to keep L a safe distance away from the critical point
—1 (closed-loop stability depends on the winding num-
ber of L with respect to —1). Classical specifications
include gain margin and phase margin. More natu-
ral “modern” specifications exclude L from some circle
about —1.

The Nyquist criterion (which constrains the winding num-
ber of L about —1) is also included as an implicit specifi-
cation that ensures closed-loop stability.

A typical set of loop shaping specifications is:

{L{jw)i 2 Iw)
[L{wH < ulw)
~150° < £L(jw) < 30°

for 0<w<wg=2,
for w> we =5,
for wp=2<w<wec=25

where [ and u are the frequency dependent constraint func-
tions shown in figure 2. The in-band and cutoff constraints,
which consist of frequency dependent restrictions on the
magnitude of L, are conveniently shown on a Bode magni-
tude plot, while the margin constraint, which is often inde-
pendent of frequency, is conveniently shown on a Nyquist
plot (see figure 3).
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Figure 2 A typical set of in-band and cutoff spec-
ifications. In the in-band region, w < wpg, the loop
gain magnitude |L| is required to exceed the frequency
dependent lower bound !{w). In the cutoff region,
w 2 wc, the loop gain magnitude |L| is required to be
below the upper bound u{w). In the crossover region,
wp < w < wc, the loop gain crosses |L| = 0dB.

In this example, the in-band region is w < wg. Over
this region, the large loop gain will ensure good command
tracking (T & 1), and low sensitivity (]S| < 1). In the cut-
off region, w > we, the small loop gain ensures that sensor
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Figure 3 A typical margin specification requires the
phase of the loop transfer function to lie between —150°
and +30° over the frequency band wg < w < wg. The
dotted circles shown correspond to the magnitude con-
straints |L(jw)| > +10dB and |L(jw)| < —10dB which
must be satisfied for w < wpg and w > w¢, respectively.

noise will not affect the output, and small time-delays and
variations in P will not destabilize the closed-loop system.
In the in-band region, L cannot be close to the critical point
~1 since |L] exceeds +10dB there; similarly, in the cutoff
region, |L{ is less than —10dB and so cannot be close to
—1. The margin specification ensures that L cannot be too
close to —1 in the transition region wp < w < we by con-
straining £L. Of course, the phase bounds in the margin
constraint can be frequency dependent.

While many important closed-loop properties can be
specified via L, some cannot. For example, loop shaping
does not explicitly include specifications on C/(1 + PC)
(actuator effort) and P/(1 + PC) (effect of input-referred
process noise on y). A design will clearly be unsatisfactory
if either of these transfer functions is too large. The specifi-
cation that these transfer functions should not be too large
is usually included as implicit “side information” in a clas-
sical loop shape design. Specifications that limit the size
of these transfer functions are closed-loop convex, however,
and so are readily incorporated in a closed-loop convex for-
mulation.

Given a desired set of loop shaping specifications, the
compensator C is typically synthesized by adding dynamics
until the various requirements on the loop transfer function
L are satisfied (or until the designer suspects that the loop
shaping specifications cannot be met).

Classical loop shaping is described in many texts; see,
for example, {1, 8, 10, 7]. The discussions found in these
references emphasize techniques that help the engineer “do”
loop-shaping design. With the exception of Bode’s work on
optimal cutoff characteristics and integral constraints, these
references do not consider questions such as:

o Is there a compensator that meets a given set of loop-
shaping specifications?

e For a given set of in-band and margin specifications
and shape of the cutoff specification, what is the small-
est cutoff frequency that can be achieved?



o For a given set of cutoff and margin specifications, how
large can the loop gain be made in the in-band region?

The main point of this paper is that such questions are
readily answered.

1.2 Singular value loop shaping

We now consider the case in which there are multiple actu-
ators and multiple sensors (MAMS) in the control system
shown in figure 1. The plant P and compensator C are
given by transfer matrices: P iS Nigens bY Racy and C is ntae
by Tigens, Where nyen, is the number of sensors, and ngc is
the number of actuators.

Unlike the SASS case, there is no longer a unique choice
for the “loop transfer function.” A common choice is the
loop transfer matrix cut at the sensors:

L2 PC.

The transmission or input/output (I/O) transfer matrix is
T2(U+L)'L,

and the sensitivity transfer matrix is given by
SE(+L)y

These transfer matrices have interpretations that are are
similar to those in SASS case. For example, if the plant
transfer matrix P changes to (I + A)P, then the I/O
transfer matrix T, to first order, changes to (I + SA)T.
(Note that A can be interpreted as the output-referred the
output-referred fractional change in the I/O transfer matrix
T is then given b SA [5, 3].)

In contrast, the loop transfer matrix cut at the actuators
is denoted L, the complementary loop transfer matrix:

Lécr

Note that the loop transfer matrix and the complementary
loop transfer matrix may have different dimensions: Lis
Naens DY Ngens, While L is nace by naq. Moreover, loop spec-
ifications on L and L are in general different and inequiva-
lent. For example, it is possible for L to be “large” (in the
sense to be described below), while L is not “large.”

At in-band frequencies, singular value loop shaping spec-
ifications have the form

Omin(L(jw)) 2 U(w) > 1,

where ! is some frequency dependent bound. For cutoff
frequencies, singular value loop shaping specifications have
the form

Oma(L(jw)) S uw) < 1,

where u is some frequency dependent bound.

These specifications are often depicted on a singular value
Bode plot, as in figure 4.

(This discussion assumes that there are at least as many
actuators as actuators, i.e., Nac > Meens. 1f NOt, the in-band
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Figure 4 Examples of in-band and cutoff specifica-
tions on the loop gain L in a system with two sensors.
In the in-band region, w < wg, both singular values of
L are required to exceed the lower bound. In the cutoff
region, w > wg, both singular values of L are required
to be below the upper bound. In the crossover region
each singular value of L crosses 0dB.

specifications above are guaranteed to be infeasible since at
all frequencies at least one singular value of L is zero. In
this case, similar specifications can be imposed on L.)

It is difficult to formulate margin specifications that are
directly analogous to the gain or phase margin constraints
used in the SASS case. The general idea is to ensure that
L + I stays “sufficiently invertible” in the crossover band.
One effective method simply limits the minimum singular
value of this matrix:

Omin(L+ 1) 271 >0,
or equivalently,

Omax(S) £ 1/r.

2 A Closed-Loop Convex Formu-
lation

A design specification is closed-loop convez if it is equivalent
to some closed-loop transfer function or matrix (e.g., the
sensitivity S) belonging to a convex set.

As a specific example, consider the specification

|IL(jw)| 23 for0<w<1. (1)
We will see that this is equivalent to
IS(jw)—1/8/ <3/8 for0<w< 1. (2)

Now, the set of transfer functions S that satisfy (2) is con-
vex, since if S® and S®) both satisfy (2), then so does
(8@ 4 S®))/2. Therefore the specification (1) is closed-
loop convex. See [3, 4] for extensive discussions.

The main result of this paper is that many classical and
singular value loop-shaping specifications are closed-loop
convex.




SASS case

In-band specifications

21
2.1.1

We first consider the in-band specification |L(jw)| 2 a,
where a > 1. It is closed-loop convex since it is equivalent
to the following convex specification on the sensitivity S,
(a closed-loop transfer function):

. , 1 a
L) Za>1 &= |S(jw) = ——| S 77+ @)

Figure 5 illustrates this correspondence for a = 2.

RS

(a) (b)
Figure 5 The region |L| > 2 in the L-plane is shown
in (a). The loop shaping specification |L| > 2 requires
the Nyquist plot of L to lie in the shaded region in (a).
The corresponding region in the S-plane is shown in
(b). which is a disk that includes but is not centered
at 0. This region is convex, and hence the loop gain
specification |L| 2 2 is closed-loop convex.

2.1.2 Cutoff specifications

We now consider the cutoff specification |L(jw)| < a, where
a < 1. It is also closed-loop convex since it is equivalent to
the following convex specification on the sensitivity:

. . 1 a
!L(]w)]ﬁ&(l — 5(]&!)—1—_—0‘—2 _-1-:2-.

(4)
Figure 6 illustrates this correspondence for a = 0.5.

The results (3) and (4) are easily established. Since we
give a careful proof for the more general MAMS case, we
give a simple discussion here. The in-band loop specifica-
tion (3} requires L to lie outside a circle of radius a in the
complex plane. Since a > 1, the critical point —1 lies in
the interior of this circle. Since § and L are related by
the bilinear transformation S = 1/(1 + L), this circle maps
to another circle in the S-plane. To find this circle, we
note that the points L = a map to § = 1/(1 £ a), and
the circle must be symmetric with respect to the real axis.
Moreover since the critical point —1 is mapped to § = oo,
the exterior of the |L| = a circle maps to the interior of the
circle in the S-plane.

We note that the specifications requiring L to be “not
too big,”

[L(jw)] < a wherea >1,
and requiring L to be “not too small,” -

|L(jw)] 2 a where a < 1,
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Figure 8 The region |[L| < 0.5 in the L-plane is shown
in (a). The loop shaping specification |L| < 0.5 requires
the Nyquist plot of L to lie in the shaded region in (a).
The corresponding region in the S-plane is shown in
(b), which is a disk that includes but is not centered
at 1. This region is convex, and hence the loop gain
specification |L| < 0.5 is closed-loop convex.

are not closed-loop convex, since these specifications are
equivalent to S(jw) lying outside of the shaded disks in
figures 5(b) and 6(b). These specifications, however, are
not likely to be used in a practical design. It is interesting
that the sensible specifications on |L|, given in (3) and (4),
turn out to coincide exactly with the specifications on |L|
that are closed-loop convex.

2.1.3 Phase margin specifications

A common form for a margin specification limits the phase
of the loop transfer function in the crossover band:

Ormin < LL(jw) < Omax.

where ~180° < i, < 0° and 0° < O < 180°. It turns
out that such a specification is closed-loop convex if and
only if Omax — Omin < 180°, in which case S must lie in the
intersection of two disks:

[28(jw) = (1 + 7/ tan Omax)| < 1/ sin Omax and
128(jw) — (1 + 7/ tan Omin)| < 1/ sin —Omin.

(8)
(6)

This is shown in figure 7 for the case Opyin = —150°, Omax =
10°. The phase margin specification —150° < ZL < 10° is
equivalent to requiring the sensitivity S to lie in the convex
set shown in figure 7(b).

2.1.4 General circle specifications

All of the specifications above—in-band, cutoff, and phase
margin, are special cases of general circle specifications.
Consider any generalized circle in the complex plane (i.e.,
a circle or a line, which we consider a “circle” centered at
oo) that does not pass through the critical point —1. Such
a circle divides the complex plane into two regions, one of
which includes the critical point —1. The specification that
the loop transfer function must lie in the region that does
not contain —1 is what we call a generalized circle con-
straint, and is readily shown (by a mapping argument) to
be closed-loop convex since it is equivalent to S lying inside
a circle or half-plane.



(a) b)

Figure 7 The region —150° < £L < 10° in the L-
plane is shown in (a). The phase margin specification
—150° < £L < 10° requires the Nyquist plot of L to lie
in the shaded region in (a). The corresponding region
in the §-plane is the intersection of two disks, shown in
(b), and hence the phase margin specification —150° <
LL < 10° is closed-loop convex.

We note that generalized circle constraints have appeared
in many contexts. Examples include the circle criterion,
used in stability and robustness analysis of nonlinear sys-
tems (see {16, 9, 14, 13}), the Popov criterion (with a fixed
Popov parameter) [12], and many of the specifications in
[6. 13).

2.2 MAMS Case
2.2.1 In-band and Cutoff Specifications
The analogous results for the MAMS case are:

Omau(l) € a <= Tma({1—0?)§—1) < ofT)
Omin(L) 2 a <= omu((l- a?)§-I) < a(8)

a<l:
a>1

(we have suppressed the frequency arguments for simplic-
ity). Note that the right-hand sides of (7) and (8) are the
same. Thus. the inequality on the right-hand side expresses
in one formula all reasonable in-band and cutoff loop shap-
ing specifications:

Omax((1 —a?)5~I)<a  both in-band (a > 1)

and cutoff (a < 1).

(9)

(The same correspondences hold with L and §)
We now establish (7). Since a < 1, S is nonsingular, and
we have
amat(L) Sa & am(s—l - 1) S a
= (§7'-D(S'-I)g’l.

Multiplying the last inequality by S on the left and S on
the right, and multiplying by 1 — o > 0 (since a < 1),
gives

Oma(l)Sa <= (1-0%)%5"5—-(1-a*)§"
—-1-0*)S+1<ga’l
<= Ona((1-0%)5-1)<q,

which is (7).
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The in-band result (8) is established in a similar manner.
Since a > 1, S is nonsingular, and so

Um(L) 2a & am;,,(S'l - I) 2a
= (S-S -1I)2’l

We proceed as before, except that 1—a® < 0 (since & > 1),
8o the inequality is reversed:

Omin(L) > a = (1-0?)?8*5-(1-a")5"
—(1-a"S+I<all
= Omx((l1-0*)S-1)<a,

which is (8).

2.2.2 General sector specifications

The in-band and cutoff specifications (7) and (8) are spe-
cial forms of general sector specifications, which we now
describe. Given complex matrices C and R such that
(I+C)*(I+C)> R*R, the specification

(L-C)»(L-C)SRR (10)
is closed-loop convex. This specification can be interpreted
as requiring L to be in a neighborhood of “radius” R about
the “center” C that excludes —I. The specification (10)
reduces to (7) when C =0 and R = ol.

Similarly, given complex matrices C and R such that

(I+C)*(I+C)< RR, then

(L-C»(L-C)2RR (11)
is closed-loop convex. This specification can be interpreted
as requiring L to be outside a neighborhood of “radius” R
about C that includes —I. The specification (11) reduces
to (8) when C =0 and R=al.

The specifications (10) and (11) are closely connected to
the conic sector conditions developed by Zames [17] and
Safonov {13]. For example, if C, R, R™?, and L are stable
transfer matrices and (10) is imposed at all frequencies,
then, using the terminology of Safonov, (10) implies that
Graph(L) is inside Cone(C, R). These sector conditions
form the basis of various MAMS generalizations of classical
frequency domain stability and robustness criteria.

With C = ~I and R = al, (11) excludes L from a
neighborhood about the critical point —1I:

Onin(L+1I) 2 a.
This is equivalent to

omax(S) € 1/a, (12)
which limits the size of the closed-loop sensitivity trans-
fer matrix. Specifications such as (12) that limit the size
of a closed-loop transfer matrix, when imposed at all fre-
quencies, can be interpreted as circle criterion constraints
that guarantee robustness in the face of various types and
locations of nonlinearities.




3 Conclusions

We have shown that many classical and singular value loop
shaping problems are closed-loop convex. Consequently,
loop shaping problems can be solved by efficient numeri-
cal methods. In particular, it can be determined whether
or not a compensator exists that satisfies a given set of
loop shaping specifications. Loop shaping design problems
that are formulated as classical optimization problems, e.g.,
maximizing bandwidth subject to given margin and cutoff
specifications, can be solved by direct numerical methods
for quasiconvex optimization.

A consequence of these observations is that closed-loop
convex design methods can be used to do compensator de-
sign in a classical loop shaping framework which is famil-
jar to many control engineers. In contrast with classical
compensator design methods, in which the designer must
decide how to vary parameters (such as poles, zeros, and
gain) in such a way that the loop transfer function meets
the specifications, the designer can directly manipulate the
loop shaping specifications, since the step of finding a suit-
able compensator, or determining that none exists, can be
automated.

We comment, however, that classical loop shaping is
an indirect design technique originally developed before
the advent of computers, and is not a particularly good
method for compensator design, and especially, computer-
aided compensator design. In our opinion, every specifi-
cation that can be expressed in terms of the loop transfer
function or matrix can be more directly expressed in terms
of some closed-loop transfer function or transfer matrix, so
that compensator design directly from closed-loop (convex)
specifications is more direct and natural (see [2, 3]).
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