
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 2, 2008, PP. 257–272 1

Design of Low-bandwidth Spatially Distributed Feedback
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Abstract—The paper considers a family of linear time-
invariant and spatially-invariant (LTSI) systems that are both
distributed and localized. The spatial responses of the distributed
plant are localized in spatial neighborhoods of each location. The
feedback computations are also distributed and the information
flow is localized in a spatial neighborhood of each location.
The feedback is aimed at controlling spatial distributions of
variables in the systems with a relatively low bandwidth in the
time direction. Such systems have many important applications
including industrial processes, imaging systems, signal and image
processing, and others.

We describe a new method for designing (tuning) a certain
family of low-bandwidth controllers for such plants. We consider
LTSI controllers with a fixed structure, which is PID or similar
low-bandwidth feedback in time and local in spatial coordinates.
Two spatial feedback filters, symmetric and with finite spatial
response, modify the local PID control signal by mixing in the
error and control signals at nearby nodes. These two filters
provide loopshaping and regularization of the spatial feedback
loop. Like an ordinary PID controller, this controller structure
is simple, but provides adequate performance in many practical
settings.

We cast a variety of specifications on the steady-state spatial
response of the controller and its time response as a set of
linear inequalities on the design variables, and so can carry
out the design of the spatial filters using linear programming.
The method handles steady-state limits on actuator signals, error
signals, and several constraints related to robustness to plant
and controller variation. The method allows handling the effects
of boundary conditions and guaranteed closed-loop spatial or
time decay. It does appear to work very well for low-bandwidth
controllers, and so is applicable in a variety of practical situations.

Index Terms—Distributed system control, multidimensional,
optimization, PID, bandwidth, loopshaping

I. INTRODUCTION

THIS paper is on feedback control design in large dis-
tributed array systems. Array signal processing is a ma-

ture field with well understood design and analysis methods;
there are numerous practical applications. Array control (array
feedback) field is much less mature and is an emerging tech-
nology. We consider array systems with spatially distributed
feedback.

Array control systems have been used in industrial processes
for a long time. Perhaps the most widespread industrial
application is in control of flat sheet processes, such as paper
or plastic sheet manufacturing, where linear arrays of up to
300 actuators might be employed. Paper machine processes
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are very diverse. They use actuator arrays for boundary con-
trol of turbulent pulp flow, thermal profile control, moisture
control, and other physical processes; see [23], [19], [32] and
references there for more detail. The empirical models and
problem statements used in industry for control of flat sheet
processes do not depend on the underlying physics and closely
resemble the formulation in this paper.

Other industrial applications of array control are related to
thermal processing: in semiconductor manufacturing, crystal
growing [1], and material heat processing. In these applica-
tions, spatial profiles of temperature are controlled using arrays
of heating elements. An iterative learning control of batch
thermal processing can also be described as a 2-D system (one
coordinate is the local time in the batch and another the batch
number) and leads to a closely related problem statement, see
[16]. A cross-sample of industrial applications of distributed
control including a few thermal processes can be found in
[13].

In active or adaptive optics applications, large 2-D ar-
rays of actuators deform a reflecting surface of a mirror to
achieve wavefront control. A deformable mirror control anal-
ysis closely related to formulation in this paper is presented in
[31] where further references can be found. A related area is
shape control of large scale deformable reflectors for ground
and space applications, e.g., see [22].

Future array control applications could rely on low-cost
manufacturing of large arrays of actuators and sensors as
Micro-Electro Mechanical Systems (MEMS). It might be
possible to have computing embedded with the actuators.
Several futuristic aerospace applications were discussed in the
literature including micro-adaptive flow control using arrays
of microactuators distributed over an airfoil or a channel
boundary.

In addition to the mentioned control applications, distributed
feedback is important in estimation problems. In systems
theory, estimation is dual to control, hence, the similarity in
the feedback analysis and design. The distributed estimation
can be encountered in processing data described by a series
of images, such as in video processing, medical image pro-
cessing (computational tomography, MRI, ultrasound imaging,
etc), remote earth observation, nondestructive evaluation of
materials and structures, and more. The distributed estimation
is closely related to solution of distributed inverse problems
such as deblurring in image processing and grid methods for
solving partial differential equations. Formulations of image
processing and multidimensional filtering problem related to
this paper and further references could be found in [17], [20].

In this paper we assume that the distributed arrays are large
and make a regular spatial pattern. A fundamental technical
approach to analysis of such systems is by assuming that the
arrays have an infinite spatial extent (or are circulant). In that
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case, an array can be modeled as a multidimensional system
and analyzed by changing from spatial coordinates to spatial
frequencies. Explanation and justification of spatial frequency
transforms are available in many signal processing texts and
papers including [4], [7] as well as in several image processing
textbooks. A relatively recent control-oriented discussion can
be found in [2]. If (closed-loop) responses decay fast enough
spatially, an infinite-array multidimensional system model can
be used with a finite array and boundary effects are limited.
This is discussed further in more detail.

Modern control-theoretic approaches to analysis and design
of feedback in large (or infinite) distributed systems with
regular array structure were proposed and explored in a
number of publications. The most relevant to this paper are [3],
[10], [11], [12], [21], where further references can be found.
Most of this work is focused on design of high-performance
spatially invariant feedback control systems, with performance
and robustness guarantees. Modern control design methods,
such as linear matrix inequalities and mu-analysis are applied
to the distributed systems

Practical use of advanced control-theoretic approaches is
limited, even for usual lumped system. Herein, we pose less
ambitious control-theoretical goals in the hope of developing
methods that are easier to apply in practice; we focus on tuning
methods for distributed generalizations of low bandwidth PID
controllers. In practice, more than 90% of the control loops
use PID, or PI, or PD, or P controllers. Since this is true
for usual, lumped, systems there is a hope that a simple
distributed generalization of a PID controller could satisfy the
needs of most array feedback applications. Realization of this
vision requires easily understood methods for controller tuning
(design within the given simple structure).

Lumped systems with PID control usually have a decaying
open-loop response. Less forgiving systems might require
advanced control approaches, but are a minority in practice.
We assume that a response of the distributed system decays
in time and in space. This is the case in existing practical
applications of array control. For such systems distributed
PID-type control should be adequate.

There is substantial body of control-theoretical work ana-
lyzing PDE models. Our work has a different flavor. Industrial
PID control design and tuning typically relies on basic models
acquired in an simple identification test. Similarly, we describe
a distributed system by an empirical spatial and time response;
see [19] for an example of industrial application where such
responses are directly identified. The PDE models might or
might not be available.

In industrial array control (e.g., industrial cross-directional
control of paper machines or temperature control), practition-
ers usually start from attempting decoupled zonal control.
Each zone would include an actuator (or a few) and will be
controlled independently of others. If there is a substantial
interaction between the zones, this simple approach is not
feasible. Spatial filtering of the feedback loop signals becomes
necessary. This paper considers a loopshaping approach to se-
lecting the spatial filters such that the performance, robustness,
and other specifications are satisfied (if this is possible).

An approach closely related to ours, but less automated, is

spatial loopshaping design (or tuning) of a distributed con-
troller, as discussed in [32], [33]. The localized controller in
[32], [33] is obtained by designing a non-localized controller,
which is then truncated to provide a localized controller.
Herein we assume a simple localized controller structure on
the outset and develop a formal design method that allows
accommodating many important engineering specifications for
controller design.

Since the controller structure is assumed at the outset,
the solution pursued in this work is not completely general.
This enables us to achieve a rather complete solution of the
problem.

In this paper, we consider a spatially distributed system
analog of low-bandwidth PID control. A standard digital PID
controller uses three values of the plant output (current, past
and the integral) for computing the control. In a similar way,
our ‘spatial PID’ controller uses data from a few neighboring
array cells. Such control is relatively simple to implement
computationally. For centralized implementation of the array
control, simplifying computations needed for hundreds or
thousands of actuators might be critical. The same algorithms
can be conveniently implemented in an array of distributed em-
bedded processors. Parallel processing makes computational
performance less of an issue but constraints on communication
between the processors become important; local communi-
cation with the nearest neighbors can be performed most
efficiently, see [28].

Like an ordinary PID controller, the distributed controller
structure considered in this paper, provides adequate per-
formance in many, or even most, practical situations. This
was demonstrated in a number of applications. Also like an
ordinary PID controller, it is not meant to achieve a limit of
possible performance; it is meant to be adequate, after proper
tuning, in many practical cases.

An ordinary PID control implicitly assumes that the plant
dynamics can be approximated as a first-order system. The
proposed distributed controller is based on two such assump-
tions. First, that the space and time dynamics are separable.
The second is that integrator dynamics are dominant in the
closed loop.

The contribution of this paper is in formulating the spatially
distributed controller design (tuning) problem as a convex
optimization problem. Localized spatial (FIR) operators are
assumed at the outset, and the main engineering specifica-
tions are accommodated within a linear programming (LP)
optimization framework. This allows for a computationally
efficient and conceptually clean one-shot solution for the
optimal FIR weights in the controller. We show how formal
specifications for performance, robustness, time decay, spatial
decay, and some others closed-loop characteristics can be
incorporated into such LP-based design.

We will see that the conversion of the problem to an LP is
possible because the spatial responses considered are symmet-
ric. This makes the spatial transfer functions (numerator and
denominator) real and enables us to convert linear fractional
(closed-loop) design constraints into linear constraints. The
same trick does not work in the absence of symmetry.

The idea that symmetry of a pulse response leads to a
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real transfer function, and therefore limits on the frequency
response can be expressed as linear inequalities, is not new;
it is the basis of linear programming based design of sym-
metric FIR filters for signal processing applications, which
has been done at least since 1969 (see [5, p. 380]). In this
paper, however, we consider closed-loop expressions, which
are linear fractional expressions in the FIR filter weights. The
linear fractional expressions in filter design were cast as LP
problems, e.g., see [8], [14], [30]. However, to the best of
the authors’ knowledge, this has not been done in a feedback
control design context before.

II. PROBLEM STATEMENT

Consider a distributed system consisting of an array of
identical cells. For each cell there is a scalar control handle u
and a scalar feedback measurement y. There is also interaction
between the cells in the sense that will be explained further in
the paper. Though there are several obvious ways to generalize
the analysis and design of this paper to cells with multiple
inputs and outputs, we assume SISO (single-input single
output) cells for the sake of presentation clarity. Many practical
applications, in particular all of the applications mentioned in
Introduction involve arrays with SISO cells.

To explain the motivation for the system model and con-
troller structure considered in this paper, we will introduce a
series of increasingly complex models and controllers for such
system. The models and controller structure choice are guided
by engineering considerations auxiliary to mathematical anal-
ysis. At the same time, we present quite rigorous analysis and
design of the control loop for the formulated equations.

A. SISO model

Let us start from the simplest model and control law. An
approach that a practitioner would initially attempt using for an
array system is to assume that there is no cross-cell interaction
such that each cell can be controlled separately. The interaction
is attributed to model uncertainty. The idea is that if the
designed feedback loop is sufficiently robust, it would work
as desired despite the presence of the spatial interaction.

If the cells are identical and do not interact, it is sufficient
to consider a single cell. We assume that the output signal y
of the cell is related to the control (input) signal u as

y = g(z−1)u + d, (1)

where d is the disturbance input, z−1 is a unit delay operator
and g(z−1) can be both considered as a system discrete
transfer function and a dynamical response operator.

We assume that a robust (low-bandwidth) feedback is used
to control the output of the SISO loop (1) towards the setpoint
yd. The control law has the form

u = z−1u− z−1c(z−1)(y − yd), (2)

The controller c(z−1) is in the velocity form to emphasize
the presence of an integrator to counter slow changing and
steady state disturbance. Practically used industrial controllers
usually include an integrator as assumed in (2). This includes
a PI or PID controller (considered in the examples examples

of Section III-A and Section V), or a Dahlin controller
(discrete-time Smith predictor), which is used in paper web
manufacturing control. We assume that the plant response
might be instantaneous, i.e., g(z−1) in (1) is proper but might
be not strictly proper. There is no feedthrough in the loop,
however, and that is reflected by the unit delay operator z−1

shown at the feedback term in (2).
The closed loop transfer function representation of the

system (1), (2) has the form

y =
z−1c(z−1)

1− z−1 + z−1c(z−1)g(z−1)
yd

+
1− z−1

1− z−1 + z−1c(z−1)g(z−1)
d (3)

In what follows, we assume that the closed loop transfer
functions in (3) are stable and provide gain and phase margins
to accommodate large uncertainty. Yet, in many practical
applications the cell interaction is significant and cannot be
simply attributed to the modeling uncertainty. More detailed
modeling and control design aimed at such applications are
presented below.

B. Separable two-dimensional plant model

In this paper, an array control system is modeled as a
linear time-invariant spatially-invariant (LTSI) system. We
assume that the array cells make a regular spatial pattern
and that interaction between the neighboring cells repeats
itself from cell to cell up to the respective spatial shift. A
more in-depth description of LTSI control systems can be
found in [2], [11]. An LTSI model allows for an efficient
multidimensional frequency-domain analysis of the problem.
The analysis involving spatial frequencies can be considered
as modal analysis of the system dynamics, since the spatial
sinusoids are the eigenmodes of a spatially invariant system
[2].

An LTSI model does not consider boundary effects present
in a finite array (unless it has a circulant structure). Boundary
condition issues (which arise when the true plant and controller
are not spatially infinite) can be integrated into the framework
described herein as a deviation from the LTSI model, see [24],
[26]. The boundary effects are closely related to the closed-
loop spatial response decay, which is further considered as one
of the important formal design specifications. Such handling
of boundary conditions in Subsection 3.4 is in fact one of the
major contributions of this paper.

Consider a two-dimensional (2-D) distributed system evolv-
ing in the integer time t = 0, 1, . . . and with an integer
spatial coordinate x = . . . ,−1, 0, 1, . . . indexing the actuator
cells. The (scalar) actuator or control signal will be denoted
u = u(t, x), which is the control applied by actuator number
x in the array, at time t. The (scalar) process output is
y = y(t, x), where one measurement per actuator, and per
time sample, is assumed. A general input-output model of an
LTSI plant has the 2-D convolution form

y(t, x) =
∞∑

k=0

∞∑
n=−∞

h(t− k, x− n)u(k, n), (4)
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where h(t, x) is the system 2-D impulse response function, or
system Green’s function.

We will assume a separable plant model, which has the
form

h(t, x) = ht(t) hx(x), (5)

where ht(t) is the plant time impulse response, and hx(x) is
the plant spatial impulse response. We assume that ht is causal,
i.e., ht(t) = 0 for t < 0. We will also assume that the plant
is spatially symmetric, which means that hx(−x) = hx(x).
(The same methods work for plants that are spatially anti-
symmetric, i.e., satisfy hx(−x) = −hx(x).)

The analysis to follow uses a 2-D transfer function of
the plant obtained by computing a z-transform of the pulse
response (5). This transfer function has the form H(z, λ) =
g(z−1)G(λ), where g(z−1) is the z-transform of the dy-
namical impulse response ht(t) in (5) and G(λ) is a spatial
transfer function computed as the (two-sided) z-transform of
the spatial impulse response (Green function) hx(x). The
plant is assumed stable and the spatial response absolutely
summable (spatially stable). This means g(z−1) is analytic
inside the unit circle |z| ≤ 1 in the complex plane, and G(λ)
is analytic inside an annulus r ≤ |λ| ≤ r−1, where 0 < r ≤ 1.

The separable 2-D plant model is y = g(z−1)G(λ)u. In this
model z−1 can be interpreted as a unit time delay operator and
λ as a unit positive spatial displacement operator. We assume
that g and G are scaled so g(1) = 1, i.e., the time transfer
function g is normalized to have unit static gain. The assumed
spatial symmetry implies that the spatial transfer function G
is real for |λ| = 1. (If the plant were spatially anti-symmetric,
then G would be pure imaginary for |λ| = 1.)

Separable models are applicable in many distributed systems
where actuator dynamics or sensor dynamics or dynamics of
a fixed dynamical filter are dominant. These dominant time
dynamics are described by the time response ht(t) while hx(x)
gives the steady-state spatial response shape. Models of the
form (5) are used in many practical applications of array
control discussed in Introduction.

A separable model (5) might be also obtained as an ap-
proximation of a general impulse response. As an example,
consider a distributed system described by a heat equation

∂2y

∂x2
=

∂y

∂t
+ ay + u, (6)

where x ∈ < is spatial coordinate, t ∈ <+ is time, y = y(t, x)
is the temperature, u = u(t, x) is the control input, and a
is a thermal loss factor. The actuation and measurement are
concentrated (as δ-functions) at integer coordinates. An input-
output map of the system can be represented in the form (4)
with the impulse response (Green function of (6)) being

h(t, x) = e−ta(4πt)1/2e−x2/(4t), (7)

where t > 0 and x are integers; we assume that there is a
one sample delay between the measurement and control so
that h(t = 0, x) = 0. We assume that a > 0, which means
the system dissipates the heat and the impulse response (7)
exponentially decays with time. This is the case for distributed

heating control applications in papermaking, manufacturing,
materials processing, and semiconductors.

The response (7) is not separable. Yet it can be approxi-
mated as such. Consider the argument domain DL = {t, x :
(t = 0, 1, . . . , 2L+1; x = −L, . . . , L)}. For large enough L,
the impulse response is vanishingly small outside the domain
DL. Inside DL, the values h(t, x), {t, x} ∈ DL could
be considered as entries of a matrix HL. A singular value
decomposition of HL has the form

h(t, x) =
2L+1∑

k=1

gk(t)σkhk(x), (8)

where gk(·) and hk(·) correspond to the left and right singular
vectors of HL respectively, and σk is the respective singular
value. A separable model (5) can be obtained as a truncation
of (8) with ht(t) = σ1g1(t) and hx(x) = h1(x). If the first
singular value is much larger than the rest, the approximation
is accurate. This holds in many applications.
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Fig. 1. Separable approximation of the heat equation response.

Assume a = 0.05 and L = 25. For the response (7) the first
few singular values σk in (8) computed for the domain D25

are: 0.8668, 0.2636, 0.0931, 0.0341, 0.0126, 0.0046, 0.0016.
The obtained spatial response hx(x) = σ1g1(t) and time
response ht(t) = h1(x) of the separable approximation are
shown in Figure 1 as solid lines. The dashed line in the
lower plot is a least square fit of a first-order time response
model (exponential response). An L2 error for the separable
approximation given by the ratio of the second and the first
singular values is about 30%. However, as discussed further
in the paper, an H∞ approximation error (a maximal error
magnitude over spatial and dynamical frequencies) is in fact
important for the analysis. This error is just 22%, much smaller
than the 33% H∞ robustness specification implemented in the
detailed design example of Section IV.

C. Multidimensional model

We will further consider a generalization of the just intro-
duced separable model to a larger number of spatial dimen-
sions.
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Consider now a multidimensional system with n spatial
coordinates and time. With some overload of notation denote
the integer coordinate vector x = [x1 . . . xn]T . The cells in
the n-D array have control inputs u = u(t, x) and outputs
y = y(t, x). We assume that the system has a separable
impulse response h(t, x) = ht(t)hx(x) and introduce the
spatial operator

G(λ) =
∞∑

x1=−∞
. . .

∞∑
xn=−∞

λx1
1 · · ·λxn

n hx([x1 . . . xn]T ), (9)

where λ = [λ1 . . . λn]T is the vector of the Laplace indeter-
minates. As usual, an indeterminant λk can be interpreted as
either complex variable or a unit shift operator for the spatial
coordinate xk. This should be clear from the context.

With an overload of notation, the plant model used in the
control design and analysis has the form

y = g(z−1)G(λ)u + d, (10)

where d = d(x) is a static disturbance. The earlier considered
2-D model is a special case of the multidimensional model
(10) for n = 1.

We assume that the system spatial response hx(x) is
symmetric (or anti-symmetric) in each of the variables
x1 . . . xn, such that either hx([x1 . . . − xk . . . xn]T ) =
hx([x1 . . . xk . . . xn]T ) or hx([x1 . . . − xk . . . xn]T ) =
−hx([x1 . . . xk . . . xn]T ). Denote the spatial frequency
vectors

ν = [ν1 . . . νn]T , eiν = [eiν1 . . . eiνn ]T

The symmetry (anti-symmetry) assumption means that the
non-causal transfer function G(eiv) is real (or purely imag-
inary).

D. Control problem

We are interested in low-bandwidth control of the mul-
tidimensional plant (10). The goal is to cancel the steady-
state error in reaching the desired spatial profile yd(x). The
separable model (10) is an extension of (1). Consider now a
separable controller that extends (2) in a similar way.

u = z−1u− z−1c(z−1)K(λ)(y − yd), (11)

where c(z−1) describes the controller time-dynamics. The
function of the spatial operator K(λ) is to improve the
closed-loop system response by compensating for the spatial
interaction effects reflected by the operator G(λ) in (10).

We now consider the closed-loop dynamics for the system
(10)–(11). As discussed in more detail in [2], an LTSI system
can be diagonalized by the spatial sinusoids. By substituting
λ = eiν we obtain the modal dynamics for the spatial
frequency ν. With some overload of notation, the control
update dynamics for the mode at frequency ν are

zu(t, ν) = u(t, ν)−K(eiν)G(eiν)g(z−1)c(z−1)u(t, ν)
−K(eiν)c(z−1)[d(ν)− yd(ν)], (12)

where yd(ν) is a Fourier transform of yd(x)

yd(ν) = (2π)−n
∑
x1

. . .
∑
xn

yd(x)eiν1x1 . . . eiν1xn ,

and d(ν) is a Fourier transform of d(x).
At high spatial frequencies, where G(eiv) ≈ 0, the actua-

tion signal might experience unlimited growth. In control of
industrial distributed processes, this effect is known as actuator
picketing. To see this, suppose the plant gain G(eiν) is zero
at some spatial frequency ν. The dynamics (12) at this spatial
frequency can be approximated as

zu(t, ν) = u(t, ν)−K(eiν)c(z−1)(d(ν)− yd(ν)).(13)

The second term in the r.h.s. (13) does not depend on control
u. However small the controller gain K(eiν) is, the integrator
in (13) will keep adding the error until the feedback signal
becomes extremely large. The described situation is never
encountered in ‘normal’ PID control. This is because the plant
gain is always nonzero as a precondition of system design for
implementation of closed-loop control. In a distributed system,
plant gain might be zero for some modes while other modes
are perfectly controllable.

The problem can be resolved by modifying the controller
(11) for out-of-band control at frequencies where |G(eiν)| ¿
1. At these frequencies, the compensation of the error y − yd

is not possible and the control convergence is most important.
It can be achieved by using a controller structure given by

u = z−1u− z−1c(z−1)K(λ)(y − yd)− z−1S(λ)u (14)

The first two terms in (14) have the same form as in (11). The
third term introduces an additional degree of freedom for the
and can be interpreted as a regularization term. The spatial
operator S(λ) introduces an integrator leakage term enforcing
the out-of-band control convergence.

The regularization term is the best understood in relation to
the system steady-state. It prevents an attempt to compensate
an error at spatial frequencies where a small plant gain
could lead to control inputs growing excessively large. This
corresponds to a regularized inversion of an ill-defined plant
[34]. Controllers of the form (14) have been used in web
manufacturing processes [23], [15], [32].

We will assume that the controller, like the plant, is spatially
symmetric, i.e., K and S are symmetric FIR filters; K(λ) and
S(λ) are real for |λ1| = . . . = |λn| = 1. (For a plant
where spatial response is anti-symmetric in some coordinates,
we choose K anti-symmetric in the same coordinates and
symmetric S.)

The main problem is to design the spatial operators K(λ)
and S(λ). We assume that the spatial filters K(λ) and S(λ)
are FIR operators, which implies that the controller (14) is
spatially localized; the control signal u(t, x) is computed based
on only a finite number of error and actuator signals, at nearby
actuator cells. This reflects important communication and
computing constraints. For a centralized controller (finite but
large array) FIR operators K and S can be implemented with
high computational efficiency as convolution kernels applied to
respective spatial variable profiles; for implementation through
distributed embedded computing, K and S being FIR limits
communication to a few near neighbors only.

The dynamical controller c(z−1) in (14) (together with the
integrator term) can be a simple low-bandwidth controller,
such as a PI or PID controller. Using PI or PID controllers
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requires few assumptions about the plant. PID control can
be made work and provides adequate performance for most
practical problems. We can interpret the controller (14) as a
simple LTSI generalization of the classical PID controller.

E. Estimation problem

Consider now a problem of estimating (filtering) the state
of a multidimensional system. In systems theory, estimation
is dual to control, hence, essentially the same mathematical
approach can be used. The distributed estimation problem
statement is a variation of the distributed control problem
formulated above. The applications are in image deblurring,
nondestructive evaluation of structural integrity, medical image
processing, video processing, and scientific data processing.

Consider a problem of filtering a (n + 1)-D signal, a time
sequence of n-D images (data arrays) y = y(t, x1, . . . , xn).
It is assumed that each observed image data array includes
underlying data v = v(t, x1, . . . , xn) distorted by the ob-
servation method and an additive noise (disturbance) d =
d(t, x1, . . . , xn). The image model has the form

y = G(λ)v + d, (15)

where G(λ) is the blur (distortion) operator and λ =
[λ1 . . . λn]T is the unit spatal shift operator vector. The distor-
tion can be caused by an off-focus camera in optical imaging,
by Radon transform blur in the computed tomography, or other
reasons. In what follows we assume that the distortion operator
G(λ) has some type of symmetry - the same assumption as
in the control problem statement above. We assume that the
underlying image v slowly evolves in time and the goal of the
filtering is to estimate v despite the presence of the random
disturbance d.

As a basis for model-based filter design, consider the
following random walk model for the inderlying image data

v = z−1v + ξ (16)

where ξ = ξ(t, x1, . . . , xn) is a random driving noise sequence
uncorrelated in time.

One way of designing a filter is to assume that d in (15)
and ξ in (16) are independent Gaussian processes uncorrelated
in time and with spatially invariant covariances independent
of time. In that case, an optimal linear filter can be designed
as a stationary Kalman Filter observer of the form

u = z−1u + z−1K(λ)(y −G(λ)u), (17)

where the feedback operator K(λ) can be obtained by solving
an operator Riccati Equation, see [2].

An operator Riccati Equation for a multidimensional system
is hard to solve in practice. Another problem is that the optimal
feedback operator K(λ) computed from a Riccati Equation
has an infinite support and cannot be described by a rational
transfer function. Therefore, a more practical solution is to
design K(λ) as an easy to implement FIR filter operator such
that the filter has required performance. This is an approach
pursued in this paper.

Whichever way K(λ) is designed, the closed-loop dynamics
for the distributed estimation update (15), (17) resemble those

for the distributed control (10), (11) with g(z−1) = 1 and
c(z−1) = 1 and with y instead of d−yd. This leads to the same
issue of error accumulation at high spatial frequencies (where
|G(eiν)| ¿ 1) as discussed for the distributed control problem.
In the estimation problem, it is the estimation error v − u
that might grow unchecked. The approach to overcome this
problem is to add a regularization term to the feedback update
(17) in the form of an integrator leakage. This is implemented
as an update of the form (14) with y instead of d− yd.

u = z−1u + z−1K(λ)(y − ŷ)− S(λ)z−1u, ŷ = G(λ)u (18)

In some cases, the input signal estimate u might be used as
the filter output. In other cases, the prediction ŷ is the filter
output.

With the filter structure (18) fixed, the design problem is
to find the FIR spatial operators K(λ) and S(λ) such that
the filter performance, robustness, and other specifications are
satisfied. This problem has the same form as the design of
the operators K(λ) and S(λ) in (10), (14). Of course, the
engineering specifications in the estimation problem would
follow from different practical considerations than in the con-
trol problem. However, the general form of the specifications
is the same and the same design and analysis approach can be
used in both cases.

The remainder of the analysis and design in this paper is
focused on the control problem implying that everything is
applicable to the estimation problem as well, perhaps with
a slight change. We return to the estimation problem in the
example of Section V.

III. CONTROL DESIGN SPECIFICATIONS

We now consider the closed-loop dynamics for the system
(10), (14). An LTSI system can be diagonalized by spatial
sinusoids and we will perform the analysis and design in the
spatial coordinate frequency domain. This section formulates
many standard design specifications in the form of linear
frequency depending inequalities. This lays foundation for the
subsequent controller design approach.

A. Closed-loop dynamics

By substituting λk = eiνk into (10), (14) we obtain the
modal dynamics for the spatial frequency ν. With some
overload of notation, the error dynamics for the mode at the
frequency ν = [ν1 . . . νn] are

ze(t, ν) = (1− s(ν))e(t, ν)
−l(ν)g(z−1)c(z−1)e(t, ν) + s(ν)yd(ν),(19)

where e(t, ν) = y(t, eiν) − yd(ν), and the modal loop gains
are

l(ν) = G(eiν)K(eiν), s(ν) = S(eiν) (20)

Our assumptions of the spatial symmetry of the plant and
controller imply that GK and S are real for |λ1| = . . . =
|λn| = 1, so the modal loop gain l(ν) and the modal
smoothing gain s(ν) in (19) are real numbers. More detail
on the symmetry types is presented in Section V.
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The equation (19) gives another interpretation of our basic
controller structure: it can be considered as a family of
independent PID (or other simple structure) controllers, one
for each spatial frequency. The modal loop gain l(ν) and the
modal smoothing gain s(ν) are determined by the coefficients
of the spatial filters K and S. The tuning of these filters can be
interpreted as the problem of tuning a family of the controllers,
indexed by the spatial frequency vector ν.

Assume first that s(ν) = 0. The modal error e will converge
to zero provided that the loop gain l > 0 is sufficiently small
and the steady-state gain of dynamical controller is such that
g(1)c(1) > 0. The steady-state error in e is eliminated because
of the integrator (a pole at z=1) present in the controller
(14) for S = 0. The modal convergence can be made faster
by increasing the loop gain l within certain limits. This is
a usual loopshaping arrangement. The details of tuning the
integrator gain, depend on the plant transfer function g(z−1)
and controller transfer function c(z−1).

The operator S (and the gain s(ν)) has an effect of regular-
izing the ill-defined problem of controlling a distributed plant
with some zero modal gains. It can be called a ‘smoothing’
operator because small gain is usually associated with high
spatial frequencies and the regularization has an effect of
reducing the large amplitude of high frequency components
in the control signal u.

For given plant response dynamics g(z−1) and the dynami-
cal controller c(z−1), the closed-loop dynamics (19) are fully
described by the two real gains l and s in (20). For given l,
s, the dynamics do not depend on the plant spatial operator
G(λ).

Consider now a suitable loop performance index Jp =
Jp(l, s). One such simple index can be given by the closed
loop convergence rate

Jp(l, s) = max
k
|zk|, (21)

where zk are the system poles - the roots of the characteristic
equation for (19)

1− z−1 + lz−1g(z−1)c(z−1) + sz−1 = 0.

The performance specification for the controller design can
be expressed in the form

{l, s} ∈ Dp(α), Dp(α) ≡ {l, s : Jp(l, s) ≤ α} (22)

The performance index (21) can be computed numerically
on a two-dimensional grid of the gains {l, s}. From that, using
standard software, one can obtain the contour lines describing
the boundary of the domain Dp(α). Thus, the specification
{l, s} ∈ Dp(α) can be incorporated into the controller design
framework.

In what follows, we use a convex approximation of the
domain Dp(α) by inscribing convex polygons inside this
domains and expressing the domain as the linear inequalities
of the form

αpl + βps ≤ γp (23)

where αp, βp, γp ∈ <Np express the polygon approxi-
mating Dp(α). The inequalities (23), should be interpreted
component-wise.

There can be several performance requirements of the form
(22), such as feedback loop convergence, limited peaking of
the loop response, rejection of dynamic disturbances, etc. The
requirements can be also separately formulated for in-band and
out-of-band spatial frequencies. The acceptable performance
domain for each requirement can be similarly approximated by
an inscribed polygon of the form (23). Combining the linear
inequality sets of the form (23) for each of the requirements
would yield a larger set of linear inequalities that still has
the form (23) and is compatible with the design approach
described below.

The domain Dp(α) and its approximation (23) depend on
the plant dynamics g(z−1) = 1, controller c(z−1) = 1 and the
specific chosen performance index. To illustrate validity of the
polygonal approximation of the domain Dp(α) consider two
commonly encountered examples of the dynamics.

Example 1: Simple delay feedback: Assume that g(z−1) =
1 and c(z−1) = 1. Such simple response with no dynamics
is encountered in estimation problem and many practical
distributed control problems where sampling time is much
larger than the plant settling time. For this system, the single
closed loop pole is real and the performance index (21) is
Jp(l, s) = |1 − l − s|. In that case the domain (22) is
Dp(α) ≡ {l, s : |1− l − s| ≤ α}. It can be exactly expressed
in the form (23), where

αp =
[ −1

1

]
, βp =

[ −1
1

]
, γp =

[
α− 1
α + 1

]
, (24)

Example 2: First order system with PI control: Consider
now a system with a first order dynamical response g(z−1)
and a PI controller. Assume that

g(z−1) =
z−1

1− τz−1
(25)

c(z−1) = kP (1− z−1) + kI (26)

where τ = 0.8, kP = 0.25, and kI = 0.1.
In that case the domain (22) Dp(α) is shown in Figure 2.

As an example of polygonal approximation, Figure 2 shows
a polygonal approximation of the domain Dp(0.9) (dashed
lines). This approximation can be expressed the inequalities
of the form (23), where

αp =




1.45
1
−0.45

0


 , βp =




0
0
−0.98
−1.25


 , γp =




−2.94
0.2
0.15

−0.25


 (27)

B. Steady-state performance specifications

The goal of this paper is to formulate an optimization
approach to tuning the spatial FIR operators K and S in
the controller (11). The main emphasis is on low-bandwidth
control that is related to steady-state closed-loop response,
i.e., the response for z = 1. By combining (10) and (11)
the closed-loop spatial transfer functions can be obtained.
The error e = y − yd and control u in steady-state (i.e.,
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Fig. 2. Performance domain for PID control of a first-order system: the
decay rate index.

at z = 1), and at spatial frequency ν = [ν1 . . . νn]T

(λ = eiν = [eiν1 . . . eiνn ]T ), are given by

e =
S(eiν)

S(eiν) + G(eiν)kIK(eiν)
yd(ν), (28)

u =
kIK(eiν)

S(eiν) + G(eiν)kIK(eiν)
yd(ν), (29)

where the integrator gain is kI = c(1). Recall that g(1) = 1
is assumed.

For deriving engineering specifications on the control it will
be assumed that a bound on the target profile yd is available
in the form |yd(ν)| ≤ d0, i.e., we have a known bound on the
maximum of the of the target profile at every frequency. We
require that for any such target profile, the magnitude of the
control is bounded for all spatial frequencies, i.e., |u| ≤ u0)
for all ν ∈ [0, 2π]n. Using (29), the last condition can be
expressed in the form

∣∣∣∣
kIK(eiν)

S(eiν) + G(eiν)kIK(eiν)

∣∣∣∣ ≤ u0/d0, for all ν. (30)

In a similar way we require that the magnitude of the steady-
state error is bounded, i.e., |e| ≤ e0 for all ν in the band
of spatial frequencies B ⊆ [0, π]n over which we require
good control performance. This leads to the steady-state per-
formance condition∣∣∣∣

S(eiν)
S(eiν) + G(eiν)kIK(eiν)

∣∣∣∣ ≤ e0/d0, for all ν ∈ B. (31)

Unlike (30), which is required to hold for any spatial frequency
ν, the small steady-state error condition (31) is required only
within the spatial bandwidth of the system, ν ∈ B. This
bandwidth might be taken, for example, as the set of the spatial
frequencies where the plant gain is sufficiently large to ensure
that the disturbances can be compensated without an excessive
control effort, i.e.,

{
ν ∈ B : |K(eiν)| ≥ k0

}
.

Since the bandwidth needs to be defined before the feed-
back operator K can be found, a more practical definition
can be based on the knowledge that kIK(eiν)G(eiν) ≈ 1

in-band. Thus, the bandwidth domain can be defined as{
ν ∈ B : |G(eiν)| ≤ g0

}
, where g0 = (kIk0)−1.

C. Steady-state robustness specifications

Another important engineering requirement is the robustness
of the closed-loop system to plant modeling error. Assume that
instead of the plant description (10), we have the following
perturbed plant,

y = g(z−1)G(λ)u + δP (z−1, λ)u, (32)

where |δP | ≤ δ0 for |z| ≤ 1, |λ1| = . . . = |λn| = 1.
The small gain theorem guarantees stability of the closed-
loop system with perturbed plant (32), and the controller (11),
provided
∣∣∣∣

c(z−1)K(λ)
1− z−1 + z−1S(λ) + z−1c(z−1)g(z−1)G(λ)K(λ)

∣∣∣∣ δ0

< 1 for |z| = 1, |λ1| = . . . = |λn| = 1. (33)

Since in low-bandwidth control the main control action takes
place at low dynamical frequencies, a steady-state robustness
condition will be considered in place of (33). For |z| = 1, (33)
reduces to∣∣∣∣

kIK(λ)
S(λ) + kIG(λ)K(λ)

∣∣∣∣ δ0 < 1 for |λ1| = . . . = |λn| = 1. (34)

We can also consider robustness to controller variations. A
distributed controller implementation might differ from the
designed controller, for several reasons: our analysis does not
take boundary effects into account; and we may have sensor,
actuator, or computing element faults in the distributed control
system. Assume that instead of the nominal controller (11), we
have

u = z−1u− c(z−1)K(λ)(y − yd)− z−1S(λ)u
+ δC(z−1, λ)u, (35)

where |δC| ≤ δC for |z| ≤ 1, |λ1| = . . . = |λn| = 1.
Similar to how (34) is derived, the small-gain based steady-
state robustness condition can be expressed in the form
∣∣∣∣

S(λ)
S(λ) + kIG(λ)K(λ)

∣∣∣∣ δC < 1 for |λ1| = . . . = |λn| = 1. (36)

Note that the robustness conditions (34), (36) are homoge-
neous in the operators S and K. There is a need to include
one more, nonhomogeneous condition. The integrator in the
controller might be implemented with an error because of the
boundaries and potential faults as mentioned above. A very
small error in the integrator might results in an instability if
K = 0 and S = 0. This possibility is not covered by the
homogeneous robustness condition (36).

Consider robustness to variations in the smoothing op-
erator S. Assume that in (11) the smoothing operator is
S(λ) + δS(z−1, λ), where |δS(z−1, λ)| ≤ δS for |z| ≤ 1,
|λ1| = . . . = |λn| = 1. Once again, we can derive a small-
gain based robustness condition:
∣∣∣∣

1
S(λ) + kIG(λ)K(λ)

∣∣∣∣ δS < 1 for |λ1| = . . . = |λn| = 1. (37)
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D. Spatial response decay

Consider now the design requirement related to the bound-
ary condition influence. It can be demonstrated that this
influence is limited by the characteristic width of the system
impulse response. The emphasis of other design requirements
considered above is on the steady-state closed-loop behavior.
Similar to that, we consider the characteristic width of the
steady-state closed-loop impulse response.

The impulse response is defined by a multivariable transfer
function of the form (9) and has the same form as the
respective transfer function. The previous subsections consider
several steady-state transfer functions. For all of these, a steady
state impulse response is described as

h(λ) =
A(λ)
B(λ)

, B(λ) = S(λ) + kIG(λ)K(λ), (38)

where the denominator is same for all the steady-state loop
transfer functions. The numerator A(λ) depends on which
impulse response is considered. For control response to dis-
turbance, A(λ) = kIK(λ), while for the error response to
disturbance, A(λ) = S(λ). In the rest of this section, we
assume that B(λ) is a FIR operator. The feedback operators
S(λ) and K(λ) are FIR. The plant spatial response G(λ) can
be modeled or approximated as FIR in most practical cases.
We assume that NB is the width of the FIR operator B(λ),
such that each of the n indexes of a nonzero element in B(λ)
does not exceed NB .

Herein we will evaluate the impulse response width through
its decay rate. The requirement is that the impulse response
decays at least as fast as r|k|, where k is the distance from the
impulse and r is a design parameter, 0 < r < 1. This response
decay ensures that boundary condition influence is limited to
a boundary layer with a characteristic width

Lb = NA − 1/ log r (39)

where NA is the width of the FIR operator A(λ). An impulse
response having a decay exponent r requires that the transfer
function A(λ)/B(λ) is analytical in the n-D annulus domain

λ = [λ1 . . . λn]T , r ≤ |λk| ≤ r−1, r < 1, (40)

Technical background on 2-sided z-transform leading to
(40) can be found in [27]. The transfer function analyticity
means that B(λ) should not have zeros in the ring (40).
Unfortunately this is a nonconvex constraint and it cannot be
handled in a computationally efficient way. Instead, consider
a convex constraint that conveniently enforces the spatial
converegence and will be further shown to be a relaxation
of B(λ) not having zeros in the ring (40). This constraint has
the form

|1−B(eiν)| ≤ t < 1 (41)

Recall that according to the made symmetry assumptions the
frequency response B(eiν) = S(eiv)+kIG(eiv)K(eiv) is real
(or purely imaginary). The condition B(eiν) > 0 is necessary
for the input-output stability of the transfer function; otherwise
the harmonics with frequency v where B(eiν) = 0 will have
an infinite amplification gain. This condition is discussed in

[27] for one spatial variable. Assume now that t = 0. Then
B(λ) ≡ 1 and we got an FIR filter with the transfer function
A(λ). The impulse response of the FIR filter is identically
zero outside of the FIR filter support.

Consider a general case of 0 < t < 1. One can show that
smaller t in (41) guarantees faster decay of the filter impulse
response. The following proposition holds

Proposition 1: Consider an IIR n-D filter A(λ)
B(λ) (38), where

a NB-tap delay symmetric denominator B(λ) satisfies (41).
Then the impulse response h(k1, . . . , kn) of the IIR filter
decays as

|h(k1, . . . , kn)| ≤ c · rmin[|k1|, ...,|kn|], r = t1/NB , (42)

where c is a constant; r = t1/NB < 1 is the same as in
(40); and the boundary layer width estimate (39) is Lb =
NA −NB/ log t.

Proof: It is sufficient to prove (42) for the filter 1/B(λ),
since a cascade FIR filter A(λ) does not change the response
decay rate. We will prove the following inequality equivalent
to (42)

|h(k1, . . . , kn)| ≤ t−n

1− t
, for max[|k1|, . . . , |kn|] ≥ n ·NB (43)

Denote C(λ) = 1−B(λ). For any n > 1

1
B(λ)

≡ 1
1− C(λ)

=
[
1 + C(λ) + . . . + Cn−1(λ)

]
+

Cn(λ)
1− C(λ)

(44)

The first n terms in the square brackets in the r.h.s. (44)
describe an FIR filter with the width (n−1)NB . The impulse
response of this FIR filter is zero for max[|k1|, . . . , |kn|] ≥
n · NB . For max[|k1|, . . . , |kn|] ≥ n · NB , using the
inverse Fourier transform to evaluate the impulse response
h(k1, . . . , kn) yields

h(k1, . . . , kn) =

1
(2π)n

∫ 2π

0

...

∫ 2π

0︸ ︷︷ ︸
n

1
B(eiν)

e−ik1ν1 · · ·e−iknνndν1· · ·dνn

=
1

(2π)n

∫ 2π

0

...

∫ 2π

0︸ ︷︷ ︸
n

Cn(eiν)
1− C(eiν)

e−ikT νdν (45)

In accordance with (41), |C(eiν)| ≤ t < 1. Hence,∣∣∣ Cn(eiν)
1−C(eiν)

∣∣∣ ≤ tn

1−t and (43) follows immediately. Q.E.D.

E. Specification summary

In summary, the specifications are given by the loop-gain
limit for dynamic stability (14), and
• the actuator limit (30)
• the performance specification (31)
• robustness to plant variation (34)
• robustness to controller variation (36)
• robustness to smoothing operator variation (37).
• performance specifications (23)
• spatial decay specifications (41)
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Since the loop gain l(ν) is a linear function of K(ν) and the
smoothing gain s(ν) is a linear function of S(ν) the feedback
gain constraints (23), are linear in K and S for each frequency
ν. Each of the other specifications has the form of a limit on
the magnitude of a linear fractional function of K(λ) and
S(λ), for all |λ1| = . . . = |λn| = 1, or (in the case of the
performance specification) for some |λ1| = . . . = |λn| = 1.

IV. OPTIMIZATION FORMULATION

We now show how the design of the spatial filters K
and S can be cast as a semi-infinite convex optimization
problem, which can be approximated well as a linear program
(and therefore solved efficiently). As briefly mentioned in
Section III, these operators are constrained to be FIR operators
such that information from near neighbors only is used when
computing control at a particular spatial location. See [6]
for a discussion of advantages to the convex optimization
formulation.

A. Symmetry and realness

Recall that we assume that the plant spatial response oper-
ator G(λ) is symmetric, such that G(eiν) is real. We assume
that the feedback operators K(λ) and S(λ) are symmetric too.
Alternatively, the approach described below is applicable when
G(λ) is symmetric for some coordinates and anti-symmetric
for other. In that case we assume that K(λ) pocesses the same
symmetry such that the frequency response K(eiν)G(eiν) is
real.

To provide a deeper insight into the operator symmetry and
a background for the technical approach formulation, let us
consider several types of symmetry.

1-D case: Let us start from the case of one spatial variable,
when λ is a scalar. In the case when the FIR operator K is
symmetric (which we assume when G is symmetric), we can
express it as

K(λ) = κ0 +
N∑

k=1

(λk + λ−k)κk, (46)

where κ0, . . . , κN are the coefficients. When G(λ) is anti-
symmetric, we take K to be anti-symmetric as well, in which
case it has the form

K(λ) =
N∑

k=1

(λk − λ−k)κk. (47)

(We will explain the method assuming that K and G are
symmetric.) The smoothing FIR operator S(λ) is always
assumed to be symmetric, and has the form

S(λ) = σ0 +
N∑

k=1

(λk + λ−k)σk, (48)

where σ0, . . . .σN are the coefficients. At the spatial frequency
ν, i.e., λ = eiν , we have

K = κ0 + 2
N∑

k=1

κk cos(kν), S = σ0 + 2
N∑

k=1

σk cos(kν). (49)

Let x ∈ R2N+2 be the vector of all the coefficients, i.e., our
optimization variables:

x = [κ0 · · · κN σ0 · · · σN ]T . (50)

For each spatial frequency ν, K and S are linear functions
of x, and therefore so are the loop and smoothing gains, l(ν)
and s(ν).

2-D symmetries: Let us discuss the symmetry patterns for
a 2-D operator

B(λ) = B(λ1, λ2) =
M∑

m=1

M∑
n=1

bm,nλm
1 λn

2

This operator could correspond to either of the two FIR
feedback operators K(λ) or S(λ). The types of symmetry
usually considered for 2-D filters include (see [25])
• 2-fold symmetry: bm,n = b−m,−n

• 4-fold symmetry: bm,n = b−m,−n = b−m,n = bm,−n

• 8-fold symmetry: bm,n = b−m,−n = b−m,n = bm,−n =
bn,m = b−n,−m = b−n,m = bn,−m

In all of the above symmetry cases the operator B(λ) can
be expanded in the form similar to (46)–(48)

B(λ1, λ2) =
Mb∑

m=0

bmPM
m (λ1, λ2), (51)

where PM
m (λ1, λ2) are the elementary polynomials defining

the symmetry. The expansion (51) explicitly shows Mb + 1
independent filter design parameters bm for the assumed
symmetry type.

For 2-fold symmetry, the symmetric expansion polynomials
can be expressed in the form

PM
0 (λ1, λ2) = 1,

PM
j (λ1, λ2) = λj

2 + λ−j
2 , (j = 1, . . . , M),

PM
M+k(λ1, λ2) = λlk

1 λmk
2 + λ−lk

1 λ−mk
2 , (52)

where in the last line 1 ≤ lk ≤ M , −M ≤ mk ≤ M and
k = 1, . . . ,M(2M + 1). The expansion size is Mb = 1 +
M + M(2M + 1).

For 4-fold symmetry

λPM
0 (λ1, λ2) = 1,

PM
j (λ1, λ2) = λj

1 + λ−j
1 + λj

2 + λ−j
2 , (j = 1, . . . , M),

PM
M+k(λ1, λ2) = λlk

1 λmk
2 + λlk

1 λ−mk
2

+ λ−lk
1 λmk

2 + λ−mk
1 λ−lk

2 , (53)

where in the last line 1 ≤ lk ≤ M , 1 ≤ mk ≤ M , and
k = 1, . . . ,M2. The expansion size is Mb +1 = 1+M +M2.

For 8-fold symmetry

PM
0 (λ1, λ2) = 1,

PM
j (λ1, λ2) = λj

1 + λ−j
1 + λj

2 + λ−j
2 ,

PM
M+j(λ1, λ2) = λj

1λ
j
2 + λ−j

1 λj
2

+ λj
1λ
−j
2 + λ−j

1 λ−j
2 ,

PM
2M+k(λ1, λ2) = λlk

1 λmk
2 + λlk

1 λ−mk
2 + λ−lk

1 λmk
2

+λ−lk
1 λ−mk

2 + λmk
1 λlk

2 + λmk
1 λ−lk

2

+λ−mk
1 λlk

2 + λ−mk
1 λ−lk

2 , (54)
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where j = 1, . . . ,M ; in the last equation 1 ≤ lk ≤ mk − 1,
2 ≤ mk ≤ M , and k = 1, . . . ,M(M − 1)/2. The expansion
size is Mb + 1 = 1 + 2M + M(M − 1)/2.

Choosing a higher type of symmetry reduces the number of
filter design parameters and is desirable where the symmetry
of the requirements exists. To obtain frequency responses in
(51)–(54), substitute λ1 = eiv1 and λ2 = eiv2 . Because of the
symmetry, the imaginary parts cancel and the real expansion
functions PM

m (eiw1 , eiw2) are combinations of the frequency
cosines.

In all of the considered symmetry cases, the frequency
responses for the FIR feedback operators K and S in the
controller (11) can be expressed in the same general form

K(eiν1 , eiν2) = cT
K(eiν1 , eiν2)pK ,

S(eiν1 , eiν2) = cT
S (eiν1 , eiν2)pS , (55)

cK(eiν1 , eiν2) = [PM
0 (eiν1 , eiν2) . . . PM

Mb
(eiν1 , eiν2)]T ,

pK = [κ0 κ1 . . . κMb
]T , (56)

cS(eiν1 , eiν2) = [PM
0 (eiν1 , eiν2) . . . PM

Mb
(eiν1 , eiν2)]T ,

pS = [σ0 σ1 . . . σMb
]T , (57)

Let x ∈ R2Mb+2 be the vector of all the coefficients, i.e.,
our optimization variables:

x = [κ0 · · · κN σ0 · · · σN ]T . (58)

For each spatial frequency ν, K and S are linear functions
of x, and therefore so are the loop and smoothing gains, l(ν)
and s(ν).

Other symmetries: One additional type of symmetry for
2-D array is hexagonal symmetry. Hexagonal actuator arrays
are commonly used in adaptive optics where several thousand
actuators might be used to control surface of a deformable
mirror. A distributed control application with a hexagonal
symmetry is considered in [31].

Some 3-D and 4-D applications of distributed feedback
control exist on the estimation side, such as computational
tomography or time-space filtering. A discussion of the filter
symmetry types for such systems can be found in [29], [9].

The design and implementation approaches presented herein
are directly applicable to higher-dimensional IIR filters. The
only difference in the formulation is in the number of the
independent coordinate arguments. The only difference in the
computational design and implementation methods is in the
potentially larger number of the points in a multidimensional
frequency grid.

One more extension of the presented approach is to the case
where G(λ) is not symmetric. In that case the system can be
‘squared down’ by multiplying the plant output y in (10) by the
conjugated operator G∗(λ). This yields the system of the same
form (10) with a symmetric spatial response G∗(λ)G(λ). The
‘squaring down’ is especially efficient if G is a FIR operator.

B. Optimization problem

We will now show how all of the tuning specifications can
be expressed as (infinite) sets of linear inequalities on the
variable x (58). The operators K, and S, as well as the loop

gain GK are linear in the tuning weights (components of the
vector x. Therefore the following representation is possible

K(eiν) = K̄(ν)T x, S(eiν) = S̄(ν)T x,

kIG(eiν)K(eiν) = H̄(ν)T x, (59)

where K̄(ν), S̄(ν), and H̄(ν) are column vectors with real
components.

Expressing the constraints which involve linear fractional
functions as linear constraints is not as straightforward. For
each spatial frequency ν, the requirements (30), (31), (34),
(36), and (37) have the form∣∣∣∣

aT x + b

s(ν) + kI l(ν)

∣∣∣∣ ≤ 1, (60)

where a ∈ R2Mb+2 and b ∈ R (and depend on the spatial
frequencies, and also which specification is being represented).

Both the numerator and denominator in this equality are
transformation of the operators K and S, which are in turn
linear in the tuning parameters κk and σl in (46), (47), (48).
In all cases the denominator is

S(eiν) + kIG(eiν)K(eiν) (61)

The second term in the denominator, kI l(ν), is nonnegative,
and is positive except at spatial frequencies where the plant
gain is zero. In fact, the whole denominator must be positive at
all spatial frequencies; indeed, the whole point of the smooth-
ing operator S is to ensure s(ν) > 0 for spatial frequencies
where l(ν) is small. We can argue this as follows. Suppose
the denominator (which is real) changes sign, and therefore
is zero at some spatial frequency ν. At that frequency, the
robustness to smoothing operator variation constraint, (37), is
violated, since the numerator of the relevant transfer function
is a nonzero constant, and the denominator vanishes, so the
relevant transfer function is infinite (and certainly not less than
one in magnitude). Thus, we have

s(ν) + kI l(ν) > 0 for all ν, (62)

for any controller that satisfies all the specifications. Since the
denominator is positive, we can multiply through by it, and
express the linear fractional constraint (60) as

−(s(ν) + kI l(ν)) ≤ aT x + b ≤ s(ν) + kI l(ν). (63)

This is a pair of linear inequalities in the variable x, since
both s(ν) and l(ν) are linear functions of x.

With the notation (59) and taking into account (50), the con-
troller design specifications for steady-state loop performance
(31), (30), (34), (36), (37) can be presented in the form

−S̄(ν)T x− H̄(ν)T x ≤ (d0/u0)K̄(ν)T x

≤ S̄(ν)T x + H̄(ν)T x (64)
−S̄(ν)T x− H̄(ν)T x ≤ (d0/e0)S̄(ν)T x

≤ S̄(ν)T x + H̄(ν)T x (65)
−S̄(ν)T x− H̄(ν)T x ≤ δ0K̄(ν)T x

≤ S̄(ν)T x + H̄(ν)T x (66)
−S̄(ν)T x− H̄(ν)T x ≤ δC S̄(ν)T x

≤ S̄(ν)T x + H̄(ν)T x (67)
−S̄(ν)T x− H̄(ν)T x ≤ δS ≤ S̄(ν)T x + H̄(ν)T x (68)
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where (65) is required to hold only within the assumed spatial
bandwidth of the control, i.e., for ν ∈ B.

These specifications should be complemented by the loop
dynamical response specifications (23) that can be presented
in the form

αpH̄(ν)T x + βpS̄(ν)T x + γp ≤ 0 (69)
αoH̄(ν)T x + βoS̄(ν)T x + γo ≤ 0 (70)

where (69) is required to hold only in the control band, i.e.,
for ν ∈ B, and (70) is required to hold only out-of-band, for
ν /∈ B.

Finally, as the optimization objective we consider the spatial
response decay. We require that the transfer function de-
nominator B(eiν) = s(ν) + kI l(ν) satisfies (41), where we
will minimize t. In accordance with Proposition 1 the decay
rate bound is guaranteed to improve for smaller t. Roughly
speaking, we want the (dynamic) loop gain as uniform as
possible for all spatial frequencies. We can achieve this goal
by taking as objective

φ(x) = max
ν∈[0,2π]n

|1− S̄(ν)T x− H̄(ν)T x|. (71)

Since this objective is the maximum of a family of convex
functions (absolute values of linear functions), it is a convex
function of x. If φ is small, then we can expect fast spatial
decay of the closed-loop system response.

The overall design problem is a convex optimization prob-
lem:

minimize φ(x)
subject to linear inequalities (63) above, for each ν.

The objective is given in (71), and the constraints are an
infinite set of linear inequalities; specifically, ten per spatial
frequency ν. (Such a problem is called semi-infinite since the
constraints are indexed by the real number ν.)

Finally, we approximate the semi-infinite convex problem
as an LP. We take a finite but sufficiently dense set of
spatial frequencies, {ν1, . . . , νM}, and impose all of the linear
inequalities at these frequencies only. This results in a large,
but finite, number of linear inequalities. In practice, the number
M of the frequency gridpoints required would depend on the
highest spatial frequency in the representation (49) or (59) of
the spatial operators (the largest tap delay in the FIR operators
S and K). Of course, the frequency content of the system
spatial operator G(eiν) also needs to be taken into account.
Refining the frequency grid always allows to achieve any
prescribed accuracy of the solution.

Similarly, we approximate the objective by sampling over
spatial frequencies:

φ̂(x) = max
νi

|1− S̄(νi)T x− H̄(νi)T x|.

This is a piecewise linear and convex function of x. We can
in turn formulate this sampled problem as a linear program,
by introducing a new variable γ, and adding the constraints

−γ ≤ 1− S̄(νi)T x− H̄(νi)T x ≤ γ, (72)

These constraints ensure that γ ≥ φ̂(x). Then we formulate
the following linear program:

minimize γ
subject to −γ ≤ 1− S̄(νi)T x− H̄(νi)T x ≤ γ,

linear inequalities (63) for each νi.
(73)

In this problem, the objective and all constraints are linear,
i.e., it is a linear program (LP).

The LP (73) has 2Mb +3 variables, and no more than 18M
linear inequality constraints. (The exact number depends on
the number of spatial frequency samples that fall in the control
band B.) It can be solved very quickly for typical problem
sizes, e.g., several tens of variables, and several hundreds of
constraints.

This method of synthesizing the spatial filters K and S can
be used to tune the LTSI controller, by varying parameters in
the specifications, such as the control band B, the actuator limit
u0, the error limit e0, and the constants related to various types
of uncertainty, i.e., δ0, δC , and δS . These parameters become
the ‘knobs’ used by the control designer, that are varied to
obtain adequate performance.

It should be clear from the discussion that many other
specifications can also be included, and more complex speci-
fications can also be handled by the method. As an example,
we can impose a limit on loop gain that is a function of spatial
frequency. In addition, we can impose limits on the magnitude
of any steady-state closed-loop spatial transfer function, since
every one will be linear fractional, with the same denominator
as the ones considered.

V. SIMULATION EXAMPLE

As an example of applying the proposed feedback design
approach, we consider a 3-D distributed estimation problem
for a 2-D image evolving in time. The motivation for the prob-
lem below comes from estimating a slowly changing image
from a series of noisy snapshots. Such images are common in
industrial vision systems, medical diagnostics, nondestructive
evaluation of materials. A closely related problem is of image
deblurring.
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Fig. 3. Spatial response (point spread function) of the image blur
operator

We assume a model of the form (15) where the 2-D FIR
operator G(λ) describes a Point Spread Function (PSF) of the
imaging system. In practice, the PSF could be often deter-
mined by applying a point signal in a controlled experiment
and observing the imaging system response. In this simulation
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example we postulate that G(λ) is a known Gaussian blur
operator

G(λ) =
NG∑

n=−NG

NG∑

k=−NG

e−
1
2 (n2+k2)/a2

Gλn
1λk

2 , (74)

where the Gaussian width aG = 2 and maximal delay of FIR
operator NG = 6 were assumed. The blur PSF operator G(λ)
is illustrated in Figure 3.

For the estimator design it was assumed that the dynamics
are absent except the processing delay and a simple integral
feedback of the form (11) is used such that

g(z−1) = 1, c(z−1) = 1 (75)

The plant spatial operator G(λ) in (74) has an 8-fold
symmetry. Therefore the operators K and S in the controller
(11) are also chosen to be 8-fold symmetric. These operators
are represented in the form (55)–(57), (54) to yield

K(eiν1 , eiν2) = K̄(ν1, ν2)T x, S(eiν1 , eiν2) = S̄(ν1, ν2)T x,

kIG(eiν1 , eiν2)K(eiν1 , eiν2) = H̄(ν1, ν2)T x, (76)

where K̄, S̄, and H̄ follow from (54), (56), (57).
Both operators K and S have M = 5 FIR taps on each side

off the center, thus, with the 8-fold symmetry there are a total
of Mb + 1 = 1 + 2M + M(M − 1)/2 = 21 coefficients in
each of the two FIR operators to be optimized.

The specifications for the estimator filter are formulated
separately in the bandwidth domain (pass band) Bp and stop
band Bs. These domains were selected as

Bp = {ν1, ν2 : |G(eiν1 , eiν2)| ≥ 0.25},
Bs = {ν1, ν2 : |G(eiν1 , eiν2)| ≤ 0.1} (77)

We consider the following specifications for the estimator
design.

Convergence (dynamical performance): For the estimator
design, the specifications (22) have the form similar to (23).
In-band (in the pass band), the estimate is required to converge
quickly enough such that the filtered signal responds quickly
to the change of the underlying image. On the opposite,
dynamical low-pass filtering in the (spatial) stop band is
required to be heavy enough. The filter time constant should
be no less than a given value such that the dynamical noise is
sufficiently reduced. These requirements can be expressed as

∣∣1− H̄(ν1, ν2)T x− S̄(ν1, ν2)T x
∣∣ ≤ αp, ν ∈ Bp, (78)

αs ≤ 1− H̄(ν1, ν2)T x− S̄(ν1, ν2)T x ≤ 1, ν ∈ Bs, (79)

where αp = 0.7 and αs = 0.85 were assumed in the design
example. This corresponds to the filter time constant being no
more than 2.8 samples in band and no less than 6 samples in
the stop band.

Steady-state Performance: The steady-state filter output
can be expressed from (15), (18) as (kI = c(1) = 1)

u =
K(eiν1 , eiν2)

S(eiν1 , eiν2) + K(eiν1 , eiν2)G(eiν1 , eiν2)
y,

ŷ = G(eiν1 , eiν2)u (80)

The requirements to the steady state performance of the
estimator follow from (80). The estimate ŷ should be close
to the signal y in band. This can be expressed as the transfer
function relating ŷ to y being close to unity in the pass band.
To reject the noise, the signal ŷ should be small in the stop
band. The transfer function magnitude should be small.

Assume a bound v0 on the magnitude of the source image
v and a bound d0 on the magnitude of the disturbance d. By
substituting (76) into (80) and making the estimates similar to
(34), (36) we obtain the steady state performance requirements
in the form

H̄(ν1, ν2)T x ≤ (1 + E) · (S̄(ν1, ν2)T x + H̄(ν1, ν2)T x
)
,

H̄(ν1, ν2)T x ≥ (1− E) · (S̄(ν1, ν2)T x + H̄(ν1, ν2)T x
)
,

for {ν1, ν2} ∈ Bp (81)∣∣H̄(ν1, ν2)T x
∣∣ ≤ V1 ·

(
S̄(ν1, ν2)T x + H̄(ν1, ν2)T x

)
,

for {ν1, ν2} ∈ Bs (82)
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Fig. 4. Filter specification requirements: 1-D cross section of the require-
ments in the 2-D domain of spatial frequencies.

In the design example we assumed E = 0.25 and V1 =
0.25. The design requirements are illustrated in Figure 4. They
can be expressed as as linear inequalities in the form similar
to (64), (65).

The requirements (81), (82) need to be complemented by the
requirement of the bounded amplification of the input signal
y when computing the intermediate estimate u in (80). Unless
this requirement is in place, the large intermediate signal u
could lead to instability caused by the boundary effects.

V0

∣∣K̄(ν1, ν2)T x
∣∣ ≤ S̄(ν1, ν2)T x + H̄(ν1, ν2)T x, (83)

where {ν1, ν2} ∈ [0, 2π]2. In the design example, V0 = 3
was assumed.

Spatial response decay: Finally, as the optimization
objective we will take the decay rate of the steady state closed-
loop response (boundary layer width). This objective can be
expressed in the following form that is similar to (71) with a
potential scaling factor difference.

−1 ≤ γ1 ≤ 1− S̄(ν1, ν2)T x− H̄(ν1, ν2)T x ≤ γ2 ≤ 1 (84)
γ2 − γ1 → min

A. Estimator implementation and simulation results

The formulated linear inequalities and the optimization
objective (84) were integrated together to yield an optimiza-
tion problem with respect to the parameter vector x =
[pT

S pT
K q1 q2]T , where pS and pK each contain 21 inde-

pendent coefficients of the respective FIR operators S and
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K to be optimized, 44 coefficients at all in the parameter
vector x (58). The controller tuning problem was cast as an
LP problem with respect to x, as described above, with spatial
frequency sampled at 64×64 = 4096 points uniformly spaced
in the spatial frequency domain [0, 2π]× [0, 2π]. The problem
was solved using the LINPROG medium-scale LP solver from
Matlab R© Optimization Toolbox. The designed spatial FIR
operators K and S of the filter are illustrated in Figure 5.
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Fig. 5. Designed spatial FIR operator for the 3-D estimator filter. Feedback
operator K - upper plot, smoothing operator S - lower plot.

Fig. 6. Filter magnitude response function for steady state (w = 0).

The transfer function magnitude for the designed filter at
steady state (at w = 0) is displayed in Figure 6. Figure 7
shows the time constant of the filter depending on the spatial
frequency

τ(ν1, ν2) =
−1

log (1−K(eiν1 , eiν2)G(eiν1 , eiν2)− S(eiν1 , eiν2))
.

The steady-state spatial impulse response of the filter is
illustrated in Figure 8. It decays in 5-8 samples off the centers.
This shows how far the influence of the boundary conditions
would extend onto the spatial domain of the filtered signal.

The designed filter was applied to a noisy image sequence
generated as follows. The spatial domain of 40 × 100 pixels

Fig. 7. Filter time constant τ(ν1, ν2) depending on the spatial mode
frequencies.
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was considered with the source signal v being zero in the
most of the domain, except an ellipse with the main axes of
8 (along x1) and 20 (along x2) in the center of the domain.
The signal v was ramped up from zero to unity in 12 time
steps uniformly inside the ellipse. The signal v was distorted
by an additive (pseudo-)random noise uniformly distributed in
the interval [−2, 2] and uncorrelated in time and space. The
noisy signal was then smoothed (blurred) by applying a scaled
Blackman window (a FIR operator [0.2024 0.5952 0.2024])
along each of the directions x1 and x2. The generated 3-D
signal was used as an input to the designed filter. In practice
the blur might be not known accurately, which is reflected by
the blur in the simulation being differs from what is assumed
in the filter design. The simulation results are illustrated in
Figures 9 and 10.

The time dependency of the filtered data can be illustrated
by taking average values inside the central ellipse and outside
of it. The time series for these average values are illustrated
in Figure 9. The plot also show the magnitude of the source
signal inside the ellipse (it is zero outside). The time series
for the filtered signal follows the time dependencies for the
source very closely. This means that despite the significant
improvement in signal-to noise ratio, the filtering delay is
insignificant.

The 2-D slices of the signals in Figure 10 is taken at time
50 well afer the end of the ramp. The raw, noisy, 2-D data in
the upper plot makes the source signal v hardly visible. In the
filtered data, (the lower plot) the signal is significantly (factor
3-5) above the noise.

VI. CONCLUSIONS

The LP optimization scheme for distributed controller tun-
ing has been proposed. A straightforward design approach
implements many engineering specifications in natural frame-
work. It was demonstrated through simulation that the pro-
posed method allows achieving very good quality of control
and estimation in difficult distributed system problems.
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