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Portfolio Construction Using Stratified Modelsb

Jonathan Tucka, Shane Barratta and Stephen Boyda

Abstract
In this chapter we develop models of asset return mean and covariance that
depend on some observablemarket conditions, and use these to construct a trading
policy that depends on these conditions, and the current portfolio holdings. After
discretizing the market conditions, we fit Laplacian regularized stratified models
for the return mean and covariance. These models have a different mean and
covariance for each market condition, but are regularized so that nearby market
conditions have similar models. This technique allows us to fit models for market
conditions that have not occurred in the training data, by borrowing strength
from nearby market conditions for which we do have data. These models are
combined with a Markowitz-inspired optimization method to yield a trading
policy that is based on market conditions. We illustrate our method on a small
universe of 18 ETFs, using three well known and publicly available market
variables to construct 1000 market conditions, and show that it performs well out
of sample. The method, however, is general, and scales to much larger problems,
that presumably would use proprietary data sources and forecasts along with
publicly available data.

17.1 Introduction
Trading policy.
We consider the problem of constructing a trading policy that depends on some
observablemarket conditions, as well as the current portfolio holdings.We denote
the asset daily returns as yt ∈ Rn, for t = 1, . . . ,T . The observable market
conditions are denoted as zt . We assume these are discrete or categorical, so we
have zt ∈ {1, . . . ,K}. We denote the portfolio asset weights as wt ∈ R

n, with
1Twt = 1, where 1 is the vector with all entries one. The trading policy has the
form

T : {1, . . . ,K} × Rn → Rn,

where wt = T(zt,wt−1), i.e., it maps the current market condition and previous
portfolio weights to the current portfolio weights. In this chapter we refer to
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zt as the market conditions, since in our example it is derived from market
conditions, but in fact it could be anything known before the portfolio weights are
chosen, including proprietary forecasts or other data. Our policy T is a simple
Markowitz-inspired policy, based on a Laplacian regularized stratified model of
the asset return mean and covariance; see, e.g., Markowitz (1952); Grinold and
Kahn (1999); Boyd et al. (2017).

Laplacian regularized stratified model.
We model the asset returns, conditioned on market conditions, as Gaussian,

y | z ∼ N(µz,Σz),

with µz ∈ Rn and Σz ∈ Sn
++ (the set of symmetric positive definite n×n matrices),

z = 1, . . . ,K . This is a stratified model, with stratification feature z. We fit this
stratifiedmodel, i.e., determine the means µ1, . . . , µK and covariances Σ1, . . . ,ΣK ,
by minimizing the negative log-likelihood of historical training data, plus a reg-
ularization term that encourages nearby market conditions to have similar means
and covariances. This technique allows us to fit models for market conditions
which have not occurred in the training data, by borrowing strength from nearby
market conditions for which we do have data. Laplacian regularized stratified
models are discussed in, e.g., Danaher et al. (2014); Saegusa and Shojaie (2016);
Tuck et al. (2019); Tuck et al. (2021); Tuck and Boyd (2021a,b). One advantage
of Laplacian regularized stratified models is they are interpretable. They are also
auditable: we can easily check if the results are reasonable.

This chapter.
In this chapter we present a single example of developing a trading policy as
described above. Our example is small, with a universe of 18 ETFs, and we use
market conditions that are publicly available and well known. Given the small
universe and our use of widely available market conditions, we cannot expect
much in terms of performance, but wewill see that the trading algorithm performs
well out of sample. Our example is meant only as a simple illustration of the ideas;
the techniques we decribe can easily scale to a universe of thousands of assets, and
use proprietary forecasts in the market conditions. We have made the code for this
chapter available online at https://github.com/cvxgrp/lrsm_portfolio.

Outline.
Westart by reviewingLaplacian regularizedmodels in §17.2. In §17.3we describe
the data records and dataset we use. In §17.4 we describe the economic conditions
with which we will stratify our return and risk models. In §17.5 and §17.6 we
describe, fit, and analyze the stratified return and risk models, respectively. In
§17.7 we give the details of how our stratified return and risk models are used to
create the trading policy T . We mention a few extensions and variations of the
methods in §17.8.
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17.1.1 Related work
A number of studies show that the underlying covariances of equities change
during different market conditions, such as when the market performs histori-
cally well or poorly (a “bull” or “bear” market, respectively), or when there is
historically high or low volatility (Erb et al., 1994; Longin and Solnik., 2001; Ang
and Bekaert, 2003, 2004; Borland, 2012). Modeling the dynamics of underlying
statistical properties of assets is an area of ongoing research. Many model these
statistical properties as occurring in hard regimes (i.e., where the statistical prop-
erties are the same within a given regime), and utilize methods such as hidden
Markov models (Ryden et al., 1998; Hastie et al., 2009; Nystrup et al., 2018)
or greedy Gaussian segmentation (Hallac et al., 2019) to model the transitions
and breakpoints between the regimes. In contrast, this chapter assumes a hard
regimemodel of our statistical parameters, but our chief assumption is, informally
speaking, that similar regimes have similar statistical parameters.

Asset allocation based on changing market conditions is a sensible method for
active portfolio management (Ang and Bekaert, 2002; Ang and Timmermann,
2011; Nystrup et al., 2015; Petre, 2015). A popular method is to utilize convex
optimization control policies to dynamically allocate assets in a portfolio, where
the time-varying statistical properties are modeled as a hidden Markov model
(Nystrup et al., 2019).

17.2 Laplacian regularized stratified models
In this section we review Laplacian regularized stratified models, focusing on
the specific models we will use; for more detail see Tuck et al. (2021); Tuck and
Boyd (2021a). We are given data records of the form (z, y) ∈ {1, . . . ,K} × Rn,
where z is the feature over which we stratify, and y is the outcome. We let θ ∈ Θ
denote the parameter values in our model. The stratified model consists of a
choice of parameter θz ∈ Θ for each value of z. In this chapter we will construct
two stratified models. One is for return, where θz ∈ Θ = Rn is an estimate or
forecast of return in market condition z. The other is for return covariance, where
θz ∈ Θ = Sn

++ is the inverse covariance or precision matrix, and Sn
++ denotes the

set of symmetric positive definite n × n matrices. (We use the precision matrix
since it is the natural parameter in the exponential family representation of a
Gaussian, and renders the fitting problems convex.)

To choose the parameters θ1, . . . , θK , we minimize
K∑
k=1

(`k(θk) + r(θk)) + L(θ1, . . . , θK ). (17.1)

Here `k is the loss function, that depends on the training data yi, for zi = k,
typically a negative log-likelihood under our model for the data. The function r is
the local regularizer, chosen to improve out of sample performance of the model.

The last term in (17.1) is the Laplacian regularization, which encourages
neighboring values of z, under some weighted graph, to have similar parameters.
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It is characterized by W ∈ SK , a symmetric weight matrix with zero diagonal
entries and nonnegative off-diagonal entries. The Laplacian regularization has
the form

L(θ1, . . . , θK ) =
1
2

K∑
i, j=1

Wi j ‖θi − θ j ‖
2,

where the norm is the Euclidean or `2 normwhen θz is a vector, and the Frobenius
norm when θz is a matrix. We think of W as defining a weighted graph, with
edges associated with positive entries of W , with edge weight Wi j . The larger Wi j

is, the more encouragement we give for θi and θ j to be close.
When the loss and regularizer are convex, the problem (17.1) is convex, and so

in principle is tractable (Boyd and Vandenberghe, 2004). The distributed method
introduced in Tuck et al. (2021), which exploits the properties that the first two
terms in the objective are separable across k, while the last term is separable
across the entries of the parameters, can easily solve very large instances of the
problem.

A Laplacian regularized stratified model typically includes several hyper-
parameters, for example that scale the local regularization, or scale some of
the entries in W . We adjust these hyper-parameters by choosing some values,
fitting the Laplacian regularized stratified model for each choice of the hyper-
parameters, and evaluating the true loss function on a (held-out) validation set.
(The true loss function is often but not always the same as the loss function used
in the fitting objective (17.1).) We choose hyper-parameters that give the least,
or nearly least, true loss on the validation data, biasing our choice toward larger
values, i.e., more regularization.

We make a few observations about Laplacian regularized stratified models.
First, they are interpretable, and we can check them for reasonableness by ex-
amining the values θz , and how they vary with z. At the very least, we can
examine the largest and smallest values of each entry (or some function) of θz
over z ∈ {1, . . . ,K}.

Second, we note that a Laplacian regularized stratified model can be created
even when we have no training data for some, or even many, values of z. The
parameter values for those values of z are obtained by borrowing strength from
their neighbors for which we do have data. In fact, the parameter values for values
of z for which we have no data are weighted averages of their neighbors. This
implies a number of interesting properties, such as a maximum principle: Any
such value lies between the minimum and maximum values of the parameter over
those values of z for which we have data.

17.3 Dataset
Our example considers n = 18 ETFs as the universe of assets, listed in table 17.1.
These ETFs were chosen because they broadly represent the market. Each data
record has the form (yt, zt), where yt ∈ R18 is the daily active return of each asset
with respect to VTI, an ETF which broadly tracks the total stock market, from
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Asset Description

AGG iShares Core US Aggregate Bond ETF
DBC PowerShares DB Commodity Index Tracking Fund
GLD SPDR Gold Shares
IBB iShares Nasdaq Biotechnology ETF
ITA iShares US Aerospace & Defense ETF
PBJ Invesco Dynamic Food & Beverage ETF
TLT iShares 20 Plus Year Treasury Bond ETF
VNQ Vanguard Real Estate Index Fund ETF
VTI Vanguard Total Stock Market Index Fund ETF
XLB Materials Select Sector SPDR Fund
XLE Energy Select Sector SPDR Fund
XLF Financial Select Sector SPDR Fund
XLI Industrial Select Sector SPDR Fund
XLK Technology Select Sector SPDR Fund
XLP Consumer Staples Select Sector SPDR Fund
XLU Utilities Select Sector SPDR Fund
XLV Health Care Select Sector SPDR Fund
XLY Consumer Discretionary Select Sector SPDR Fund

Table 17.1 Universe of 18 ETFs.

market close on day t −1 until market close on day t, and zt represents the market
condition known by the market close on day t − 1, described later in §17.4. (The
daily active return of each asset with respect to VTI is the daily return of that
asset minus the daily return of VTI.) Henceforth, when we refer to return or risk
we mean active return or active risk, with respect to our benchmark VTI. The
benchmark VTI has zero active return and risk.

Our dataset spansMarch 2006 toDecember 2019, for a total of 3461 data points.
We first partition it into two subsets. The first, using data from 2006–2014, is
used to fit the return and risk models as well as to choose the hyper-parameters in
the return and risk models and the trading policy. The second subset, with data in
2015–2019, is used to test the trading policy. We then randomly partition the first
subset into two parts: a training set consisting of 80% of the data records, and a
validation set consisting of 20% of the data records. Thus we have three datasets:
a training data set with 1779 data points in the date range 2006–2014, a validation
set with 445 data points also in the date range 2006–2014, and a test dataset with
1237 data points in the date range 2015–2019. We use 9 years of data to fit our
models and choose hyper-parameters, and 5 years of later data to test the trading
policy. In order to minimize the influence of outliers in the models, return data
in the training and validation datasets were winsorized (clipped) at their 1st and
99th percentiles. The return data in the test dataset was not winsorized.
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Volatility Inflation Mortgage

Volatility 1 -0.13 -0.28
Inflation - 1 0.28
Mortgage - - 1

Table 17.2 Correlation of the market indicators over the training and validation period,
2006–2014.

17.4 Stratified market conditions
Each data record also includes the market condition z known on the previous
day’s market close. To construct the market condition z, we start with three
(real-valued) market indicators.

Market implied volatility.
The volatility of the market is a commonly used economic indicator, with extreme
values associated with market turbulence (French et al., 1987; Schwert, 1989;
Aggarwal et al., 1999; Chun et al., 2020). Here, volatility is measured by the
15-day moving average of the CBOE volatility index (VIX) on the S&P 500
(Exchange, 2020), lagged by an additional day.

Inflation rate.
The inflation rate measures the percentage change of purchasing power in the
economy (Wynne and Sigalla, 1994; Boyd et al., 1996, 2001; Boyd and Champ,
2003; Hung, 2003; Mahyar, 2017). The inflation rate is published by the United
States Bureau of Labor Statistics (of Labor Statistics, 2020) as the percent change
of the consumer price index (CPI), which measures changes in the price level of
a representative basket of consumer goods and services, and is updated monthly.

30-year US mortgage rates.
This metric is the interest rate charged by a mortgage lender on 30-year mort-
gages, and the change of this rate is an economic indicator correlated with eco-
nomic spending (Cava, 2016; Sutton et al., 2017). The 30-year US mortgage
rate are published by the Federal Home Loan Mortgage Corporation, a public
government-sponsored enterprise, and is generally updated weekly (Federal Re-
serve Economic Data, 2020). Here, this market condition is the 8-week rolling
percent change of the 30-year US mortgage rate.

These three economic indicators are not particularly correlated over the training
and validation period, as can be seen in table 17.2.

Discretization.
Each of these market indicators is binned into deciles, labeled 1, . . . ,10. (The
decile boundaries are computed using the data up to 2015.) The total number of
stratification feature values is then K = 10×10×10 = 1000.We can think of z as a
3-tuple of deciles, in {1, . . . ,10}3, or encoded as a single value z ∈ {1, . . . ,1000}.
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Figure 17.1 Stratification feature values over time. The vertical line at 2015 separates
the training and validation period (2006–2014) from the test period (2015–2019).

The market conditions over the entire dataset are shown in figure 17.1, with the
vertical line at 2015 indicating the boundary between the training and validation
period (2006–2014) and the test period (2015–2019). The average value of ‖zt+1−

zt ‖1 (interpreting them as vectors in {1, . . . ,10}3) is around 0.35, meaning that
on each day, the market conditions change by around 0.35 deciles on average.

Data scarcity.
The market conditions can take on K = 1000 possible values. In the train-
ing/validation datasets, only 346 of 1000 market conditions appear, so there are
654 market conditions for which there are no data points. The most populated
market condition, which corresponds to market conditions (9,0,0), contains 42
data points. The average number of data points per market condition in the train-
ing/validation data is 2.22.

For about 65% of the market conditions, we have no training data. This scarcity
of data means that the Laplacian regularization is critical in constructing models
of the return and risk that depend on the market conditions.

In the test dataset, only 188 of the economic conditions appear. The average
number of data points per market condition in the test dataset is 1.24. Only 71
economic conditions appear in both the training/validation and test datasets. In
the test data, there are only 442 days (about 36% of the 1237 test data days) in
which the market conditions for that day were observed in the training/validation
datasets.

Regularization graph.
Laplacian regularization requires a weighted graph that tells us which market
conditions are ‘close’. Our graph is the Cartesian product of three chain graphs
(Tuck et al., 2021), which link each decile of each indicator to its successor (and
predecessor). This graph on the 1000 values of z has 2700 edges. Each edge
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connects two adjacent deciles of one of our three economic indicators. We assign
three different positive weights to the edges, depending on which indicator they
link. We denote these as

γvol, γinf, γmort. (17.2)

These are hyper-parameters in our Laplacian regularization. Each of the nonzero
entries in the weight matrix W is one of these values. For example, the edge
between (3,1,4) and (3,2,4), which connects two values of z that differ by one
decile in Inflation, has weight γinf .

17.5 Stratified return model
In this section we describe the stratified return model. The model consists of a
return vector θz = µz ∈ R

18 for each of K = 1000 different market conditions,
for a total of Kn = 18000 parameters.

The loss in (17.1) is a Huber penalty,

`k(µk) =
∑
t:zt=k

1T H(µk − yt),

where H is the Huber penalty (applied entrywise above),

H(z) =

{
z2, |z | ≤ M
2M |z | − M2, |z | > M,

where M > 0 is the half-width, which we fix at the reasonable value M = 0.01.
(This corresponds to the 79th percentile of absolute return on the training dataset.)
The Huber loss is utilized because it is robust (or less sensitive) to outliers. We
use quadratic or `2 squared local regularization in (17.1),

r(µk) = γret,loc‖µk ‖
2
2,

where the positive regularization weight γret,loc is another hyper-parameter.
The Laplacian regularization contains the three hyper-parameters (17.2), so

overall our stratified return model has four hyper-parameters.

17.5.1 Hyper-parameter search
To choose the hyper-parameters for the stratified return model, we start with a
coarse grid search, which evaluates combinations of hyper-parameters over a
large range. We evaluate all combinations of

γret,loc = 0.001,0.01,0.1,
γvol = 1,10,100,1000,10000,100000
γinf = 1,10,100,1000,10000,100000
γmort = 1,10,100,1000,10000,100000
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Model Train correlation Validation correlation

Stratified return model 0.093 0.054
Common return model 0.018 0.001

Table 17.3 Correlations to the true returns over the training set and the held-out
validation set for the return models.

a total of 648 combinations, and select the hyper-parameter combination that
yields the largest correlation between the return estimates and the returns over
the validation set. (Thus, our true loss is negative correlation of forecast and
realized returns.) The hyper-parameters

(γret,loc, γvol, γinf, γmort) = (0.01,10,100,10000)

gave the best results over this coarse hyper-parameter grid search.
We then perform a second hyper-parameter grid search on a finer grid of values

centered around the best values from the coarse search. We test all combinations
of

γret,loc = 0.0075,0.01,0.0125,
γvol = 2,5,10,20,50,
γinf = 20,50,100,200,500,
γmort = 2000,5000,10000,20000,50000,

a total of 375 combinations. The final hyper-parameter values are

(γret,loc, γvol, γinf, γmort) = (0.01,20,50,5000). (17.3)

These can be roughly interpreted as follows. The large value for γmort tells us
that our return model should not vary much with mortgage rate, and the smaller
values for γvol and γinf tells us that our return model can vary more with volatility
and inflation.

17.5.2 Final stratified return model
Table 17.3 shows the correlation coefficient of the return estimates to the true
returns over the training and validation sets, for the stratified return model and the
common return model, i.e., the empirical mean over the training set. The stratified
return model estimates have a larger correlation with the realized returns in both
the training set and the validation set.

Table 17.4 summarizes some of the statistics of our stratified return model
over the 1000 market conditions, along with the common model value. We can
see that each forecast varies considerably across the market conditions. Note that
the common model values are the averages over the training data; the median,
minimum, and maximum are over the 1000 market conditions.
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Asset Common Median Min Max

AGG -0.015 -0.064 -0.109 0.045
DBC -0.049 -0.050 -0.131 0.076
GLD -0.007 -0.017 -0.111 0.130
IBB 0.040 0.045 -0.053 0.132
ITA 0.022 0.029 -0.062 0.059
PBJ 0.009 0.007 -0.038 0.096
TLT 0.011 -0.053 -0.162 0.092
VNQ 0.015 0.008 -0.229 0.064
VTI 0 0 0 0
XLB 0.003 0.014 -0.033 0.066
XLE -0.001 0.020 -0.081 0.113
XLF -0.023 -0.047 -0.341 0.039
XLI 0.008 0.015 -0.053 0.052
XLK 0.001 0.003 -0.045 0.081
XLP 0.006 -0.001 -0.040 0.062
XLU -0.009 -0.017 -0.067 0.072
XLV 0.012 0.011 -0.029 0.055
XLY 0.014 0.007 -0.048 0.049

Table 17.4 Return predictions, in percent daily return. The first column gives the
common return model; the second, third, and fourth columns give median, minimum,
and maximum return predictions over the 1000 market conditions for the Laplacian
regularized stratified model. All returns are relative to VTI, which has zero return.
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17.6 Stratified risk model
In this section we describe the stratified risk model, i.e., a return covariance that
depends on z. For determining the risk model, we can safely ignore the (small)
mean return, and assume that yt has zero mean. (The return is small, so the
squared return is negligible.) The model consists of K = 1000 inverse covariance
matrices Σ−1

k = θk ∈ S18
++, indexed by the market conditions. Our stratified risk

model has Kn(n + 1)/2 = 171000 parameters.
The loss in (17.1) is the negative log-likelihood on the training set (scaled,

with constant terms ignored),

`k(θk) = Tr(SkΣ
−1
k ) − log det(Σ−1

k )

where Sk =
1
nk

∑
t:zt=k yt y

T
t is the empirical covariance matrix of the data y for

which z = k, and nk is the number of data samples with z = k. (When nk = 0,
we take Sk = 0.) We found that local regularization did not improve the model
performance, so we take local regularization r = 0. All together our stratified risk
model has the three Laplacian hyper-parameters (17.2).

17.6.1 Hyper-parameter search
We start with a coarse grid search over all 216 combinations of

γvol = 0.01,0.1,1,10,100,1000,
γinf = 0.01,0.1,1,10,100,1000,
γmort = 0.01,0.1,1,10,100,1000,

selecting the hyper-parameter combinationwith the smallest negative log-likelihood
(our true loss) on the validation set. The hyper-parameters

(γvol, γinf, γmort) = (0.1,10,100)

gave the best results.
We then perform a second search on a finer grid, focusing on hyper-parameter

value near the best values from the coarse search. We evaluate all 125 combina-
tions of

γvol = 0.02,0.05,0.1,0.2,0.5,
γinf = 2,5,10,20,50,
γmort = 20,50,100,200,500.

For the stratified risk model, the final hyper-parameter values chosen are

(γvol, γinf, γmort) = (0.2,20,50).

It is interesting to compare these to the hyper-parameter values chosen for the
stratified return model, given in (17.3). Since the losses for return and risk models
are different, we can scale the hyper-parameters in the return and risk to compare
them. We can see that they are not the same, but not too different, either; both
choose γinf larger than γvol, and γmort quite a bit larger than γvol.
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Model Train loss Validation loss

Stratified risk model -6.69 -1.45
Common risk model 3.47 4.99

Table 17.5 Average negative log-likelihood (scaled, with constant terms ignored) over
the training and validation sets for the stratified and common risk models.

Asset Common Median Min Max

AGG 1.314 0.906 0.586 4.135
DBC 1.285 1.070 0.778 3.870
GLD 1.671 1.269 0.982 5.201
IBB 0.905 0.823 0.694 2.120
ITA 0.618 0.557 0.492 1.428
PBJ 0.650 0.513 0.437 1.915
TLT 1.816 1.334 0.809 5.828
VNQ 1.328 0.786 0.666 4.409
VTI 0 0 0 0
XLB 0.771 0.641 0.507 1.703
XLE 1.019 0.857 0.686 2.401
XLF 1.190 0.617 0.389 4.401
XLI 0.500 0.440 0.370 1.045
XLK 0.515 0.465 0.387 1.057
XLP 0.759 0.576 0.455 2.425
XLU 0.882 0.749 0.639 2.186
XLV 0.701 0.509 0.428 2.108
XLY 0.535 0.442 0.355 1.154

Table 17.6 Forecasts of volatility, expressed in percent daily return. The first column
gives the common model; the second, third, and fourth columns give median, minimum,
and maximum volatility predictions over the 1000 market conditions for the Laplacian
regularized stratified model. Volatilities are of return relative to VTI, so VTI has zero
volatility.

17.6.2 Final stratified risk model
Table 17.5 shows the average negative log likelihood (scaled, with constant terms
ignored) over the training and held-out validation sets, for both the stratified risk
model and the common risk model, i.e., the empirical covariance. We can see that
the stratified risk model has substantially better loss on the training and validation
sets.

Table 17.6 summarizes some of the statistics of our stratified return model
asset volatilities, i.e., ((Σz)ii)1/2, expressed as daily percentages, over the 1000
market conditions, along with the common model asset volatilities. We can see
that the predictions vary considerably across the market conditions, with a few
varying by a factor almost up to ten. Table 17.7 summarizes the same statistics for
the correlation of each asset with AGG, an aggregate bond market ETF. Here we
see dramatic variation, for example, the correlation between XLI (an industrials
ETF) and AGG varies from -79% to +82% over the market conditions.
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Asset Common Median Min Max

AGG 1 1 1 1
DBC 0.492 0.416 -0.384 0.952
GLD 0.684 0.524 0.093 0.971
IBB 0.250 0.063 -0.585 0.917
ITA 0.024 -0.051 -0.807 0.875
PBJ 0.565 0.384 0.006 0.946
TLT 0.935 0.897 0.803 0.994
VNQ -0.345 0.021 -0.932 0.652
XLB -0.214 -0.232 -0.749 0.808
XLE -0.205 -0.185 -0.935 0.619
XLF -0.520 -0.289 -0.970 0.042
XLI -0.107 -0.108 -0.789 0.816
XLK 0.154 0.075 -0.705 0.846
XLP 0.714 0.579 0.344 0.973
XLU 0.555 0.458 0.142 0.939
XLV 0.607 0.429 -0.106 0.962
XLY -0.061 -0.026 -0.701 0.844

Table 17.7 Forecasts of correlations with the aggregate bond index AGG. The first
column gives the common model; the second, third, and fourth columns give median,
minimum, and maximum correlation predictions over the 1000 market conditions for the
Laplacian regularized stratified model.



328 Jonathan Tuck, Shane Barratt and Stephen Boyd

17.7 Trading policy and backtest
17.7.1 Trading policy

In this section we give the details of how we use our stratified return and risk
models to construct the trading policy T .

At the beginning of each day t, we use the previous day’s market conditions
zt to allocate our current portfolio according to the weights wt , computed as the
solution of the Markowitz-inspired problem (Boyd et al., 2017)

maximize µTztw − γscκ
T (w)− − γtcτ

T
t |w − wt−1 |

subject to wTΣztw ≤ σ
2, 1Tw = 1,

‖w‖1 ≤ Lmax, wmin ≤ w ≤ wmax,

(17.4)

with optimization variable w ∈ R18, where w− = max{0,−w} (elementwise), and
the absolute value is elementwise. We describe each term and constraint below.

• Return forecast. The first term in the objective, µTztw, is the expected return
under our forecast mean, which depends on the current market conditions.
• Shorting cost. The second term γscκ

T (w)− is a shorting cost, with κ ∈ R18
+ the

vector of shorting cost rates. (For simplicity we take the shorting cost rates as
constant.) The positive hyper-parameter γsc scales the shorting cost term, and
is used to control our shorting aversion.
• Transaction cost. The third term γtcτ

T
t |w−wt−1 | is a transaction cost, with τt ∈

R18
+ the vector of transaction cost rates used on day t. We take τt as one-half the

average bid-ask spread of each asset for the previous 15 trading days (excluding
the current day). We summarize the bid-ask spreads of each asset over the
training and holdout periods in table 17.8. The positive hyper-parameter γtc
scales the transaction cost term, and is used to control the turnover.
• Risk limit. The constraint wTΣzw ≤ σ

2 limits the (daily) risk (under our risk
model, which depends on market conditions) to σ, which corresponds to an
annualized risk of

√
250σ.

• Leverage limit. The constraint ‖w‖1 ≤ Lmax limits the portfolio leverage, or
equivalently, it limits the total short position 1T (w)− to no more than (Lmax −

1)/2.
• Position limits. The constraint wmin ≤ w ≤ wmax (interpeted elementwise)

limits the individual weights.

Parameters.
Some of the constants in the trading policy (17.4) we simply fix to reasonable
values. We fix the shorting cost rate vector to (0.0005)1, i.e., 5 basis points for
each asset. We take σ = 0.0045, which corresponds to an annualized volatility
(defined as

√
250σ) of around 7.1%. We take Lmax = 2, which means the total

short position cannot exceed one half of the portfolio value. (A portfolio with a
leverage of 2 is commonly referred to as a 150/50 portfolio.) We fix the position
limits as wmin = −0.251 and wmax = 0.41, meaning we cannot short any asset by
more than 0.25 times the portfolio value, and we cannot hold more than 0.4 times
the portfolio value of any asset.
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Asset Training/validation period Holdout period

AGG 0.000298 0.000051
DBC 0.000653 0.000324
GLD 0.000112 0.000048
IBB 0.000418 0.000181
ITA 0.000562 0.000175
PBJ 0.000966 0.000637
TLT 0.000157 0.000048
VNQ 0.000394 0.000066
VTI 0.000204 0.000048
XLB 0.000310 0.000098
XLE 0.000181 0.000077
XLF 0.000359 0.000200
XLI 0.000295 0.000079
XLK 0.000324 0.000093
XLP 0.000298 0.000095
XLU 0.000276 0.000099
XLV 0.000271 0.000070
XLY 0.000334 0.000059

Table 17.8 One-half the mean bid-ask spread of each asset, over the training and
validation periods and the holdout period.

Hyper-parameters.
Our trading policy has two hyper-parameters, γsc and γtc, which control our
aversion to shorting and trading, respectively.

17.7.2 Backtests
Backtests are carried out starting from a portfolio of all VTI and a starting
portfolio value of v = 1 dollars. On day t, after computing wt as the solution
to (17.4), we compute the value of our portfolio vt by

rt ,net = rTt wt − κ
T (wt)− − (τ

sim
t )

T |wt − wt−1 |, vt = vt−1(1 + rt ,net),

Here rt ∈ R18 is the vector of asset returns on day t, rTt wt is the gross return of the
portfolio for day t, τsim

t is one-half the realized bid-ask spread on day t, and rt ,net
is the net return of the portfolio for day t including shorting and transaction costs.
In particular, our backtests take shorting and transaction costs into account. Note
also that in the backtests, we use the actual realized bid-ask spread on that day
(which is not known at the beginning of the day) to determine the true transaction
cost, whereas in the policy, we use the trailing 15 day average (which is known
at the beginning of the day).

Our backtest is a bit simplified. Our simulation assumes dividend reinvestment.
We account for the shorting and transaction costs by adjusting the portfolio return,
which is equivalent to splitting these costs across the whole portfolio; a more
careful treatment might include a small cash account. For portfolios of very high
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Return Risk

Train 11.9% 6.25%
Validation 10.2% 6.88%

Table 17.9 Annualized return and risk for the stratified model policy over the train and
validation periods.

value, we would add an additional nonlinear transaction cost term, for example
proportional to the 3/2-power or the square of |wt − wt−1 | (Almgren and Chriss,
2000; Boyd et al., 2017).

17.7.3 Hyper-parameter selection
To choose values of the two hyper-parameters in the trading policy, we carry out
multiple backtest simulations over the training set. We evaluate these backtest
simulations by their realized return (net, including costs) over the validation set.

We perform a grid search, testing all 625 pairs of 25 values of each hyper-
parameter logarithmically spaced from 0.1 to 10. The annualized return on the
validation set, as a function of the hyper-parameters, are shown in Figure 17.2.
We choose the final values

γsc = 8.25, γtc = 1.47,

shown on Figure 17.2 as a star.
These values are themselves interesting. Roughly speaking, we should plan our

trades as if the shorting cost were more than 8.25 times the actual cost, and the
transaction cost is about 1.5 times the true transaction cost. The blue and purple
region at the bottom of the heat map indicates poor validation performance when
the transaction cost parameter is too low, i.e., the policy trades too much.

Table 17.9 gives the annualized return and risk for the policies over the train
and validation periods.

Common model trading policy.
We will compare our stratified model trading policy to a common model trading
policy, which uses the constant return and risk models, along with the same
Markowitz policy (17.4). In this case, none of the parameters in the optimization
problem change with market conditions, and the only parameter that changes in
different days is wt−1, the previous day’s asset weights, which enters into the
transaction cost.

We also perform a grid search for this trading policy, over the same 625 pairs
of the hyper-parameters. For the common model trading policy, we choose the
final values

γsc = 1, γtc = 0.38.
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Figure 17.2 Heatmap of the annualized return on the validation set as a function of the
two hyper-parameters γsc and γtc. The star shows the hyper-parameter combination used
in our trading policy.

17.7.4 Final trading policy results

We backtest our trading policy on the test dataset, which includes data from
2015–2019. We remind the reader that no data from this date range was used to
create, tune, or validate any of the models, or to choose any hyper-parameters.
For comparison, we also give results of a backtest using the constant return and
risk models.

Figure 17.3 plots the economic conditions over the test period (top) as well as
the active portfolio value (i.e., value above the benchmark VTI) for our stratified
model and common model. Buying and holding the benchmark VTI gives zero
active return, and a constant active portfolio value of 1. The superior performance
of the stratified model policy, e.g., higher Sharpe ratio, is evident in this plot.

Table 17.10 shows the annualized active return, annualized active risk, annual-
ized active Sharpe ratio (return divided by risk), and maximum drawdown of the
active portfolio value for the policies over the test period. We remind the reader
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Figure 17.3 Plot of economic conditions (top) and cumulative portfolio value for the
stratified model and the common model (bottom) over the test period. The horizontal
blue line is the cumulative portfolio value for buying and holding the benchmark VTI.

Return Risk Sharpe ratio Maximum drawdown

Stratified model policy 2.55% 8.42% 0.302 13.4%
Common model policy 0.003% 7.47% 0.038 16.3%

Table 17.10 Annualized active return, active risk, active Sharpe ratios, and maximum
drawdown of the active portfolio value for the three policies over the test period
(2015–2019).

that we are fully accounting for the shorting and transaction cost, so the turnover
of the policy is accounted for in these backtest metrics.

The results are impressive when viewed in the following light. First, we are
using a very small universe of only 18 ETFs. Second, our trading policy uses only
three widely available market conditions, and indeed, only their deciles. Third,
the policy was entirely developed using data prior to 2015, with no adjustments
made for the next five years. (In actual use, one would likely re-train the model
periodically, perhaps every quarter or year.)

Comparison of stratified and constant policies.
In Figure 17.4, we plot the asset weights of the stratified model policy (top) and
of the common model policy (bottom), over the test period. (The variations in
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Figure 17.4 Asset weights of the stratified model policy (top) and of the common model
policy (bottom), over the test period. The first time period asset weights, which are all
VTI, are not shown.

the common model policy holdings come from a combination of a daily rebal-
ancing of the assets and the transaction cost model.) The top plot shows that the
weights in the stratified policy change considerably with market conditions. The
common model policy is mainly concentrated in just seven assets, GLD (gold),
IBB (biotech), ITA (aerospace & defense), XLE (energy), XLV (health care),
and XLY (consumer discretionary) (which is effectively cash when considering
active returns and risks). Notably, both portfolios are long-only.

Factor analysis.
We fit a linear regression model of the active returns of the two policies over
the test set to four of the Fama–French factors (Fama and French, 1992, 1993;
French, 2021):

• MKTRF, the value-weighted return of United States equities, minus the risk
free rate,
• SMB, the return on a portfolio of small size stocks minus a portfolio of big size

stocks,
• HML, the return on a portfolio of value stocks minus a portfolio of growth

stocks, and
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Factor Stratified model policy Common model policy

MKTRF –0.001362 0.139547
SMB 0.279307 0.235330
HML –0.361305 –0.448571
UMD –0.174945 –0.108064
Alpha 0.000085 –0.000215

Table 17.11 The top four rows give the regression model coefficients of the active
portfolio returns on the Fama–French factors; the fifth row gives the intercept or alpha
value.

• UMD, the return on a portfolio of high momentum stocks minus a portfolio of
low or negative momentum stocks.

We also include an intercept term, commonly referred to as alpha. Table 17.11
gives the results of these fits. Relative to the common model policy, the stratified
model policy active returns are much less positively correlated to the market,
shorter the size factor, longer the value factor, and shorter the momentum factor.
Its active alpha is around 2.13% annualized. (The common model policy’s active
alpha is around –5.38% annualized.) While not very impressive on its own, this
alpha seems good considering it was accomplished with just 18 ETFs, and using
only three widely available quantities in the policy.

17.8 Extensions and variations
We have presented a simple (but realistic) example only to illustrate the ideas,
which can easily be applied in more complex settings, with a far larger universe,
a more complex trading policy, and using proprietary forecasts of returns and
quantities used to judge market conditions. We describe some extensions and
variations on our method below.

Multi-period optimization.
For simplicity we use a policy that is based on solving a single-period Markowitz
problem. The entire method immediately extends to policies based on multi-
period optimization. For example, wewould fit separate stratifiedmodels of return
and risk for the next 1-day, 5-day, 20-day, and 60-day periods (roughly daily,
weekly, monthly, quarterly), all based on the same current market conditions.
These data are fed into a multi-period optimizer as described in Boyd et al.
(2017).

Joint modeling of return and risk.
In this chapter we have created separate Laplacian regularized stratified models
for return and risk. The advantage of this approach is that we can judge each
model separately (and with different true objectives), and use different hyper-
parameter values. It is also possible to fit the return mean and covariance jointly,
in one stratified model, using the natural parameters in the exponential family for
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a Gaussian, Σ−1 and Σ−1µ. The resulting log-likelihood is jointly concave, and a
Laplacian regularized model can be directly fit.

Low-dimensional economic factors.
When just a handful (such as in our example, three) base quantities are used
to construct the stratified market conditions, we can bin and grid the values as
we do in this chapter. This simple stratification of market conditions preserves
interpretability. If we wish to include more raw data in our stratification of
market conditions, simple binning and enumeration is not practical. Instead we
can use several techniques to handle such situations. The simplest is to perform
dimensionality-reduction on the (higher-dimensional) economic conditions, such
as principal component analysis (Pearson, 1901) or low-rank forecasting (Barratt
et al., 2020), and appropriately bin these low-dimensional economic conditions.
These economic conditions may then be related on a graph with edge weights
decided by an appropriate method, such as nearest neighbor weights.

Structured covariance estimation.
It is quite common to model the covariance matrix of returns as having structure,
e.g., as the sum of a diagonal matrix plus a low-rank matrix (Richard et al., 2012;
Fan et al., 2016). This structure can be added by a combination of introducing
new variables to the model and encoding constraints in the local regularization. In
many cases, this structure constraint turns the stratified risk model fitting problem
into a non-convex problem, which may be solved approximately.

Multi-linear interpolation.
In the approach presented above, the economic conditions are categorical, i.e.,
take on one of K = 1000 possible values at each time t, based on the deciles of
three quantities. A simple extension is to use multi-linear interpolation (Weiser
and Zarantonello, 1988; Davies, 1997) to determine the return and risk to use
in the Markowitz optimizer. Thus we would use the actual quantile of the three
market quantiities, and not just their deciles. In the case of risk, wewould apply the
interpolation to the precision matrix Σ−1

t , the natural parameter in the exponential
family description of a Gaussian.

End-to-end hyper-parameter optimization.
In the example presented in this chapter there are a total of nine hyper-parameters
to select. We keep things simple by separately optimizing the hyper-parameters
for the stratified return model, the stratified risk model, and the trading policy.
This approach allows each step to be checked independently. It is also possible
to simultaneously optimize all of the hyper-parameters with respect to a sin-
gle backtest, using, for example, CVXPYlayers (Agrawal et al., 2019, 2020) to
differentiate through the trading policy.

Stratified ensembling.
The methods described in this chapter can be used to combine or emsemble a
collection of different return forecasts or signals, whone performance varies with
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market (or other) conditions. We start with a collection of return predictions, and
combine these (ensemble them) using weights that are a function of the market
conditions. We develop a stratified selection of the combining weights.

17.9 Conclusions
We argue that stratified models are interesting and useful in portfolio construction
and finance. They can contain a large number of parameters, but unlike, say,
neural networks, they are fully interpretable and auditable. They allow arbitrary
variation across market conditions, with Laplacian regularization there to help
us come up with reasonable models even for market conditions for which we
have no training data. The maximum principle mentioned on page 320 tells us
that a Laplacian regularized stratified model will never do anything crazy when
it encounters values of z that never appeared in the training data. Instead it will
use a weighted sum of other values for which we do have training data. These
weights are not just any weights, but ones carefully chosen by validation.

The small but realistic example we have presented is onlymeant to illustrate the
ideas. The very same ideas and method can be applied in far more complex and
sophisticated settings, with a larger universe of assets, a more complex trading
policy, and incorporating proprietary data and forecasts.
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