An Interior-Point Method for Large Scale Network
Utility Maximization

Argyrios Zymnis, Nikolaos Trichakis, Stephen Boyd, and Dan O’Neill
August 6, 2007

Abstract

We describe a specialized truncated-Newton primal-dual interior-point method that
solves large scale network utility maximization problems, with concave utility functions,
efficiently and reliably. Our method is not decentralized, but easily scales to problems
with 10° flows and links. We compare our method to a standard decentralized algo-
rithm based on dual decomposition, and show by example that our method converges
significantly faster for problems with congested networks or long routes. We describe
an extension to problems that take into account delay or latency in the objective.

1 Introduction

We consider a network that supports a set of flows, each of which has a nonnegative flow
rate, and an associated utility function. Each flow passes over a route, which is a subset of
the edges of the network. Each edge has a given capacity, which is the maximum total traffic
(the sum of the flow rates through it) it can support. The network utility maximization
(NUM) problem is to choose the flow rates to maximize the total utility, while respecting
the edge capacity constraints [Sri04, Ber98]. We consider the case where all utility functions
are concave, in which case the NUM problem is a convex optimization problem.

A standard technique for solving NUM problems is based on dual decomposition [DW60,
Sho85]. This approach yields fully decentralized algorithms, that can scale to very large
networks. Dual decomposition was first applied to the NUM problem in [KMT97], and has
led to an extensive body of research on distributed algorithms for network optimization
[LL99, CLCDO07, PC06] and new ways to interpret existing network protocols [Low03].

In this paper we describe a specialized primal-dual interior-point method [BV04, Wri97]
for the NUM problem. The method is not decentralized, since it requires a few inner products
at each step, but we show by example that it exhibits faster convergence than dual decompo-
sition, especially when the network is congested (i.e., has bottleneck links), or there are long
routes. The method scales to very large networks, and has modest memory requirements
(only a small multiple of the size of the problem data).

Another advantage over dual decomposition is that the method handles utility functions
that are not strictly concave. In particular, it can handle linear utility functions. These are
interesting because the optimal flow rates can be zero. In this case we can interpret NUM
as a method for carrying out admission control; zero flow rates correspond to flows that are
denied admission to the network.

In §2, we formally introduce the NUM problem, give its dual and the optimality con-
ditions, and describe the standard dual decompositin algorithm for NUM. We describe our
method in §3, and we give some numerical examples in §4. In §5 we describe an extension
of the basic NUM problem to take latency into account, and show how it can be handled by
our method.

2 Problem Formulation

There are n flows in a network, each of which is associated with a fixed route, .e., some
subset of m links. Each flow has a nonnegative rate, which we denote fi,..., f,,. With the
flow j we associate a utility function U; : R — R, which is concave and twice differentiable,
with dom U; C R.. The utility derived by a flow rate f; is given by U;(f;). The total utility
associated with all the flows is then U(f) = Ui(f1) + -+ - + Un(fn)-

The total traffic on a link in the network is the sum of the rates of all flows that utilize

that link. We can express the link traffic compactly using the routing or link-route matrix
R € R™", defined as

R 1 flow j’s route passes over link ¢
Y1 0 otherwise.

Each link in the network has a (positive) capacity ci, ..., ¢,. The traffic on a link cannot
exceed its capacity, i.e., we have Rf < ¢, where < is used for componentwise inequality.

The NUM problem is to choose the rates to maximize total utility, subject to the link
capacity and the nonnegativity constraints:

maximize U(f) (1)
subject to Rf <e¢, f>0,

with variable f € R". This is a convex optimization problem and can be solved by a variety

of methods. We say that f is primal feasible if it satisfies Rf < ¢, f > 0.

2.1 Dual problem
The dual of problem (1) is

minimize ATc+ 37 (=U;)* (=7)

subject to A > 0, (2)

where A € R is the dual variable associated with the capacity constraint of problem (1),
r; is the jth column of R and (—U;)* is the conjugate of the negative jth utility function
[BV04, §3.3],

(=U;)"(a) = sup(az + Uj(x)).

x>0

We say that A is dual feasible if it satisfies A > 0 and A € N}_; dom(-U;)*.

Let us work out the dual more explicitly for a NUM problem with mixed logarithmic
and linear utility functions: U;(f;) = log f; for j = 1,...,k, and U;(f;) = w;f; for j =
k+1,...,n, where w; > 0. The (primal) NUM problem is

maximize Z?ZI log f; + Z?:kH w; f;
subject to Rf <¢, f>0.

For U;(f;) = log f;, we have (=U,)*(a) = —log(—a) — 1. For U;(f) = w, f;, we have

(=U;)*(a) = { 0 —a>w,

oo otherwise.

The dual NUM problem is then

minimize Ac— ¥4 <log(rjr)\) + 1)
subject to rJA>w;, j=k+1,...,n
A > 0.

(Here we have included the dual objective terms associated with the linear utilities as explicit
inequality constraints.)

The solution f* of the primal NUM problem can be recovered from the solution A* of the
dual NUM problem provided all the functions U; are strictly concave. In this case we have

*) - T\ *
fi= ar§121(1)ax (Uj(q:) z(rj A)) :
For more on this see [BV04, §5.5.5]. For the particular case U;(f;) = log f;, we have f; =
1/(rfx").
2.2 Dual decomposition

Dual decomposition [DW60, Sho85, KMT97, LL99] is a projected (sub)gradient algorithm
for solving problem (2), in the case when all utility functions are strictly concave. We start
with any positive A\, and repeatedly carry out the update

f; = argmax (Uj(:z:) — x(ro/\)) ., j=1...,n,
x>0
A= A—alc—Rf)),,

where o > 0 is the step size, and x, denotes the entrywise nonnegative part of the vector x.
It can be shown that for small enough «, f and A will converge to f* and *, respectively,

3

provided all U; are differentiable and strictly concave. The term s = ¢ — Rf appearing in
the update is the slack in the link capacity constraints (and can have negative entries during
the algorithm execution). It can be shown that the slack is exactly the gradient of the dual
objective function.

Dual decomposition is a distributed algorithm. Each flow is updated based on information
obtained from the links it passes over, and each link dual variable is updated based only on
the flows that pass over it.

Note that dual decomposition, at least in its simple form described above, cannot deal
with utility functions that are not strictly concave. In particular, this algorithm would not
be able to solve a NUM problem with mixed logarithmic and linear utility functions.

2.3 Optimality conditions

Let 1 € R} be the dual variable associated with the nonegativity constraint of problem (1).
The optimality conditions [BV04, §5.5] of this problem can then be formulated as

—VU(f*) + BTN — =
diag(*)s*
diag(p*)f* =

f*a 5*7)‘*7 :U* >

o O O O

where s* = ¢ — Rf* is the optimal link capacity slack. The second and third equations are
the complementary slackness conditions.

2.4 Duality gap

Given a primal feasible f and a dual feasible A we define the duality gap n as the difference
between the respective primal and dual objectives, i.e.,

0= et S0, (TN — U(f).

J=1

The duality gap, which is always nonnegative, is a bound on suboptimality for a primal-dual
pair (f, A). It is therefore often used as a (nonheuristic) stopping criterion for optimization
algorithms [BV04, NW99.

Given a primal feasible f and any A, u > 0 we also define the surrogate duality gap 7 as
f=s"A+fTu

It can be shown that if A and p are dual feasible then 1 = 7.

In cases where U is strictly concave, A > 0 is the only requirement for dual feasibility.
In cases where U is not strictly concave (such as in the mixed linear and logarithmic utility
example considered above) dual feasibility is a more complicated condition. In these cases
it is more convenient to use 7) rather than n as a stopping criterion.

4

3 Primal-Dual Interior-Point Method

The primal-dual interior-point method is based on using a Newton step, applied to a suitably
modified form of the optimality conditions. The modification is parametrized by a parameter
t, which is adjusted during the algorithm based on progress, as measured by the actual
duality gap (if it is available) or a surrogate duality gap (when the actual duality gap is not
available).

We first describe the search direction. We modify the complementary slackness condi-
tions, to obtain the modified optimality conditions

~VU(f)+R"A—pu = 0
diag(\)s = (1/t)1
diag()f = (1/0)1,

where ¢ > 0 is a parameter that sets the accuracy of the approximation. (As ¢t — oo, we
recover the optimality conditions for the NUM problem.) Here we implicitly assume that
f,s, A\, > 0. The modified optimality conditions can be compactly written as r,(f, A, i) = 0,
where

—VU(f)+ R" X\ — p
r(fhm) = | diag(V)s — (1/6)1
diag(p) f — (1/t)1
The primal-dual search direction is the Newton step for solving the nonlinear equa-
tions r(f,\,u) = 0. If y = (f, \,) denotes the current point, the Newton step Ay =
(Af, AN, Ap) is characterized by the linear equations

r(y + Ay) = r(y) + Dr(y)Ay = 0,

which, written out in more detail, are

“N2U(f) RT I Af
—diag(A\)R diag(s) 0 AN | = —r(f,\p). (3)
diag(y) 0 diag(f) | [An

During the algorithm, the parameter t is increased, as the primal and dual variables
approach optimality. When we have easy access to a dual feasible point during the algorithm,
we can make use of the exact duality gap n to set the value of ¢; in other cases, we can use
the surrogate duality gap 7).

The primal-dual interior point algorithm [BV04, §11.7], [Wri97] for solving problem (1)
proceeds as follows.

given tolerance ¢ > 0, parameters « € (0,1/2), 5 € (0,1), k > 1
initialize: y with Rf < c¢; y >0
while 7/n > €

t:=rm/n

compute Ay from (3)
find the smallest integer k for which

y+B"Ay >0, R(f + B*Af) <,

ety + 8892 < (@)l + 08" iy +1Ap)le|
update:

y =y + Ay

Typical parameter values are a = 0.01, 3 = 0.5, and s between 2 and 10.
To find the primal-dual search direction, i.e., solve equation (3), we eliminate A\ and
Ap, and solve the reduced (symmetric, positive definite) system of equations

(=V2U(f) + D1 + RTD;R)Af = VU(f) + (1/t)vy — (1/t)R vy, (4)
where

Dy = diag(u1/ fi, -5 tn/ fn); D, = diag(A1/s1,.. ., Am/5m)
Ulz(l/fl,...,l/fn), ng(l/sl,...,l/sm).

We then compute AX and Ap by back substitution, using the formulas

Apu = —p—DiAf+ (1/t)vy,

The most expensive part of computing the primal-dual search direction is solving equation
(4). For problems of modest size, i.e., with m and n no more than 10%, it can be solved using
direct methods such as a sparse Cholesky decomposition. The cost depends on the problem
size, the sparsity pattern of RTDyR, and the details of the method (e.g., the elimination
ordering scheme used). (The sparsity pattern of RD,RT is directly related to the routes:
(RTDyR);; # 0 if and only if route i and j share a common link.) When a direct method is
used to compute the primal-dual search direction, the algorithm typically converges to very
high accuracy in a few tens of iterations. (In extensive numerical tests, we found no case in
which more than 25 iterations was required to achieve high accuracy.)

For larger problem instances we can solve (4) approzimately, using a preconditioned
conjugate gradient (PCG) algorithm [Dem97, §6.6], [Kel95, chap. 2|, [NW99, chap. 5].
When an iterative method is used to approximately solve a Newton system, the algorithm
is referred to as an inezact, iterative, or approrimate Newton method (see [Kel95, chap.
6] and its references). When an iterative method is used inside a primal-dual interior-point
method, the overall algorithm is called a truncated-Newton primal-dual interior-point method.
For details of the PCG algorithm, we refer the reader to the references cited above. Each
iteration requires mutliplication of the matrix by a vector, and a few vector inner products.

For a truncated-Newton interior-point method to work well, we need a good precondi-
tioner and a termination rule that yields search directions accurate enough to make good
progress, using as few PCG steps as needed. In our method, we use a simple diagonal
preconditioner. We terminate the PCG iterations after a limit Npcog is reached, or if a

6

specified relative tolerance epcq is reached. We adapt the tolerance according to the rule
epce = min{0.1,7/n}, so the PCG iterations terminate with relatively low tolerance early
in the algorithm, and with higher accuracy as the algorithm proceeds. This termination rule
is similar to the one used in [KKB07]. As initial point for the PCG iterations, we use the
previous search direction.

In the truncated-Newton interior-point method, we never need to form the coefficient
matrix —V2U(f) + Dy + RT Dy R; we only need to evaluate (—=V2U(f) + Dy + RT DyR)z for
some vector z at each PCG step. This can be done by multiplying z by the diagonal matrix
—V2U(f) + Dy, and by sequentially multiplying z by R, then Dy, and then RT, and finally,
adding the results. These operations are, in fact, decentralized. At each step of the PCG
algorithm, however, two inner products have to be computed; these computations make the
whole algorithm not decentralized.

The effort required in each PCG iteration of the truncated-Newton interior-point method
is comparable (and quite similar to) the effort required in an iteration of the dual decomposi-
tion algorithm, which also requires matrix-vector multiplications by R and R” in each step.
The cost of the truncated-Newton interior-point method is best judged by the total number
of PCG steps taken (and, in particular, not by the number of interior-point iterations).

4 Numerical Examples

We first demonstrate the performance of the primal-dual interior-point method on a small
network example. In this case we use a direct method to compute the Newton step at each
iteration.

To demonstrate the performance of the truncated-Newton primal-dual interior-point
method, we study three additional examples. In the first two, all utility functions are loga-
rithmic, so we can compare our method to dual decomposition. Our last example includes a
mixture of flows with logarithmic and linear utilities. In this case dual decomposition cannot
be used, since the utility function is not strictly concave.

We chose the step size in dual decomposition manually, to approximately maximize the
convergence speed for each example. With suboptimal values of the step size more likely to
be used in practice, the convergence of dual decomposition could be much slower.

4.1 Small network example

In our first example we look at the performance of our method on a small network. In this
case we use a direct method (sparse Cholesky) to compute the Newton step at each iteration.
The utility functions are all logarithmic, i.e., U;(f;) = log f;. There are n = 10° flows, and
m = 2-10% links. The elements of R are chosen randomly and independently, so that the
average route length is 10 links. The link capacities ¢; are chosen independently from a
uniform distribution on [0.1, 1].

For this particular example, there are about 10* nonzero elements in R (0.5% density)
and about 7 - 10? nonzero elements in D; + RTDyR (3.5% density). The Cholesky factor

10

10" ¢ E

10 'k E

10 °F E

10 ¢ E

Duality gap per flow

10 E

10 'k E

-8 L L L L

0 5 10 15 20 25

10

Primal-dual iteration

Figure 1: Convergence of primal-dual interior-point method for a small network
example.

of Dy + RTDyR has about 4 - 10° nonzero elements, using an aproximate minimum degree
ordering. This represents 80% density, i.e., the Cholesky factor is essentially dense. In this
case, the only advantage to using sparse matrices, as opposed to dense matrices, is in forming
the matrix D; + RTD,R.

Figure 1 shows the convergence of the primal-dual interior-point method. We observed
the same rapid convergence in many other examples, with different values of m and n,
different sparsity patterns in the route matrix R, and different link capacities and utility
functions.

4.2 Simple example

Our second example is too large to be solved using the primal-dual interior-point method
with direct search direction computation, but is readily handled by our truncated-Newton
primal-dual algorithm, and dual decomposition. The utility functions are all logarithmic:
U;(f;) = log f;. There are n = 10° flows, and m = 2-10° links. The elements of R and c¢ are
chosen as for the example in §4.1. For dual decomposition, we initialized all \; as 1. For the
interior-point method, we initialized all A; and p; as 1. We initialize all f; as 7, where we
choose v so that Rf < 0.9¢.

Figure 2 shows the duality gap per flow as a function of iteration, for the two algorithms.
(For the truncated-Newton method, iterations are PCG iterations.) Both perform well, with
the truncated-Newton interior-point method achieving higher accuracy more quickly than

10"

Duality gap per flow

4 L L L L L L L

0 100 200 300 400 500 600 700 800

10

Iteration

Figure 2: Convergence of truncated-Newton (solid) and dual decomposition
(dashed) methods for a simple network.

dual decomposition. This behavior is typical for networks without large variations in the
utility functions, with a modest number of flows passing through each link, and with no
particular long flows. (These correspond to sparse rows and columns in R, respectively.)

4.3 Congested network

In this example the network is similar to the previous example, except that we increase the
congestion of the last 200 links (i.e., 0.01% of them), so that each such link is utilized on
average by 3 -10* flows. We also increase the typical number of links used by the last 100
flows from 10 to 1000. To compensate for the increased link congestion, we multiply the
capacity of the bottleneck links by a constant factor, which depends on the number of flows
utilizing such a link. This gives rise to some relatively dense rows and columns in R, when
compared to the previous example. The utilities are all logarithmic.

Figure 3 shows the duality gap per flow as a function of iteration for such a congested
network. As can be seen from this figure, the primal-dual algorithm is relatively unaffected
by the increased congestion. In contrast, dual decomposition is progressing very slowly.

The difference in convergence is not unexpected, since dual decomposition is a first-order
method, using a gradient search direction, while the interior-point method at least attempts
(through the approximate solution of a Newton system) to use second-order information.

10°

10"+ 4

Duality gap per flow

L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Tteration

Figure 3: Convergence of truncated-Newton (solid) and dual decomposition
(dashed) methods for a congested network.

4.4 Mixed linear and logarithmic utilities

In our last example, the flows have a mixture of linear and logarithmic utility functions.
40% of the flows have utility U;(f;) = w;f;, with w; chosen i.i.d. uniformly distributed on
[10, 30], and the remaining 60% of the flows have utility U,(f;) = log f;. The routes and link
capacities are generated exactly as in the example described in §4.2. Dual decomposition
cannot be applied to this example, since the utility function is not strictly concave.

Figure 4 shows the convergence of the algorithm for this example. As we can see, this
problem is a bit harder to solve than the previous two problems.

Figure 5 shows the distribution of the flow rates of the (approximate) solution. It is
interesting to note that about half the flows with linear utility have been extinguished (up
to numerical accuracy). This suggests that network utility maximization with linear utility
functions could be used as an admission control algorithm.

10

10

-1

10 "¢

Duality gap per flow

107

10’ L L L L L
0 500 1000 1500 2000 2500 3000

Iteration

Figure 4: Convergence of truncated-Newton method for a network with linear and

logarithmic utilities.

2000

1800

1600

1400

1200- .

1000

800

Number of flows

1
400} ' .

1 A RN ’
a4

S -
!

0 1
10° 10° 10" 10°

Flow rate

10°

Figure 5: Histogram of flow rates with logarithmic (solid) and linear (dashed)

utilities.

11

5 Delay-Utility Trade-off

5.1 Problem formulation

In this section we describe how to extend our method to handle network latency. We associate
with link ¢ the function 7T; : R — R that gives the expected link delay as a function of the
link capacity slack s;. We assume that T; is convex, nonincreasing and twice differentiable.
We let T'(s) = (T1(s1), - - - s Tin(sm)) denote the vector of link delays. The latency of flow j is
the sum of the link delays on its route, and is given by [; = r;fFT(s). The vector of latencies
is given by RTT(s).

We modify the basic NUM problem to include a cost for flow latency as follows:

maximize V(f) =3;U;(f;) — pjroT(s) (5)
subject to Rf <e¢, f >0,

where p; > 0 is a parameter used to trade off utility versus latency for flow j. This is a
convex optimization problem.

Our method can be applied directly to this problem, by substituting V for U. The
gradient and Hessian of V' are

VV(f) = VU(f)+ R" diag(b)T"(s),
V2V (f) = V2U(f) — R” diag(b;T}'(s:))R,

where b = Rp. Therefore the system of equations that we need to solve at each primal-dual
iteration for problem (5) has the same form as (4); we only have an additional term of the
form RTDR (where D is a diagonal positive matrix).

5.2 Numerical results

We illustrate our method by generating the optimal trade-off curve between utility and delay,
for the problem instance in our first example, described in §4.2. We use the link delay model
T:(s;) = ¢;/s;, which is a common choice for the link delay function in the communications
literature [Kle64, BG92, XJB04]. We set all p; equal to the (scalar) py, which we vary to
obtain the trade-off curve.

To generate the curve, we solve the problem (5) for 40 values of pg, logarithmically
spaced between 107* and 102. We compute the first point, corresponding to py = 1074,
using our method, which requires about 400 (PCG) iterations. Thereafter, we use a warm-
start technique, by initializing the algorithm with the solution for the previous value of py.
As a result, the number of iterations required to converge drops considerably, and is typically
on the order of 10 for each new value of py. The entire trade-off curve is computed with a
total of around 1100 iterations, less than times the effort required to solve the problem (5)
from a ‘cold start’ (i.e., with the simple generic initialization described above) for a single
value of pg. Figure 6 shows the optimal trade-off curve of average flow delay versus average
flow utility.

12

160 *

140 b

120 *

100 b

80 b

60 b

Average flow latency

40f]

20 b

Average utility

Figure 6: Optimal trade-off curve of average delay versus average utility.

6 Conclusions

We have described a primal-dual interior-point algorithm for solving network utility maxi-
mization problems. The algorithm can scale to large networks, with a million or more flows
and links, and is very fast for smaller networks (say, with a few thousand flows). The algo-
rithm has performance comparable to dual decomposition for networks without bottlenecks,
long flows, or large variation in utility functions, and outperforms it in other cases. Another
advantage is that it can handle utility functions that are not strictly concave, such as linear
utility.

Our method works well in warm-start mode, which can be used to rapidly compute an
entire trade-off curve between competing objectives, or to rapidly recompute the optimal
flows when there is a modest change in the utilities, capacities, or other problem data.

The main disadvantage of our method is that it is not fully distributed, like dual decom-
position, since each iteration requires the computation of a few inner products between flow
specific data. In principle, inner products can be computed in a distributed way using a
distributed averaging algorithm [BT89, MR06, BGPS06]. But we suspect that the resulting
algorithm would be very slow.

Our method could be used to determine actual flow rates in networks (or subnetworks)
in which all problem data is known centrally, or can be collected centrally, at modest cost.

13

Acknowledgments

This material is based on work supported by JPL award 1291856, NSF award 0529426,
DARPA award N66001-06-C-2021, NASA award NNX07AEITA, and AFOSR award FA9550-

06-1-0312.

References

[Ber9g|

[BG92
[BGPS06]

[BTS9]

[BVO04]

[CLCDO7]

[Dem97]

[DW60]

[Kel95)

[KKBO7]

[Kle64]

[KMT97]

[LL99)]

D. Bertsekas. Network Optimization: Continuous and Discrete Models. Athena
Scientific, 1998.

D. Bertsekas and R. G. Gallager. Data Networks. Prentice-Hall, 1992.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms.
IEEFE Transactions on Information Theory, 52(6):2508-2530, June 2006.

D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation. Prentice-
Hall, Englewood Cliffs, New Jersey, 1989.

S. Boyd and L. Vandenberghe. Conver Optimization. Cambridge University
Press, 2004.

M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimiza-
tion decomposition: A mathematical theory of network architectures. Proceedings
of the IEEE, 95(1):255-312, January 2007.

J. Demmel. Applied Numerical Linear Algebra. STAM, 1997.

G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Oper-
ations Research, 8:101-111, 1960.

C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.

K. Koh, S. J. Kim, and S. Boyd. An interior point method for large-scale ¢-
regularized logistic regression. Journal of Machine Learning Research, 8:1519—
1555, July 2007.

L. Kleinrock. Communication Nets: Stochastic Message Flow and Delay.
McGraw-Hill, 1964.

F. Kelly, A. Maulloo, and D. Tan. Rate control for communication networks:
Shadow prices, proportional fairness and stability. Journal of the Operational
Research Society, 49:237-252, 1997.

S. H. Low and D. E. Lapsley. Optimization flow control I: Basic algorithms and
convergence. [EEE/ACM Transactions on Networking, 7(6):861-874, December
1999.

14

[Low03]

[MROG6]

INW99)

[PCO6]

[Sho85]

[Sri04]
[Wri97]

[XJB04]

S. H. Low. A duality model of TCP and queue management algorithms.
IEEE/ACM Transactions on Networking, 11(4):525-536, August 2003.

C. Moallemi and B. Van Roy. Consensus propagation. IEEE Transactions on
Information Theory, 52(11):4753-4766, December 2006.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

D. Palomar and M. Chiang. A tutorial on decomposition methods and distributed
network resource allocation. IEEE Journal of Selected Areas in Communication,
24(8):1439-1451, August 2006.

N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-
Verlag, 1985.

R. Srikant. The Mathematics of Internet Congestion Control. Birkhauser, 2004.

S. J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and
Applied Mathematics, 1997.

L. Xiao, M. Johansson, and S. Boyd. Simultaneous routing and resource allocation
via dual decomposition. IEEFE Transactions on Communications, 52:1136-1144,
2004.

15

