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Abstract
We consider the performance of a least-squares regression model, as judged by out-of-sample R2. Shapley values give a
fair attribution of the performance of a model to its input features, taking into account interdependencies between features.
Evaluating the Shapley values exactly requires solving a number of regression problems that is exponential in the number
of features, so a Monte Carlo-type approximation is typically used. We focus on the special case of least-squares regression
models, where several tricks can be used to compute and evaluate regression models efficiently. These tricks give a substantial
speed up, allowing many more Monte Carlo samples to be evaluated, achieving better accuracy. We refer to our method as
least-squares Shapley performance attribution (LS-SPA), and describe our open-source implementation.

Keywords Feature importance · Least squares · Monte Carlo

1 Introduction

Weconsider classic least-squares regression, with p features,
judged by an out-of-sample R2 metric. A natural question is
howmuch each of the p features contributes to our R2 metric;
roughly speaking, how valuable is each feature to our least-
squares predictor? Except for a special case described below
in Sect. 2.4, this question seems difficult to answer, since the
value of a feature depends on the other features.

Our interest is in attributing the overall performance of a
least-squares model to the features. A related task is attribut-
ing a specific prediction of a least-squares model to the
features, which is a popular method for so-called explainable
AI called SHAP, an acronym for Shapley additive explana-
tions (Lundberg and Lee 2017; Molnar 2022; Chen et al.
2023). That is a very different task, discussed in more detail
below. In this paper, we consider only performance attribu-
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tion, and not explaining a specific prediction from a model.
We refer to this task as Shapley performance attribution to
features.

This performance attribution problem was essentially
solved in Lloyd Shapley’s 1953 paper “A Value for n-Person
Games” (Shapley 1952). He proposed a method to allocate
the payoff in a cooperative game to the players, which came
to be known as Shapley values. Shapley values provide a
fair distribution of the total payoff in a game, taking into
account the contributions of each player to the coalition.
Shapley values are provably the only attribution for which
fairness,monotonicity, and full attribution (three key desider-
ata for attribution) all hold. We refer the reader to other
papers formore discussion and justification of Shapley values
for attributing regression model performance to its features
(Huettner and Sunder 2012; Zhang et al. 2023; Fryer et al.
2021; Owen and Prieur 2017).

We focus on efficiently computing (an approximation of)
the Shapley values for least-squares regression problems, i.e.,
to attribute the overall R2 to the p features.We seek a number
S j associated with feature j , where we interpret S j as the
portion of the achieved R2 metric that is attributed to feature
j . Full attribution means

∑p
j=1 S j = R2.

Shapley values rely on solving and evaluating around 2p

least-squares problems. This is impractical for p larger than
around 10, so Monte Carlo approximation is typically used
to compute an approximation to the Shapley values. We pro-
pose a simple but effective quasi-Monte Carlo method that
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in practice gives better approximations of the Shapley val-
ues than Monte Carlo for the same number of least-square
regression problems.

We do not introduce any new mathematical or com-
putational methods. Instead, we collect well-known ideas
and assemble them into an efficient method for computing
the Shapley values for a least-squares regression problem,
exploiting special properties of least-squares problems.

1.1 Prior work

1.1.1 Cooperative game theory

Shapley values originated in cooperative game theory as a
means of fairly splitting a coalition’s reward between the
individual players (Shapley 1952). The notion of a fair split
is defined by four axioms, which Shapley proved resulted
in a unique method for attribution. Since Shapley’s seminal
paper, numerous extensions, variations, and generalizations
have been developed; see, for instance, Monderer and Samet
(2002), Dubey et al. (1981), Owen (1977), Algaba et al.
(2019), Chalkiadakis et al. (2012), Kóczy (2007).

Computing the Shapley values in general has a cost
that increases exponentially in the number of players.
Nonetheless, many games have structure that enables effi-
cient exact computation of the Shapley values. Examples
includeweightedhypergraphgameswithfixed coalition sizes
(Deng and Papadimitriou 1994), determining airport landing
costs (Littlechild and Owen 1973), weighted voting games
restricted by trees (Fernández et al. 2002), cost allocation
problems framed as extended tree games (Granot et al. 2002),
sequencing games (Curiel et al. 1989), games represented as
marginal contribution networks (Ieong and Shoham 2005),
and determining certain notions of graph centrality (Micha-
lak et al. 2013). On the other hand, computing Shapley
values inweightedmajority games is #P-complete (Deng and
Papadimitriou 1994), as are elementary games, i.e., games
whose value function is an indicator on a coalition (Faigle
and Kern 1992).

1.1.2 Approximating Shapley values

Due to the computational complexity of computing exact
Shapley values in general, various methods have been pro-
posed for efficiently approximating Shapley values. Shapley
initially described a Monte Carlo method for approximating
Shapley values by sampling coalitions in 1960 (Mann and
Shapley 1960). Subsequent works have considered sampling
permutations using simple Monte Carlo methods (Zlotkin
and Rosenschein 1994; Castro et al. 2009; Moehle et al.
2022), stratified and quasi-Monte Carlo methods (Campen
et al. 2017; Castro et al. 2017; Maleki et al. 2014; Mitchell

et al. 2022), and ergodic samplingmethods (Illés andKerényi
2022).

Beyond Monte Carlo approaches, other works have
explored numerical integration schemes for approximating
the Shapley values. The paper (Owen 1972) describes a mul-
tilinear extension of the characteristic function of an n-person
game that allows for the computation of the Shapley values
as a contour integral. This method has been further explored
in Leech (2003) and Fatima et al. (2008).

1.1.3 Applications of Shapley values

Although they arose in the context of game theory, Shapley
values have been applied across a variety of fields. In finance,
Shapley values have been applied to attribute the perfor-
mance of a portfolio to constituent assets (Moehle et al. 2022)
and to allocate insurance risk (Powers 2007). Elsewhere,
Shapley values have been used to identify key individuals in
social networks (Michalak et al. 2013;Campen et al. 2017), to
identify which components of a user interface draw the most
user engagement (Zhao et al. 2018), to distribute rewards in
multi-agent reinforcement learning (Wang et al. 2020), and
to attribute the performance of a machine-learning model to
the individual training data points (Ghorbani and Zou 2019).
We refer to Moretti and Patrone (2008) and Algaba et al.
(2019) for a deeper review of applications of Shapley values.

1.1.4 Explainable ML

Shapley attribution has recently found extensive use in
machine learning in the context of model interpretability,
in Shapley additive explanation (SHAP) (Lundberg and Lee
2017). SHAP uses approximate Shapley values to attribute
a single prediction of a machine-learning model across the
input features. Although SHAP and Shapley performance
attribution both involve predictionmodels and both use Shap-
ley values, they otherwise have little relation. We refer to
Molnar (2022) and Chen et al. (2023) for a more thorough
review of SHAP.

1.1.5 Shapley values for statistics

In statistical learning, researchers often seek to assign a
relative importance score to the features of a model. One
approach is Shapley attribution. This method has been inde-
pendently rediscovered numerous times and called numerous
names (Lindeman et al. 1980; Lipovetsky and Conklin 2001;
Kruskal 1987; Mishra 2016; Grömping 2006, 2015). All of
these works utilize Shapley attribution to decompose the R2

of a regression model, though often without reference to
Shapley. The paper (Budescu 1993) decomposes the R2 using
a method similar to Shapley attribution but with different
weights, and Chevan and Sutherland (1991) decomposes any
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goodness-of-fit metric of a regression model using a method
shown in Stufken (1992) to be equivalent to Shapley attribu-
tion.

While not directly related to the computation of Shapley
values, the application of Shapley values to feature impor-
tance is a primarymotivation behind their calculation inmany
contexts (Moehle et al. 2022; Michalak et al. 2013; Campen
et al. 2017). In statistics, the use of Shapley values for deter-
mining feature importance has been significantly explored
(Kumar et al. 2020; Harris et al. 2022; Williamson and Feng
2020; Fryer et al. 2021; Owen and Prieur 2017), and papers
(Huettner and Sunder 2012; Zhang et al. 2023; Fryer et al.
2021; Owen and Prieur 2017) further argue why Shapley
attribution is a particularly appropriate method for evaluat-
ing feature importance.

1.2 This paper

We introduce an efficient method for approximating Shapley
attribution of performance in least-squares regression prob-
lems, called least-squares Shapley performance attribution
(LS-SPA). LS-SPA uses several computational tricks that
exploit special properties of least-squares problems. The first
is a reduction of the original train and test data to a com-
pressed form in which the train and test data matrices are
square. The second is to solve a set of p least-squares prob-
lems, obtained as we add features one by one, with one
QR factorization, in a time comparable to solving one least-
squares problem. Finally, we propose using a quasi-Monte
Carlo method, a variation of Monte Carlo sampling, to effi-
ciently approximate the Shapley values. (This trick does not
depend on any special properties of least-squares problems.)

1.2.1 Outline

In Sect. 2 we present a mathematical overview of least-
squares and Shapley values, setting our notation.We describe
ourmethod for efficiently estimatingShapleyvalues for least-
squares problems in Sect. 3. In Sect. 4, we describe some
extensions and variations on our algorithm, and we conclude
with numerical experiments in Sect. 5.

2 Least-squares Shapley performance values

In this section, we review the least-squares regression prob-
lem, set our notation, and define the Shapley values for the
features.

2.1 Least-squares

We consider the least-squares regression problem

minimize ‖Xθ − y‖22, (1)

with variable θ ∈ Rp, the model parameter. Here X ∈ RN×p

is a given data or feature matrix and y ∈ RN is a given
vector of responses or labels. The rows of X , denoted xTi
with xi ∈ Rp, correspond to N samples or observations, and
each column of X corresponds to a feature. We will assume
that X has rank p, which implies N ≥ p, i.e., X is square or
tall. We denote the solution of the least-squares problem (1)
as

θ� = X†y = (XT X)−1XT y.

The data X and y are the training data since they are used to
find the model parameter θ�.

The least-squares problem (1) yields a linear model ŷ =
xT θ with θ = θ�. We can include a constant offset or inter-
cept in the model, ŷ = xT θ + β, several ways. One method
is to include a feature that has the constant value one, so the
formulation above (1) is unchanged. In this case, however,
our attribution gives an attribution to the offset, which might
not be wanted. Another method is to solve (1) with centered
data, i.e., data with the average of each feature, and the labels,
subtracted, so they all have zero mean. To see this, note that
the optimization problem

minimize ‖Xθ + β1 − y‖22

with variables θ ∈ Rp and β ∈ R has optimal variables

θ� = (X − 1x̄)†(y − 1ȳ), β� = 1

N
1T (y − Xθ�).

Here, x̄ = 1
N 1

T X is the sample mean of the feature vectors
and ȳ = 1

N 1
T y is the sample mean of the labels. Hence, to fit

amodel with an intercept, we can solve (1) with centered data
to obtain θ�, and from this recover β�. In this formulation,
we do not attribute performance to the offset constant. In the
sequel we do not include the intercept, noting that an offset
can be included by centering the data.

2.1.1 Out-of-sample R2 metric

We evaluate the performance of a model parameter θ via out-
of-sample validation. We have a second (test) data set of M
observations X tst ∈ RM×p and ytst ∈ RM and evaluate the
model on these data to obtain ŷtst = X tstθ . The prediction
errors on the test set are given by ŷtst − ytst . To evaluate the
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least-squares model with parameter θ , we use the R2 metric

R2 = ‖ytst‖22 − ‖ŷtst − ytst‖22
‖ytst‖22

, (2)

which is the fractional reduction in mean square test error
compared to the baseline prediction ŷ = 0. Larger values of
R2 are better. It is at most one and can be negative.

In this paper, we focus exclusively on the out-of-sample
R2 metric to evaluate a least-squares model. However, the
algorithm we develop and present in Sect. 3 can be used to
attribute any in-sample or out-of-sample performance metric
across the features of a least-squares model.

2.2 Feature subsets and chains

2.2.1 Feature subsets

In later sections, we will be interested in the R2 metric
obtained with the least-squares model using only a subset
S ⊆ {1, . . . , p} of the features, i.e., using a parameter vector
θ that satisfies θ j = 0 for j /∈ S. The associated least-squares
problem is

minimize ‖Xθ − y‖22
subject to θ j = 0, j /∈ S.

(3)

We denote the associated parameter as θ�
S . From this we can

find the R2 metric, denoted R2
S , using (2). We use R2 to

denote the metric obtained using all features, i.e., R2{1,...,p}.

2.2.2 Feature chains

A feature chain is an increasing sequence of p subsets of
features obtained by adding one feature at a time,

∅ ⊂ S1 ⊂ · · · ⊂ Sp = {1, . . . , p},

where |Sk | = k. We denote πk as the index of the feature
added to form Sk . Evidently π = (π1, . . . , πp) is a permu-
tation of (1, . . . , p). With this notation we have

Sk = (π1, . . . , πk), k = 1, . . . , p.

Roughly speaking,π gives the order inwhichwe add features
in the feature chain. We will set S0 = ∅.

2.2.3 Lifts associated with a feature chain

Consider feature j . It is the lth feature to be added in the
feature chain given by π , where l = π−1( j). We define the
lift associated with feature j in chain π as

L(π) j = R2
Sl

− R2
Sl−1

.

Roughly speaking, L(π) j is the increase in R2 obtainedwhen
we add feature j to the ones before it in the ordering π , i.e.,
features π1, . . . , πl−1. The lift L(π) j can be negative, which
means that adding feature j to the ones that come before it
reduces the R2 metric.

We refer to the vector L(π) ∈ Rp as the lift vector asso-
ciated with the feature chain given by π . We observe that

p∑

j=1

L(π) j =
p∑

j=1

(
R2
Sl

− R2
Sl−1

)
= R2,

the R2 metric obtained using all features. The vector L(π)

gives an attribution of the values of each feature to the final
R2 obtained, assuming the features are added in the order π .
In general, it depends on π .

2.3 Shapley attributions

The vector of Shapley attributions for the features, denoted
S ∈ Rp, is given by

S = 1

p!
∑

π∈P
L(π), (4)

whereP is the set of all p! permutations of {1, . . . , p}. We
interpret S j as the average lift, or increase in R2, obtained
when adding feature j over all feature chains. The average is
over all feature chains, i.e., orderings of the features. In Sect.
2.5, we present a simple example of a Shapley attribution for
a least-squares model with a small number of features.

For p more than 10 or so, it is impractical to evaluate the
lift vector for all p! permutations. Instead, we estimate it as

Ŝ = 1

K

∑

π∈�

L(π), (5)

where � ⊂ P is a subset of permutations with |�| = K �
p!. This is a Monte Carlo approximation of (4) when � is a
subset of permutations chosen uniformly at random from S
with replacement. (We will describe a better choice in Sect.
3.5.)

2.4 Uncorrelated features

Wemention here one case in which the Shapley performance
attribution for least-squares regression is easily found:When
the empirical covariance of the features on both the train and
test sets are diagonal, i.e.,

(1/N )XT X = �, (1/M)(X tst)T X tst = �̃,
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Table 1 R2 for each subset S of
the features

S R2

{1, 2, 3} 0.92

{1, 2} 0.92

{1, 3} 0.82

{2, 3} 0.69

{1} 0.81

{2} 0.69

{3} −0.43

∅ 0.00

with � and �̃ diagonal. In this case, we have θ�
j =

�−1
j j (XT y) j , for any subset S that contains j . The test error

is also additive, i.e., the sum of contributions from each fea-
ture. It follows that the lift vectors do not depend on π , so
S = L(π) for any π .

When these assumptions almost hold, i.e., the features are
not too correlated on the train and test sets, the method we
propose exhibits very fast convergence.

2.5 Toy example

To illustrate the ideas above we present a simple example.
We use a synthetic dataset with p = 3 features, N = 50
training examples, and M = 50 test examples. We generate
feature matrices X and X tst by taking, respectively, N and M
independent samples from a multivariate normal distribution
with mean zero and covariance

� =
⎡

⎣
1.0 0.7 −0.4
0.7 1.0 −0.5

−0.4 −0.5 1.0

⎤

⎦ .

Using true weights θ = (2.1, 1.4, 0.1), we take y = Xθ +
ω and ytst = X tstθ + ωtst where the entries of ω ∈ RN

and ωtst ∈ RM are independently sampled from a standard
normal distribution.

Table 1 shows the out-of-sample R2 for each of the 8
subsets of features. Table 2 shows the lift associated with
each of 6 feature orderings. We display the same data as a
lattice in Fig. 1. In this figure vertices are labeledwith subsets
of the features and subscripted with the associated R2. The
edges, oriented to point to the subset to which one feature
was added, are labeled with the lift for adding that feature to
the subset. Every path from ∅ to {1, 2, 3} corresponds to an
ordering of the features, with the lifts along the path giving
the associated lift vector.

The R2 using all features is 0.92, and the Shapley values
are

S = (0.59, 0.47,−0.14).

Table 2 Lift vector L generated by each permutation π of the features

π L(π)

(1, 2, 3) (0.81, 0.11, 0.00)

(1, 3, 2) (0.81, 0.10, 0.01)

(2, 1, 3) (0.23, 0.69, 0.00)

(2, 3, 1) (0.23, 0.69, 0.00)

(3, 1, 2) (1.25, 0.10, −0.43)

(3, 2, 1) (0.23, 1.12, −0.43)

Fig. 1 Shapley attribution on the toy data represented as a lattice

Roughly speaking, most of our performance comes from fea-
ture 1, followed closely by feature 2,with feature 3 negatively
affecting performance. (Since R2 is evaluated out of sample,
it can be negative.) Indeed, we can see that the performance
using only features 1 and 2 is the same, to two decimal places,
as the performance using all three.

3 Efficient computation

In this section we explain LS-SPA, our method for efficiently
computing Ŝ, an approximation of S. Themethod can be bro-
ken into two parts. The first is amethod to efficiently compute
L(π), the lift associated with a specific feature ordering π .
The second is a method for choosing the set of permutations
� that gives a better approximation than basic Monte Carlo
sampling.
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3.1 The naïvemethod

The naïve method for computing Ŝ is to solve a chain of p
least-squares problems K times, and evaluate them on a test
set. Solving a least-squares problem with k (nonzero) coeffi-
cients has a cost O(Nk2) flops. (It can be done, for example,
via the QR factorization.) Evaluating its performance costs
O(Mk). Assuming M is no more than Nk in order, this sec-
ond term is negligible. Summing O(Nk2) from k = 1 to p
gives O(Np3). This is done for K permutations so the naïve
method requires

O(K Np3) (6)

flops. This naïve method can be parallelized: All of the least-
squares problems can be solved in parallel.

Wewill describe amethod to carry out this computation far
more efficiently. The computation tricks we describe below
are all individually well known; we are merely assembling
them into an efficient method.

3.2 Initial reduction of training and test data sets

We can carry out an initial reduction of the original train and
test data matrices, so each has p rows instead of N and M
respectively. Let X = QR denote the QR factorization of X ,
with Q ∈ RN×p and R ∈ Rp×p. Simple algebra shows that

‖Xθ − y‖22 = ‖Rθ − QT y‖22 + ‖y − Q(QT y)‖22. (7)

The righthand side consists of a least-squares objective with
square data matrix R and righthand side ỹ = QT y, plus a
constant. The cost to compute R and ỹ = QT y is O(Np2).
We do this once and then solve the least-squares problem (3)
using the objective ‖Rθ − ỹ‖22. The cost for this is O(pk2),
where k = |S|.

Computing the least-squares solutions for a chain now
costs O(p4), whereas in the naïve method, the cost was
O(Np3) per chain. The cost of computing least-squares solu-
tions for K chains is then

O(Np2 + Kp4),

compared to O(K Np3) for the naïve method. When N or K
is large (which is typical), the cost savings are substantial.

The same trick can be used to efficiently evaluate the R2

metrics. We carry out one QR factorization of the test matrix
at a cost of O(Mp2), after which we can evaluate the metric
with O(pk) flops, where k = |S|. To evaluate the metrics
for a chain is then O(p2) flops, compared to O(Mp) for the
naïve method. To compute Ŝ for K chains has cost

O(Mp2 + Kp2),

which is negligible compared to the cost of solving the least-
squares problems.

Using this initial reduction trick, we obtain a complexity
of O(Np2 + Kp4), compared to O(K Np3) for the naïve
method. This simple trick has been known since at least the
1960s (Businger and Golub 1965; Golub 1965). A similar
reduction trick uses a Cholesky factorization, rather than a
QR factorization, which is useful when the data set is too
large to fit in memory; see Sect. 4.3 for more details.

3.3 Efficiently computing lift vectors

In this section, we show how the cost of computing lift vec-
tors and evaluating them for one chain can be reduced from
O(p4) to O(p3), using a well-known property of the QR
factorization.

Given a feature chain S0 ⊂ S1 ⊂ · · · ⊂ Sp associated
with a permutation π , solving (3) for Si is equivalent to solv-
ing

minimize ‖RPT
π θ̃ − ỹ‖22

subject to θ̃ j = 0, j > i,
(8)

with variable θ̃ ∈ Rp. Here R and ỹ = QT y are the reduced
data obtained fromSect. 3.2 and Pπ is the permutationmatrix
associatedwithπ . The kth columnof RPT

π is theπk th column
of R. The optimal parameter θ� of (3) is related to the optimal
parameter θ̃ � of (8) via θ� = PT

π θ̃�.
We can combine the problems (8) for i = 1, . . . , p into

one problem by collecting the parameter vectors θ̃ into one
p × p upper triangular matrix 
̃. We then solve

minimize ‖RPT
π 
̃ − Ỹ‖2F

subject to 
̃ upper triangular,

with variable 
̃ ∈ Rp×p. Here ‖ · ‖2F is the Frobenius norm
squared, i.e., the sum of the entries. The matrix Ỹ is given
by Ỹ = ỹ1T , where 1 is the vector with all entries one,
i.e., Ỹ is the matrix with all columns ỹ. (The p different
least-squares problems are uncoupled, but it is convenient to
represent them as one matrix least-squares problem (Boyd
and Vandenberghe 2018).)

Let Q̃ R̃ = RPT
π denote the QR decomposition of RPT

π .
Substituting Q̃ R̃ for RPT

π above, and multiplying the argu-
ment of the Frobenius norm the orthogonal matrix Q̃T , the
problem above can be written as

minimize ‖R̃
̃ − Q̃T Ỹ‖2F
subject to 
̃ upper triangular,

with variable 
̃ ∈ Rp×p. The solution has the simple form


̃� = R̃−1triu(Q̃T Ỹ ). (9)
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where triu(·) gives the upper triangular part of its argument,
i.e., sets the strictly lower triangular entries to zero. Note that
the righthand side is upper triangular since upper triangular-
ity is preserved under inversion and matrix multiplication.
This result is equivalent to application of the Frish–Waugh–
Lovell theorem from econometrics (Frisch andWaugh 1933;
Lovell 1963) and is alsowell-known in statistics (Hastie et al.
2009). The optimal parameters for S0,S1, . . . ,Sp are thus
the columns of 
� = PT

π 
̃�

3.3.1 Complexity

Computing the QR factorization of RPT
π costs O(p3). We

can form Q̃T Ỹ = Q̃T ỹ1 in O(p2), which is negligible. We
can compute
� using (9) in O(p3) flops. In other words:We
can find the parameter vectors for a whole chain in O(p3),
the same cost as solving a single least-squares problem with
p variables and p equations. We evidently save a factor of
p, compared to the naïve method of solving p least-squares
problems, which has cost O(p4).

It is easily verified that the cost of evaluating the p least-
squares parameters on the test data is also O(p3), so the cost
of evaluating the lifts for the chain is O(p3).

3.4 Summary

Altogether, the complexity of LS-SPA is

O(Np2 + Kp3), (10)

which can be compared to the complexity of the naïve
method, O(K Np3) (6). The speedup over the naïve method
is at least the minimum of N and Kp, neither of which is typ-
ically small. We note that LS-SPA can also be parallelized,
by computing the lifts for each π ∈ � in parallel.

3.5 Quasi-Monte Carlo approximation

Here we explain an improvement over the simple Monte
Carlo method in (5). (This improvement has nothing to do
with the problems being least-squares and is applicable in
other cases.) We will use quasi-Monte Carlo (QMC) sam-
pling instead of randomly sampling permutations to obtain
�. One proposed method (which we call permutohedron
QMC) is given in Mitchell et al. (2022). It maps a Sobol’
sequence in [0, 1]p−2 onto the permutohedron for p-element
permutations by mapping to the (p−1)-sphere, then embed-
ding the (p − 1)-sphere into Rp via an area-preserving
transform and rounding points to the nearest permutohedron
vertex.

Wepropose anothermethod (whichwecallargsortQMC),
which is to take a Sobol’ sequence on [0, 1]p ⊂ Rp, and
choose thepermutations as the argsort (permutation that gives

the sorted ordering) of each point in the sequence. We have
found empirically that this method does as well as permu-
tohedron sampling for this problem, and is computationally
simpler.

We note that other quasi-Monte Carlo sequences, such as
Halton sequences, may be used in place of Sobol’ sequences.
It is common to randomize quasi-Monte Carlo sequences as
doing so can improve convergence rates, and some theoretical
work exists to justify error estimation in this setting (Owen
1998, 2023). In our empirical studies, we have found scram-
bled Sobol’ sequences to work well.

3.6 Risk estimation

A natural question is how large the number of sampled per-
mutations K needs to be to obtain an accurate estimate of
the Shapley values. In this section we provide a method to
estimate the error in the Shapley attribution approximations
provided by LS-SPA. The error estimates provide the user
with an idea of the precision to which the attributions are
accurate and can be used in a stopping criterion.

3.6.1 Error

We define the error in the estimate of the j th Shapley value
to be

|Ŝ j − S j |, (11)

where S ∈ Rp is the vector of true Shapley values and Ŝ ∈
Rp is the vector of approximate Shapley values as described
in Sect. 2.3. We also define the overall error in the Shapley
estimate to be

‖Ŝ − S‖2. (12)

Other error metrics can be used, but (12) is a simple and
default metric.

3.6.2 Risk estimation

Since the exact value of S is not known, (11) and (12) cannot
be computed exactly. But, we can efficiently estimate the
errors using the central limit theorem.

If a permutation π is sampled from the uniform distribu-
tion onP , then the expected value of L(π) is S. Let� denote
the covariance of L(π). The central limit theorem guaran-
tees that

√
K (Ŝ − S) converges in distribution to N (0, �)

as K → ∞. We can thus estimate the qth quantile values of
(11) and (12) over the distribution of Ŝ for K samples via
Monte Carlo. We take �̂ to be the unbiased sample covari-
ance of {L(π)}π∈�, and sample D vectors �(1), . . . , �(D)
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fromN (0, 1
K �̂). We then report the estimated error for fea-

ture j as

ρ̂ j = quantile({|�(i)
j |}Di=1; q)

and the estimated overall error as

σ̂ = quantile({‖�(i)‖2}Di=1; q),

wherequantile(·; q) denotes the qth quantile. A higher value
of q provides a more conservative error estimate.

3.6.3 Batching

To use the risk estimate in a stopping criterion, we can com-
pute Ŝ in batches. After each batch, we recompute σ̂ and
terminate early if it is below a fixed tolerance ε > 0. More
precisely, we set a batch size B, a maximum number of
batches K/B, and a risk tolerance ε > 0.

For any subset� of permutations, define the sample mean

Ŝ(�) = 1

|�|
∑

π∈�

L(π) (13)

and the biased sample covariance

�̂b(�) = 1

|�|
∑

π∈�

(L(π) − Ŝ(�))(L(π) − Ŝ(�))T . (14)

Instead of computing �, Ŝ, and the risk estimate all at once,
we compute them iteratively via batches �(1), . . . ,�(K/B),
each of size B. Initialize the estimated Shapley values Ŝ(0) =
0 and the estimated biased sample covariance �̂

(0)
b = 0. In

iteration j , we can compute Ŝ( j) using the update rule

Ŝ( j) = j − 1

j
Ŝ( j−1) + 1

j
Ŝ(�( j)), (15)

which holds since �(1), . . . ,�(K/B) are equally sized. We
can also compute �̂

( j)
b using the update rule provided in

Schubert and Gertz (2018),

�̂
( j)
b = j − 1

j
�̂

( j−1)
b + 1

j
�̂b(�

( j))

+ j − 1

j2
D( j)D( j)T , (16)

where D( j) = Ŝ( j−1) − Ŝ(�( j)). The unbiased sample
covariance �̂( j) is j B

j B−1 �̂
( j)
b , which we can use to gener-

ate our risk estimates.
Note that batching in this manner can result in terminat-

ing early when Ŝ is computed on a number of permutations
that is not a power of 2. When using Sobol’ sequences, this

can destroy the balance properties expected of QMC, but in
practice, we have found this does not matter.

The central limit theorem is based on random samples,
which is not the case for QMC methods. As a result, risk
estimates when Ŝ is computed via a QMC method to sample
permutations do not comewith the theoretical guarantees that
random samples have. We have observed empirically that
estimates using QMC are still good estimates of the actual
errors.

3.7 Sample augmentation

Monte Carlo and QMC sampling techniques can be aug-
mented to potentially further reduce estimate variance. A
simple way to do this is via antithetical sampling, in which
for each permutation π sampled, the permutation γπ is
also included, where γ is the permutation that reverses the
sequence 1, . . . , p. The permutation γπ corresponds to the
feature chain

∅ ⊂ {πk} ⊂ {πk, πk−1} ⊂ · · · ⊂ {πk, πk−1, . . . , π1}.

Note that if antithetical sampling is used, the sample mean
(13) should be adjusted as

Ŝ(�) = 1

|�|
∑

π∈�

L̃(π),

and the sample covariance (14) should be adjusted to

�̂b(�) = 1

|�|
∑

π∈�

(L̃(π) − Ŝ(�))(L̃(π) − Ŝ(�)),

where L̃(π) = (L(π)+L(γ π))/2. Empirically, we find that
for well-conditioned data, antithetical sampling works very
well when combined with Monte Carlo or QMC sampling
and often convergesmore than twice as quickly. However, for
data with poorly conditioned empirical covariance matrices,
antithetical sampling gains little additional performance.

A more sophisticated technique is the ergodic sampling
technique described in Illés and Kerényi (2022), which
increases the number of permutations by shuffling each
sampled permutation in a way that greedily minimizes the
covariances of the lift vectors. However, this technique
applied here introduces an O(p5) cost, so is not suitable
for large p.

3.8 Algorithm summary

The LS-SPA algorithm is summarized in algorithm 1. We
note that in line 2, the Cholesky reduction described in Sect.
4.3 may be used instead of the QR reduction described in
Sect. 3.2.
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Result: Return Ŝ, {ρ̂i }pi=1, and σ̂

1 Given: Training data X ∈ RN×p , training labels y ∈ RN , test
data X tst ∈ RM×p , test labels ytst ∈ RM , maximum number of
sampled permutations K ∈ Z++, batch size B ∈ Z++, risk
tolerance ε ∈ R++, error quantile q ∈ (0, 1);

2 Reduce X , y, X tst, ytst as described in Sect. 3.2;
3 Generate K permutations π(1), . . . , π(K ) as described in Sect.
2.3 or §3.5;

4 for j = 1, . . . , K/B do
5 for k = ( j − 1)B + 1, . . . , j B do
6 Compute lifts L(π(k)) as described in Sect. 3.2, and if

antithetical sampling is used, also compute L(γ π(k));
7 end
8 Compute approximate attributions Ŝ( j) and estimated overall

errors σ̂ as described in Sect. 3.6;
9 if error estimate below tolerance, σ̂ < ε then

10 Compute estimated feature errors {ρ̂i }pi=1 as described in
Sect. 3.6;

11 return Ŝ = Ŝ( j), {ρ̂i }pi=1, σ̂
12 end
13 end
14 Print tolerance not reached warning;

15 Compute Ŝ( j) and σ̂ as described in Sect. 3.6;
16 Compute {ρ̂i }pi=1 as described in Sect. 3.6;

17 return Ŝ = Ŝ(K/B), {ρ̂i }pi=1, σ̂ ;
Algorithm 1: Least- squares Shapley attribution
(LS- SPA)

3.9 Implementation

We have developed two Python implementations of algo-
rithm 1. The computational results we present in Sect. 5 are
derived from a JAX-based (Bradbury et al. 2023) implemen-
tation of algorithm 1 and some of the extensions discussed in
Sect. 4. The JAX implementation, along with our numerical
experiments, is available at

https://github.com/cvxgrp/ls-spa-benchmark.

We also provide a more user-friendly, NumPy-based (Harris
et al. 2020) library implementing algorithm 1 at

https://github.com/cvxgrp/ls-spa.

JAX allows LS-SPA to utilize GPU(s), while the NumPy
implementation of LS-SPA runs on CPUs only. In addition,
the JAX implementation employs some additional paral-
lelization to execute LS-SPA more efficiently, although as
a consequence, the JAX implementation is harder to read
and harder to use. In addition, JAX is harder to install and
configure, especially in order to use GPU(s). For this reason,
we provide the NumPy implementation, which lacks some
of the features (notably QMC) and performance of the JAX
implementation, but is in turn much easier to install, read,
and use.

4 Extensions and variations

In this section, we describe some extensions to the basic
problem and method described above.

4.1 Cross validationmetric

In the discussion abovewe used simple out-of-sample valida-
tion, but we can also use other more sophisticated validation
methods, such as M-fold cross validation (Efron and Tibshi-
rani 1993, Ch. 17). Here the original data are split into M
different ‘folds’. For m = 1, . . . , M we fit a model using
as training data all folds except m and validate it on fold m.
We use the average validation mean-square error to obtain
the R2 score. The methods above apply immediately to this
situation.

4.2 Ridge regularization

In ridge regression, we choose the parameter θ by solving
the �2-regularized least-squares problem

minimize
1

N
‖Xθ − y‖22 + λ‖θ‖22, (17)

where θ ∈ Rp is the optimization variable, X ∈ RN×p and
y ∈ RN are data, and λ is a positive regularization hyperpa-
rameter. Observe that (17) can be reformulated as

minimize ‖X̃θ − ỹ‖22, (18)

where X̃ and ỹ are the stacked data

X̃ =
[
X/

√
N√

λI

]

, ỹ =
[
y/

√
N

0

]

.

This reformulation transforms the regularized problem (17)
into a least-squares problem in the form of (1). As such, we
can now perform LS-SPA on the regularized problem.

To choose the value of the hyper-parameter λ, we con-
sider a set of candidate values λ1, . . . , λL . We solve the
regularized least-squares regression problem for each one
and evaluate the resulting parameter λ using out-of-sample
or cross-validation. We then choose λ as the one among our
choices that achieves the lower mean-square test error. We
use this value to compute the R2 metric.

4.3 Very large data

If X is too large to fit into memory such that performing the
initial QR factorization cannot be done, one alternative is to
compute the Cholesky factorization of the covariance matrix
of [X y], i.e., the matrix
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�̂ =
[
XT

yT

]
[
X y

] =
[
XT X XT y
yT X yT y

]

.

The covariance matrix �̂ is p × p and can be com-
puted via block matrix multiplication by blocking [X y]
vertically, making it possible to distribute the computation
across multiple devices or compute iteratively on one device.
The upper-triangular factor R̃ in the Cholesky factorization
R̃T R̃ = �̂ can then be blocked as

R̃ =
[
R QT y
0 ‖y − Q(QT y)‖2

]

where QR = X is the QR factorization of X . We can thus
extract R, QT y, and ‖y−Q(QT y)‖2 from R̃ to compute the
reduction (7) for use in LS-SPA. This alternative approach
costsO(Np2)flops for the computationof �̂ andO(p3)flops
for the computation of R̃, giving a total cost of O(Np2), the
same as the QR method. However, Cholesky factorization is
less stable than QR and can fail for poorly conditioned �̂.

4.4 Non-quadratic regularizers

We consider the case where the quadratic loss is paired with a
non-quadratic but convex regularizer. This means we choose
the model parameter θ by solving

minimize ‖Xθ − y‖22 + λr(θ), (19)

with variable θ ∈ Rp, data X ∈ RN×p and y ∈ RN , and con-
vex but non-quadratic regularizer r : Rp → R ∪ {∞}. Here
λ is the regularization hyper-parameter. Simple examples
include the nonnegative indicator function, so the prob-
lem above is a non-negative least-squares problem. Another
example is r(θ) = ‖θ‖1, which gives the lasso problem
(Hastie et al. 2009).

While our formula for θ given in Sect. 3.2 no longer holds,
we can still reduce the complexity of the computation with
the initial reduction. Thus when we find θ we solve a smaller
convex optimization problem with a square data matrix.

5 Numerical experiments

5.1 Experiment descriptions

We describe two numerical experiments, one medium size
and one large, that demonstrate the relationship between the
runtime of the LS-SPA and the accuracy of the approximated
Shapley attribution. The code for the experiments can be
found in

https://github.com/cvxgrp/ls-spa-benchmark.

5.1.1 Medium size experiment

The medium-size experiment uses a single randomly gener-
ated data set with p = 100 features and N = M = 105

data points for the train and test data sets. Details of data
generation are given in Sect. 5.2. The medium-size experi-
ment is meant to show how the overall error in the estimate
of the Shapley attributions evolves with an increasing num-
ber of sampled feature chains. We run LS-SPA once with of
each of three methods to sample feature chains (MC, per-
mutohedron QMC, and argsort QMC) in the medium size
experiment, with and without antithetical sampling, for a
total of K = 213 sampled permutations. For the QMCmeth-
ods, we use scrambled Sobol’ sequences with SciPy’s default
scrambling strategy, which is a (left) linear matrix scram-
ble followed by a digital random shift (Virtanen et al. 2020;
Matoušek 1998).We track the estimated overall error and the
true overall error as more permutations are sampled during
the runtime of LS-SPA. We compare the true overall errors
achieved by each samplingmethod, andwe compare the error
estimate to the true error for MC and argsort QMC. For the
purpose of computing the true overall error, we compute the
“ground-truth” Shapley attributions by running LS-SPAwith
Monte Carlo and antithetical sampling for 228 total permu-
tations. The quantile we use for risk estimation is q = 0.95.

5.1.2 Large experiment

The large experiment uses a single randomly generated data
set with p = 1000 features and N = M = 106 data points
for the train and test data sets. Details of data generation
are given in Sect. 5.2. The large experiment is a timing test
meant to demonstrate that LS-SPA scales to large problems.
The large experiment uses a single run of LS-SPAwithMonte
Carlo and antithetical sampling only and is run until the error
estimate falls below a tolerance ε = 10−3. The quantile we
use for risk estimation is q = 0.95.

5.1.3 Computation platforms

The medium-size experiment, except for computation of the
ground-truth Shapley attributions, was done on a 16-thread
Intel Core i7-10875H CPU at 2.30 GHz with 64 GB RAM.
The large experiment and computation of ground truth for
the medium experiment were done with two Intel Xeon E5-
2640 v4 CPUs, each with 20 threads, and four NVIDIAGTX
TITAN X GPUs, each of which has 12 GB RAM. Note that
for the large experiment and computation of ground truth for
the medium experiment, all numerical computations were
done on GPU.
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5.2 Data generation

For both experiments,we solved instances of (1) on randomly
generated train and test data, (X trn, ytrn) and (X tst, ytst),
respectively. To generate the data, we first randomly gen-
erate a feature covariance matrix � = FFT + I , where
F ∈ Rp×(p/20) is generated by sampling its entries inde-
pendently from a N (0, 1) distribution. We then let C be the
correlation matrix of �.

Next, the true vector of feature coefficients θ was gener-
ated by randomly selecting (p + 1)/10� entries to be 2 and
the remaining entries to be 0.

Finally, we generate X trn ∈ RN×p and X tst ∈ RM×p,
consisting, respectively, of N and M observations generated
independently at random from a N (0,C) distribution. We
then generate noise vectors ωtrn, ωtst ∈ Rp independently
from a N (0, (3p2/2)I ) distribution and construct ytrn =
X trnθ + ωtrn and ytst = X tstθ + ωtst . Finally, we include
an intercept in our linear model by centering the columns of
X trn and X tst by subtracting the respective column means of
X trn, and also centering ytrn and ytst by subtracting the mean
of ytrn, as discussed in Sect. 2.1. The features generated had
high correlation, whichwe found empiricallywas adversarial
for LS-SPA.

5.3 Results

5.3.1 Medium size experiment

We used each of MC, permutohedron QMC, and argsort
QMC, with and without antithetical sampling, to sample
K = 213 total feature chains, done in 25 batches of size 28 to
illustrate the progress of LS-SPA as more permutations are
sampled. LS-SPA took an average of 9min 12s to compute
213 lift vectors, which is 67.4 milliseconds per lift vector.
In comparison, a naïve implementation that does not take
advantage of any reductions described in LS-SPA took 4min
26s to compute 23 lift vectors, which is 33.3 s per lift vector.
The errors for each method sampling method as a function of
the number of feature chains completed are shown in Figs. 2
and 3. Note that the condition number of C was 316.0.

In Fig. 4,we also plot the true overall error against the error
estimate, which was computed using the risk estimation pro-
cedure described in Sect. 3.6, at each step of the algorithm
using Monte Carlo with antithetical sampling to sample fea-
ture chains. We plot the same things in Fig. 5 using argsort
QMCwithout antithetical sampling to sample feature chains.

5.3.2 Large experiment

We use Monte Carlo with antithetical sampling to sample
feature chains and run LS-SPA until the estimated error σ̂ is
below the tolerance level ε = 10−3. We use a quantile value

22 25 28 211

Total Number of Samples
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E
rr
or
,

S
−

Ŝ
2

Monte Carlo (MC)
Permutohedron QMC
Argsort QMC

Fig. 2 Overall error versus number of samples on the medium-size
dataset using MC (blue), permutohedron QMC (orange), and argsort
QMC (green) without antithetical sampling to sample feature chains.
(Color figure online)
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Fig. 3 Overall error versus number of samples on the medium-size
dataset using MC (blue), permutohedron QMC (orange), and argsort
QMC(green)with antithetical sampling to sample feature chains. (Color
figure online)
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Fig. 4 True error (blue) and estimated error (orange) while running
LS-SPA usingMonte Carlo with antithetical sampling to sample feature
chains. (Color figure online)
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Fig. 5 True error (blue) and estimated error (orange) while running
LS-SPA using argsort QMC without antithetical sampling to sample
feature chains. (Color figure online)

of q = 0.95. Since the data were too large to fit on one GPU,
we use the Cholesky reduction presented in Sect. 4.3.

The algorithm took 27.2 s to complete the initial reduction.
LS-SPA ran for 230.4 s to reach an error estimate of 9.9 ×
10−4, computing a total of 29,696 lift vectors, done in 29
batches of 28 permutations on each of the four GPUs. This
gives an average of 7.8× 10−3 s per lift vector. Note that the
correlation matrix C used to generate the data has condition
number 2.4 × 103.

5.4 Discussion

For moderately sized p, e.g., on the order of 100, the NumPy
implementation of LS-SPA linked in Sect. 3.9 fairly quickly
converges to an estimate of the Shapley attributionswith error
10−3. This is true even when using Monte Carlo sampling,
which tends to underperformcompared to quasi-MonteCarlo
sampling techniques. For p of this size, LS-SPA achieves a
500× speedup compared to a naïve estimation procedure.

For larger p on the order of 1000 or more, the NumPy
implementation can still be used, but a more specialized
implementation should be used for maximum performance.
An example JAX implementation is available in the bench-
mark repo linked in Sect. 5.1.
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