
ORIGINAL ARTICLE

Least Squares Auto-Tuning

Shane T. Barratt and Stephen P. Boyd

Electrical Engineering Department, Stanford University, Stanford, CA, 94306.

ARTICLE HISTORY

Compiled March 6, 2020

ABSTRACT
Least squares auto-tuning automatically finds hyper-parameters in least squares problems that
minimize another (true) objective. The least squares tuning optimization problem is nonconvex,
so it cannot be efficiently solved. This article presents a powerful proximal gradient method for
least squares auto-tuning, which can be used to find good, if not the best, hyper-parameters for
least squares problems. The application of least squares auto-tuning to data fitting is discussed.
Numerical experiments on a classification problem using the MNIST dataset demonstrate the
effectiveness of the method; it is able to cut the test error of standard least squares in half.
This article is accompanied by an open source implementation.

KEYWORDS
Least squares; hyper-parameter optimization; proximal gradient method

1. Introduction

Since its introduction over 200 years ago by Legendre (1805) and Gauss (1809), the method
of least squares has been one of the most widely employed computational techniques in many
fields, including machine learning and statistics, signal processing, control, robotics, and finance
(Boyd and Vandenberghe 2018). Its wide application primarily comes from the fact that it has
a simple closed-form solution, it is easy to understand, and very efficient and stable algorithms
for computing its solution have been developed (Lawson and Hanson 1995; Golub and Van Loan
2012).

In essentially all applications, the least squares objective is not the true objective; rather it
is a surrogate for the real goal. For example, in least squares data fitting, the objective is not
to solve a least squares problem involving the training data set, but rather to find a model or
predictor that generalizes, i.e., achieves small error on new unseen data. In control, the least
squares objective is only a surrogate for keeping the state near some target or desired value,
while keeping the control or actuator input small.

To account for the discrepancy between the least squares objective and the true objective,
it is common practice to modify (or tune) the least squares problem that is solved to obtain
a good solution in terms of the true objective. Typical tricks here include modifying the data,
adding additional (regularization) terms to the cost function, and varying hyper-parameters or
weights in the least squares problem to be solved.

The art of using least squares in applications is generally in how to carry out these modifi-
cations or choose these additional terms, and how to choose the hyper-parameters. The choice
of hyper-parameters is often done in an ad hoc way, by varying them, solving the least squares
problem, and then evaluating the result using the true objective or objectives. In data fitting,

CONTACT S. T. Barratt. Email: sbarratt@stanford.edu

for example, regularization scaled by a hyper-parameter is added to the least squares problem,
which is solved for many values of the hyper-parameter to obtain a family of data models; among
these, the one that gives the best predictions on a test set of data is the one that is ultimately
used. This general design approach, of modifying the least squares problem to be solved, varying
some hyper-parameters, and evaluating the result using the true objective, is referred to as least
squares tuning. It is very widely used, and can be extremely effective in practice.

The focus in this article is on automating the process of least squares tuning, for a variety
of data fitting applications. The least squares problem to be solved is parametrized by hyper-
parameters, and then these hyper-parameters are automatically adjusted using a gradient-based
optimization algorithm, to obtain the best (or at least better) true performance. This lets one
automatically search the hyper-parameter design space, which can lead to better designs than
could be found manually, or help find good values of the hyper-parameters more quickly than
if the adjustments were done manually. This method is referred to as least squares auto-tuning.

One of the main contributions of this article is the observation that least squares auto-tuning
is very effective for a wide variety of data fitting problems that are usually handled using
more complex and advanced methods, such as non-quadratic loss functions or regularizers in
regression, or special loss functions for classification problems. In addition, least squares auto-
tuning can simultaneously adjust hyper-parameters in the feature generation chain. Through
several examples, it is shown that ordinary least squares, used for over 200 years, coupled with
automated hyper-parameter tuning, can be an effective method for data fitting.

The method described for least squares auto-tuning is easy to understand and just as easy
to implement. Moreover, it is an exercise in calculus to find the derivative of the least squares
solution, and an exercise in numerical linear algebra to compute it efficiently. An implementation
has been developed that utilizes new and powerful software frameworks that were originally
designed to optimize the parameters in deep neural networks, making it very efficient on modern
hardware and allowing it to scale to (extremely) large least squares tuning problems.

This article has three main contributions. The first contribution is the observation that the
least squares solution map can be efficiently differentiated, including when the problem data is
sparse (§3.4); the description is mirrored by an open-source implementation (§3.5). The second
contribution is the method of least squares auto-tuning, which can automatically tune hyper-
parameters in least squares problems (§3.2). The final contribution is the application of least
squares auto-tuning to data fitting (§4).

2. Related work

This work mainly falls at the intersection of two fields: automatic differentiation and hyper-
parameter optimization. This section reviews related work.

2.1. Automatic differentiation

The general idea of automatic differentiation (AD) is to automatically compute the derivatives
of a function given a program that evaluates the function (Wengert 1964; Speelpenning 1980).
In general, the cost of computing the derivative or gradient of a function can be made about the
same (usually within a factor of 5) as computing the function (Baur and Strassen 1983; Griewank
and Walther 2008). This means that an optimization algorithm can obtain derivatives of the
function it is optimizing as fast as computing the function itself, which explains the proliferation
of gradient-based minimization methods (Baydin et al. 2018; Bottou, Curtis, and Nocedal 2018).

There are many popular implementations of AD, and they generally fall into one of two cat-
egories. The first category is trace-based AD systems, which trace computations at runtime as
they are executed; popular ones include PyTorch (Paszke et al. 2019), Tensorflow eager (Agrawal

2

et al. 2019b), and autograd (Maclaurin, Duvenaud, and Adams 2015a). The second category
are based on source transformation, which transform the (native) source code that implements
the function into source code that implements the derivative operation. Popular implementa-
tions here include Tensorflow (Abadi et al. 2016), Tangent (van Merriënboer, Moldovan, and
Wiltschko 2018), and Zygote (Innes 2018).

2.2. Argmin differentiation

Given an optimization problem parametrized by some parameters, the solution map is a set-
valued map from those parameters to a set of solutions. If the solution map is differentiable
(and in turn unique), then one can differentiate the solution map (Dontchev and Rockafellar
2009). For convex optimization problems that satisfy strong duality, the solution map is given
by the set of solutions to the Karush-Kuhn-Tucker (KKT) conditions, which can in some cases
be differentiated using the implicit function theorem (Barratt 2018; Agrawal et al. 2019a).
This idea has been applied to convex quadratic programs (Amos and Kolter 2017), convex
optimization problems (Agrawal et al. 2019c), stochastic optimization (Donti, Amos, and Kolter
2017), games (Ling, Fang, and Kolter 2018, 2019), physical systems (de Avila Belbute-Peres
et al. 2018), control (Amos et al. 2018; Agrawal et al. 2019d), repairing convex optimization
problems (Barratt, Angeris, and Boyd 2020), structured inference (Belanger and McCallum
2016; Belanger, Yang, and McCallum 2017), and black-box optimization (Amos and Yarats
2019). In machine learning, these techniques were originally applied to neural networks (Larsen
et al. 1998; Eigenmann and Nossek 1999) and ridge regression (Bengio 2000), and more recently
to lasso (Mairal, Bach, and Ponce 2012), support vector machines (Chapelle et al. 2002), and log-
linear models (Keerthi, Sindhwani, and Chapelle 2007; Foo, Do, and Ng 2008) Two notable AD
implementations of these methods are the PyTorch implementation qpth, which can compute
derivatives of the solution map of quadratic programs (Amos 2017), and cvxpylayers, which
can compute derivatives of the solution map of convex optimization problems (Agrawal et al.
2019c).

2.3. Variable projection method

The variable projection method (Golub and Pereyra 1973, 2003; Chen et al. 2018) is a method
for the approximate solution of nonlinear least squares problems whose residual is linear in some
of the variables but nonlinear in the rest. It works by partially minimizing the objective with
respect to the linear variable since it is a linear least squares problem and writing the objective
as a function of the remaining variables. The objective can then be minimized using standard
first or second-order optimization methods.

The variable projection method is similar to least squares auto-tuning, but indeed funda-
mentally different. Least squares auto-tuning parametrizes a least squares problem by hyper-
parameters, which is then solved to generate the parameters, and then the parameters are
evaluated using a separate loss function. In the variable projection method, the parameters and
hyper-parameters are chosen together to minimize a single objective.

2.4. Unrolled optimization

Another approach to argmin differentiation is unrolled optimization. In unrolled optimization,
one fixes the number of iterations in an iterative minimization method, and differentiates the
steps taken by the method itself (Domke 2012; Baydin and Pearlmutter 2014). The idea of
unrolled optimization was originally applied to optimizing hyper-parameters in deep neural
networks, and has been extended in several ways to adjust learning rates, regularization param-
eters (Maclaurin, Duvenaud, and Adams 2015b; Fu et al. 2016; Lorraine and Duvenaud 2018),

3

and even to learn weights on individual data points (Ren et al. 2018). It is still unclear whether
argmin differentiation should be performed via implicit differentiation or unrolled optimization.
However, when the optimization problem is nonconvex, differentiation by unrolled optimization
seems to be the only feasible way.

2.5. Hyper-parameter optimization

The idea of adjusting hyper-parameters to obtain better true performance in the context of data
fitting is hardly new, and routinely employed in settings more sophisticated than least squares.
For example, in data fitting, it is standard practice to vary one or more hyper-parameters to
generate a set of models, and choose the model that attains the best true objective, which is
usually error on an unseen test set. The most commonly employed methods here include grid
search, random search (Bergstra and Bengio 2012), Bayesian optimization (Močkus 1975; Ras-
mussen 2004; Snoek, Larochelle, and Adams 2012), and covariance matrix adaptation (Hansen
and Ostermeier 1996).

3. Least squares auto-tuning

This section describes the least squares tuning problem, the method to automaticcaly solve the
problem, and the implementation.

3.1. Least squares problem

The matrix least squares problem that depends on a hyper-parameter vector ω ∈ Ω ⊆ Rp has
the form

minimize ‖A(ω)θ −B(ω)‖2F , (1)

where the variable is θ ∈ Rn×m, the least squares optimization variable or parameter matrix, and
A : Ω→ Rk×n and B : Ω→ Rk×m map the hyper-parameter vector to the least squares problem
data. The norm ‖ · ‖F denotes the Frobenius norm, i.e., the squareroot of the sum of squares of
the entries of a matrix. Throughout this article it is assumed that A(ω) has linearly independent
columns for ω ∈ Ω, which implies that it is tall, i.e., k ≥ n. Under these assumptions, the least
squares solution is unique, given by

θls(ω) = A(ω)†B(ω) = (A(ω)TA(ω))−1A(ω)TB(ω), (2)

where A(ω)† denotes the (Moore-Penrose) generalized inverse. Solving a least squares problem
for a given hyper-parameter vector corresponds to computing θls(ω). The least squares solution
θls will be though of as a function mapping the hyper-parameter ω ∈ Ω to a parameter θls(ω) ∈
Rn×m.

3.1.1. Multi-objective least squares

In many applications one has multiple least squares objectives (Boyd and Vandenberghe 2004,
§4.7). These are typically scalarized by forming a positive weighted sum, which leads to

minimize λ1‖A1(ω)θ −B1(ω)‖2F + · · ·+ λr‖Ar(ω)θ −Br(ω)‖2F , (3)

4

where λ1, . . . , λr are the positive objective weights. This problem is readily expressed as the
standard least squares problem (1) by stacking the objectives, with

A(ω) =


√
λ1A1(ω)

...√
λrAr(ω)

 , B(ω) =


√
λ1B1(ω)

...√
λrBr(ω)

 . (4)

The sequel will often write least squares problems in the form (3), and it will be assumed
that the reader understands that the problem data can easily be transformed into (4). The
objective weights λ1, . . . , λr can also be considered hyper-parameters themselves, or to depend
on hyper-parameters; to keep the notation light this dependence is omitted.

3.1.2. Solving the least squares problem

For a given value of ω, there are many ways to solve the least squares problem (1), including
dense or sparse QR or other factorizations (Golub 1965; Björck and Duff 1980), iterative methods
such as CG or LSQR (Hestenes and Stiefel 1952; Paige and Saunders 1982), and many others.
Very efficient libraries for computing the least squares solution that target multiple CPUs or
one or more GPUs have also been developed (Dongarra et al. 1990; Anderson et al. 1999). This
problem is separable across the columns of θ, i.e., the problem splits into m independent least
squares problems with vector variables and a common coefficient matrix.

A few more details are provided here for two of these methods. The first case considered is
where A(ω) and B(ω) are stored and manipulated as dense matrices. One attractive option for
a GPU implementation is to form the Gram matrix G = ATA, along with H = ATB. This
requires around (order) kn2 and knm flops, respectively, but these matrix-matrix multiplies are
BLAS level 3 operations, which can be carried out very efficiently. To compute θls, one can use a
Cholesky factorization of G, G = LLT , which costs order n3 flops, solve the triangular equation
LY = H, which costs order n2m flops, and then solve the triangular equation LT θls = Y , which
costs order n2m flops. Overall, the complexity of solving a dense least squares problem is order
kn(n+m). The numerical stability of this method depends heavily on the condition number of
A (see, e.g., Higham (2002, §20.5)).

The other case for which more detail is given is when A(ω) is represented as an abstract linear
operator, and not as a matrix. This is a natural representation when A(ω) is large and sparse,
or represented as a product of small (or sparse) matrices. That is, one can evaluate A(ω)u for
any u ∈ Rn, and A(ω)T v for any v ∈ Rk. (This is the so-called matrix-free representation.) CG
or LSQR can be used to solve the least squares problem, in parallel for each column of θ. The
complexity of CG or LSQR depends on the problem, and can vary considerably based on the
data, size, sparsity, choice of pre-conditioner, and required accuracy (Hestenes and Stiefel 1952;
Paige and Saunders 1982).

3.2. Least squares tuning problem

In a least squares tuning problem, the goal is to choose the hyper-parameters to achieve some
goal. This is formalized as the problem

minimize F (ω) = ψ(θls(ω)) + r(ω), (5)

with variable ω ∈ Ω and objective F : Ω→ R∪{+∞}, where ψ : Rn×m → R is the true objective
function, and r : Ω→ R ∪ {+∞} is the hyper-parameter regularization function. Infinite values
of r (and therefore F) are used to encode constraints on the hyper-parameter ω, and it will be
assumed that r(ω) is defined as ∞ for ω 6∈ Ω. A least squares tuning problem is specified by

5

the functions A, B, ψ, and r. Some additional assumptions will be made about these functions
below.

The hyper-parameter regularization function r can itself contain a few parameters that can
be varied, which of course affects the hyper-parameters chosen in the least squares auto-tuning
problem (5), which in turn affects the parameters selected by least squares. Parameters that
may appear in the hyper-parameter regularization function will be referred to as hyper-hyper-
parameters.

The least squares tuning problem (5) can be formulated in several alternative ways, for
example as the constrained problem with variables θ ∈ Rn×m and ω ∈ Ω

minimize ψ(θ) + r(ω)
subject to A(ω)TA(ω)θ = A(ω)TB(ω).

(6)

In this formulation, θ and ω are independent variables, coupled by the constraint, which is
the optimality condition for the least squares problem (1). Eliminating the constraint in this
problem yields the above formulation (5).

3.3. Solving the least squares tuning problem

The least squares tuning problem is in general nonconvex, and difficult or impossible as a
practical matter to solve exactly. (One important exception is when ω is a scalar and Ω is an
interval, in which case one can simply evaluate F (ω) on a grid of values over Ω.) This means
that one needs to resort a local optimization or heuristic method in order to (approximately)
solve it.

It will be assumed that A and B are differentiable in ω, which implies that θls is differentiable
in ω, since the mapping from ω to θls is differentiable. It will also be assumed that ψ is differen-
tiable, which implies that the true objective ψ(θls(ω)) is differentiable in the hyper-parameters
ω. This means that the first term (the true objective) in the least squares tuning problem (5)
is differentiable, while the second one (the hyper-parameter regularizer) need not be. There are
many methods that can be used to (approximately) solve such a composite problem (Douglas
and Rachford 1956; Lions and Mercier 1979; Shor 1985; Boyd et al. 2011).

For completeness, the proximal gradient method (which stems from the proximal point
method (Martinet 1970); for a modern reference see Nesterov (2013)) is described. The proximal
gradient method is given by the iteration

ωk+1 = proxtkr(ω
k − tk∇ωψ(θls(ωk))),

where k denotes the iteration number, tk > 0 is a step size, and the proximal operator proxtr :
Rp → Ω is given by

proxtr(ν) = argmin
ω∈Ω

(
r(ω) +

1

2t
‖ω − ν‖22

)
.

It is assumed that the argmin exists; when it is not unique, any minimize can be chosen In order
to use the proximal gradient method, one needs the proximal operator of tr to be relatively easy
to evaluate.

The proximal gradient method reduces to the ordinary gradient method when r = 0 and
Ω = Rp. Another special case is when Ω ⊂ Rp, and r(ω) = 0 for ω ∈ Ω. In this case r is the
indicator function of the set Ω, the proximal operator of tr is Euclidean projection onto Ω, and
the proximal gradient method coincides with the projected gradient method.

There are many ways to choose the step size. The following simple adaptive scheme, borrowed

6

from Lall and Boyd (2017), is adopted. The method begins with an initial step size t1. If the
function value decreases or stays the same from iteration k to k + 1, or F (ωk+1) ≤ F (ωk),
then the step size is increased a bit and accept the update. If, on the other hand, the function
value increases from iteration k to k + 1, or F (ωk+1) > F (ωk), the step size is decreased
substantially and the update rejected, i.e., ωk+1 = ωk. A simple rule for increasing the step
size is tk+1 = (1.2)tk, and a simple rule for decreasing it is tk+1 = (1/2)tk. More sophisticated
step size selection methods exist (see, e.g., the line search methods for the Goldstein or Armijo
conditions (Nocedal and Wright 2006)).

By default, the method is run for a fixed maximum number of iterations. If F (ωk+1) ≤ F (ωk),
then a reasonable stopping criterion at iteration k + 1 is

‖(ωk − ωk+1)/tk + (gk+1 − gk)‖2 ≤ ε, (7)

where gk = ∇ωkψ(θls(ωk)), for some small tolerance ε > 0. (For more justification of this
stopping criterion, see Appendix B.) When r = 0 and Ω = Rp (i.e., the proximal gradient
method coincides with the ordinary gradient method), this stopping criterion reduces to

‖gk+1‖2 ≤ ε,

which is the standard stopping criterion in the ordinary gradient method. The full algorithm
for least squares auto-tuning via the proximal gradient method is summarized in algorithm 1
below.

Algorithm 1 Least squares auto-tuning via proximal gradient.

given initial hyper-parameter vector ω1 ∈ Ω, initial step size t1, number of iterations niter,
tolerance ε.

for k = 1, . . . , niter

1. Solve the least squares problem. θls(ωk) = (AT (ωk)A(ωk))−1AT (ωk)B(ωk).
2. Compute the gradient. gk = ∇ωψ(θls(ωk)).
3. Compute the gradient step. ωk+1/2 = ωk − tkgk.
4. Compute the proximal operator. ωtent = proxtkr(ωk+1/2).
5. if F (ωtent) ≤ F (ωk),

Increase step size and accept update. tk+1 = (1.2)tk; ωk+1 = ωtent.
Stopping criterion. quit if ‖(ωk − ωk+1)/tk + (gk+1 − gk)‖2 ≤ ε.

6. else Decrease step size and reject update. tk+1 = (1/2)tk; ωk+1 = ωk.
end for

The proximal gradient method is guaranteed to converge to the global minimum when the
composition ψ ◦ θls and r are convex. However, since this problem is in general nonconvex,
this method is subject to the same convergence properties as the proximal gradient method on
nonconvex problems. That is, under certain assumptions, the method converges to a stationary
point (Beck 2017, Theorem 10.15).

It is emphasized that many other methods can be used to (approximately) solve the least
squares tuning problem (5); the proximal gradient method in particular was described only for
completeness.

3.4. Computing the gradient

Note. In principle, one could calculate the gradient by directly differentiating the linear algebra
routines used to solve the least squares problem (Smith 1995). We, however, work out formulas

7

for computing the gradient in closed-form, that work in the case of sparse A and allow for a
more efficient implementation.

To compute g = ∇ωψ(θls(ω)) ∈ Rp one can make use of the chain rule for f = ψ◦θls. Assume
that θ = θls(ω) has been computed. First, one computes ∇θψ(θ) ∈ Rn×m, and then forms

C = (ATA)−1∇θψ(θ) ∈ Rn×m.

(Here the dependence on ω has been dropped, i.e., A = A(ω).) If A is stored as a dense matrix,
observe that G = ATA and its factorization have already been computed (to evaluate θ; see
§3.1.2), so this step involves a back-solve. If A is represented as an abstract operator, one can
evaluate each column of C (in parallel) using an iterative method.

It can be shown (see Appendix A) that the gradients of ψ with respect to A and B are

∇Aψ = (B −Aθ)CT −ACθT ∈ Rk×n, ∇Bψ = AC ∈ Rk×m. (8)

(Again, the dependence on ω has been dropped.)
In the case of A dense, one can explicitly form ∇Aψ and ∇Bψ, since they are the same size

as A and B, which are already stored. The overall complexity of computing ∇Aψ and ∇Bψ is
kn(n+m) in the dense case, which is the same cost as solving the least squares problem.

In the case of A sparse, one can explicitly form the matrix ∇Bψ, but can not form ∇Aψ,
which by assumption is too large to store, since it is the size of A. Instead, it is assumed that
ω only affects A at a subset of its entries, Γ, i.e., Aij(ω) = 0 for all i, j 6∈ Γ, and for all ω ∈ Ω.
By doing this, ∇Aψ is restricted to have the same sparsity pattern as A, meaning only (∇Aψ)ij
for i, j ∈ Γ, needs to be computed:

∇Aψ =

{
(bi − θai)cTj − aTi (CθT)j i, j ∈ Γ

0 otherwise,

where bi is the ith row of B, ai is the ith row of A, cj is the jth column of C, and (CθT)j is
the jth column of CθT . (This computation can be done in parallel.)

The next step is to compute g = ∇ωψ given ∇Aψ and ∇Bψ. When A is stored as a dense
matrix, one first evaluates ∇ωAij ∈ Rp and ∇ωBij ∈ Rp, the gradients of the problem data
entries with respect to ω. If these gradients are all dense, one needs to store k(n + m) vectors
in Rp; but generally, they are quite sparse. (There is an explanation below of how to take
advantage of the sparsity in §3.5.) Finally,

g =
∑
i,j

(∇Aψ)ij(∇ωA)ij +
∑
i,j

(∇Bψ)ij(∇ωB)ij .

Assuming these are all dense, this requires order kp(n + m) flops. The overall complexity of
evaluating the gradient g is therefore order k(n+m)(n+ p).

When A is large and sparse, one only need to compute the inner product at the entries of A
that are affected by ω, i.e.,

g =
∑
i,j∈Γ

(∇Aψ)ij(∇ωA)ij +
∑
i,j

(∇Bψ)ij(∇ωB)ij .

If |Γ| is much smaller than kn, then this can be much faster than treating A as dense.

8

Table 1.: GPU timings.

k n m p Compute ψ Compute g Cholesky

20000 10000 10000 20000 1.32 s 2.49 s 15.6 %
20000 10000 1 20000 446 ms 614 ms 16.1 %
100000 1000 100 100000 28 ms 28 ms 10.8 %

3.5. Implementation

The equations in §3.4 for computing g do not directly lend themselves to an implementation. For
example, it is necessary to compute ∇θψ, ∇ωAij and ∇ωBij , which depend on the form of ψ, A,
and B. Also, it would be nice to take advantage of the (potential) sparsity of these derivatives.
Libraries for automatic differentiation, e.g., PyTorch (Paszke et al. 2019) and Tensorflow (Abadi
et al. 2016), can be used to automatically (and efficiently) compute g given ψ, A, and B.

These libraries generally work by representing functions as differentiable computation graphs,
allowing one to evaluate the function as well as its gradient. In the context of this article, ψ
is represented as a function of ω, defined by a differentiable computation graph, and use these
libraries to automatically compute g = ∇ωψ. In order to use these libraries to compute g, it is
necessary to implement an operation that solves the least squares problem (2) and computes its
gradients (8). An operation lstsq(A,B) that does exactly this has been implemented in both
PyTorch and Tensorflow, in both the dense and sparse case.

There are several advantages to using these libraries. First, they automatically exploit par-
allelism and gradient sparsity. Second, they utilize BLAS level 3 operations, which are very
efficient on modern hardware. Third, they make it easy to represent the functions ψ, A, and
B, since they can be represented as compositions of (the many) pre-defined operations in these
libraries.

Table 1 gives timings of computing ψ(θls(ω)) = tr(11T θls(ω)) and its gradient g for a random
problem (where ω simply scales the rows of a fixed A and B) and various problem dimensions,
where A is dense. The timings given are for the PyTorch implementation, on an unloaded
GeForce GTX 1080 Ti Nvidia GPU using 32-bit floating point numbers (floats). The timings
are about ten times longer using 64-bit floating point numbers (doubles). (For most applications,
including data fitting, only floats are needed.) The percentage of time spent on the Cholesky
factorization of the Gram matrix is also shown.

3.6. Equality constrained extension

One can easily extend the ideas described in this article to the equality-constrained least squares
problem

minimize 1
2‖A(ω)θ −B(ω)‖2F

subject to C(ω)θ = D(ω),

with variable θ ∈ Rn×m, where C : Ω → Rd×n and D : Ω → Rd×m. The pair of primal and
dual variables (θ, ν) ∈ Rn×m×Rd×m are optimal if and only if they satisfy the KKT conditions

9

(Boyd and Vandenberghe 2018, Chapter 16) 0 A(ω)T C(ω)T

A(ω) −I 0
C(ω) 0 0

θq
ν

 =

 0
B(ω)
D(ω)

 ,
where q = A(ω)θ −B(ω) is the residual. From here on, let

M(ω) =

 0 A(ω)T C(ω)T

A(ω) −I 0
C(ω) 0 0

 .
When A and C are dense, one can factorize M directly, using an LDLT factorization (Lawson
and Hanson 1995). When A and C are sparse matrices, one can solve this system directly by
using a sparse LDLT solver, or iteratively (i.e., without forming the matrix M) using, e.g.,
MINRES (Paige and Saunders 1975).

The true objective function becomes a function of both θ and ν. Suppose the gradients ∇θψ
and ∇νψ are known. First, computeg1

g2

g3

 = M(ω)−1

∇θψ0
∇νψ

 .
Then the gradients of ψ with respect to A and B are given by

∇Aψ = −(rgT1 + g2θ
T), ∇Bψ = g2,

and with respect to C and D are given by

∇Cψ = −(νgT1 + g3θ
T), ∇Dψ = g3.

Computing the gradients of the solution map requires the solution of one linear system, and
thus has roughly the same complexity of computing the solution itself (and much less when a
factorization is cached). When A and C are sparse, their gradients can be computed only at the
nonzero elements, in a similar fashion to the procedure described in §3.4.

4. Least squares data fitting

The previous section described the general idea of least squares auto-tuning. In this section,
and for the remainder of the article, least squares auto-tuning is applied to data fitting.

4.1. Least squares data fitting

In a data fitting problem, one has training data consisting of inputs u1, . . . , uN ∈ U and outputs
y1, . . . , yN ∈ Rm. In least squares data fitting, one fits the parameters of a predictor

ŷ = φ(u, ωfeat)T θ,

where θ ∈ Rn×m is the model variable, ωfeat ∈ Ωfeat ⊆ Rpfeat are feature engineering hyper-
parameters (Ωfeat is the set of allowed feature engineering hyper-parameters), and φ : U×Ωfeat →

10

Rn is a featurizer (assumed to be differentiable in its second argument). This predictor is linear
in the output of the featurizer.

To select the model parameters, a least squares problem is solved with data given by

A(ω) =



eω
data
1 φ(u1, ω

feat)T

...

eω
data
N φ(uN , ω

feat)T

eω
reg
1 R1
...

eω
reg
d Rd


, B(ω) =



eω
data
1 y1
...

eω
data
N yN
0
...
0


,

where ωdata ∈ Ωdata ⊆ RN are data weighting hyper-parameters (Ωdata is the set of allowed data
weighting hyper-parameters), R1, . . . , Rd are regularization matrices with appropriate sizes, and
ωreg ∈ Ωreg ⊆ Rd are regularization hyper-parameters (Ωreg is the set of allowed regularization
hyper-parameters).

The overall hyper-parameter is denoted by

ω = (ωfeat, ωdata, ωreg) ∈ Ωfeat × Ωdata × Ωreg.

The roles of each hyper-parameter are described in more detail below; but here note that ωdata

scales the individual training data examples, ωfeat are hyper-parameters in the featurizer, and
ωreg are hyper-parameters that scale each of the regularizers. Assume that the hyper-parameter
regularization function is separable, meaning it has the form

r(ω) = rfeat(ωfeat) + rdata(ωdata) + rreg(ωreg).

This means that the proximal operator is separable (Parikh and Boyd 2014). The functions
rfeat, rdata, and rreg are the regularization functions for the featurizer, data weighting, and
regularization hyper-parameters.

4.2. True objective function

Suppose there is also validation data composed of inputs uval
1 , . . . , uval

Nval
∈ U and outputs

yval
1 , . . . , yval

Nval
∈ Rm. First, the predictions are formed:

ŷval
i = φ(uval

i)T θls(ω),

where the featurizer is fixed, or φ(u) = φ(u, ωdata). The true objective ψ in least squares data
fitting corresponds to the average loss of the predictions of the validation outputs, which has
the form

ψ(θ) =
1

Nval

Nval∑
i=1

l(ŷval
i , yval

i),

where l : Rm×Rm → R is a penalty function (assumed to be differentiable in its first argument).
More sophisticated true objective functions are possible (see, e.g., the K-fold cross validation
loss in §4.6). The focus in this article is on simple out-of-sample validation for simplicity.

The setting described encompasses many problems in data fitting, including both regression
and classification. In regression, the output is a scalar, i.e., y ∈ R. In multi-task regression,

11

the output is a vector, i.e., y ∈ Rm. In Boolean classification, y ∈ {e1, e2} (ei is the ith
unit vector in R2), and the output represents a Boolean class. In multi-class classification,
y ∈ {ei | i = 1, . . . ,m} (ei is the ith unit vector in Rm), and the output represents a class label.

4.2.1. Regression penalty function

The penalty function in regression (and multi-task regression) problems often has the form

l(ŷ, y) = π(r),

where r = ŷ − y is the residual and π : Rm → R is a penalty function applied to the residual.
Some common forms for π are listed below.

• Square. The square penalty is given by π(r) = ‖r‖22.
• Huber. The Huber penalty is a robust penalty that has the form of the square penalty for

small residuals, and the 2-norm penalty for large residuals:

π(r) =

{
‖r‖22 ‖r‖2 ≤M
M(2‖r‖2 −M) ‖r‖2 > M,

where M is a hyper-hyper-parameter.
• Bisquare. The bisquare penalty is a robust penalty that is constant for large residuals:

π(r) =

{
(M2/6)

(
1− [1− ‖r‖22/M2]3

)
‖r‖2 ≤M

M2/6 ‖r‖2 > M,

where M is a hyper-hyper-parameter.

4.2.2. Classification penalty function

For classification, the prediction ŷ ∈ Rm is associated with the probability distribution on the
m label values given by

Prob(y = ei) =
eŷi∑m
j=1 e

ŷj
, i = 1, . . . ,m.

The prediction ŷ can be interpreted as a distribution on the labels of y, given x.
The cross-entropy loss will be used as the penalty function in classification. It has the form

l(ŷ, y = ei) = −ŷi + log(

m∑
j=1

eŷj), i = 1, . . . ,m.

The true loss is then average negative log probability of y under the predicted distribution, over
the test set.

4.3. Data weighting

This section describes the role of the data weighing hyper-parameter ωdata. The ith entry ωdata
i

weights the squared error of the (ui, yi) data point in the loss by e2ωdata
i (a positive number). If

ωi is small, then the ith data point has little effect on the model parameter, and vice versa.

12

Separately weighing the loss values of each data point has the same effect as using a non-
quadratic loss function. However, instead of having to decide on which loss function to use, the
weights are automatically selected in a weighted square loss. Auto-tuning of data weights is not
new; in 1961, Lawson considered the problem of `∞ approximation by iteratively updating the
weights of data points in least squares problems (Lawson 1961). Later, this idea was extended by
Rice and Usow to data fitting problems with p-norms, and coined as the iteratively re-weighted
least squares algorithm (Rice and Usow 1968).

The constraint set Ωdata = {x | 1Tx = 0} is considered, meaning the geometric mean of
exp(ωdata) is constrainted to be equal to one. The hyper-parameter can be regularized towards
equal weighting (ωdata = 0), e.g., by using rdata(ω) = (λ/2)‖ω‖22 or rdata(ω) = λ‖ω‖1, where
λ > 0. (Here λ is a hyper-hyper-parameter, since it scales a regularizer on the hyper-parameters.)

The details of a particular proximal operator is given below that is needed later in the article.
Evaluating the proximal operator of rdata(ω) = (λ/2)‖ω‖22 with Ω = Ωdata at ν with step size t
corresponds to solving the optimization problem

minimize t(λ/2)‖ω‖22 + (1/2)‖ω − ν‖22
subject to 1Tω = 0,

with variable ω. This optimization problem has the analytical solution

ω? =
1

1 + tλ
(ν − 1T ν/p).

4.4. Regularization

The next hyper-parameter subvector is the regularization hyper-parameter ωreg. The regular-
ization hyper-parameter affects the

d∑
i=1

exp(2ωreg
i)‖Riθ‖2F

term in the least squares objective. Each ‖Riθ‖2F term is meant to correspond to a measure of
the complexity of θ. For example, if Ri = I, then the ith term is the sum of the squares of the
singular values of θ. The entries of the regularization hyper-parameter correspond to the log of
the weight on each regularization term. The regularization matrices can have many forms; here
two examples are given.

Separate diagonal regularization has the form

Ri = diag(ei), i = 1, . . . , n,

where ei is the ith unit vector in Rn. The ith regularization term corresponds to the sum of
squares of the ith row of θ.

The Ris could correspond to incidence matrices of graphs between the elements in each
column of θ. Here the regularization hyper-parameter determines the relative importance of the
regularization graphs.

4.5. Feature engineering

The final hyper-parameter is the feature engineering hyper-parameter ωfeat, which parametrizes
the featurizer. The goal is to select a ωfeat which makes the output y roughly linear in φ(u, ωfeat).
The input set U is assumed to be a vector space in these examples.

13

Often φ is constructed as a feature generation chain, meaning it can be expressed as the
composition of individual feature engineering functions φ1, . . . , φl, or

φ = φl ◦ · · · ◦ φ1.

Often the last feature engineering function adds a constant, or φl(x) = (x, 1), so that the
resulting predictor is affine.

4.5.1. Scalar feature engineering functions

This section describes some scalar feature engineering functions φ : R→ R, with the assumption
that they could be applied elementwise (with different hyper-parameters) to vector inputs.

Scaling. One of the simplest feature engineering functions is affine scaling, given by

φ(x, (a, b)) = ax+ b.

It is common practice in data fitting to standardize or whiten the data, by scaling each dimension
with a = 1/σ and b = −µ/σ, where µ is the mean of x and σ is the standard deviation of x.
Instead, with least squares auto tuning, a and b are selected based on the data.

Power transform. The power transform is given by

φ(x, (c, γ)) = sgn(x− c)|x− c|γ ,

where sgn(x) is 1 if x > 0, −1 if x < 0 and 0 if x = 0, the center c ∈ R, and the scale
γ ∈ R. Here the hyper-parameters are γ ∈ R and the center c ∈ R. For various values of γ
and c, this function defines different transformations. For example, if γ = 1 and c = 0, this
transform is the identity. If γ = 0, this transform determines whether x is to the right or left
of the center, c. If γ = 1/2 and c = 0, this transform performs a symmetric square root. This
transform is differentiable everywhere except when γ = 0. The power transform has also found
use in computational photography, where it is known as gamma correction (Hurter and Driffield
1890). See figure 1 for some examples.

Polynomial splines. A spline is a piecewise polynomial function. Given a monotonically increas-
ing knot vector z ∈ Rk+1, a degree d, and polynomial coefficients f0, . . . , fk+1 ∈ Rd+1, a spline
is given by

φ(x, (z, f1, . . . , fk+1)) =


∑d

i=0(f0)ix
i x ∈ (−∞, z1)∑d

i=0(fj)ix
i x ∈ [zj , zj+1), j = 1, . . . , k,∑d

i=0(fk+1)ix
i x ∈ [zk+1,+∞).

Here rfeat and Ωfeat can be used to enforce continuity (and differentiability) at z1, . . . , zk+1.

4.5.2. Multi-dimensional feature engineering functions

This section describes some multidimensional feature engineering functions.

Low rank. The featurizer φ can be a low rank transformation, given by

φ(x, T) = Tx,

14

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−4

−3

−2

−1

0

1

2

3

4

sg
n

(x
)|x
|γ

γ=0.0

γ=0.5

γ=1.0

γ=2.0

Figure 1.: Examples of the power transform. Here the center c = 0.

where T ∈ Rr×n, and r < n. In practice, a common choice for T is the first few singular vectors
of the singular value decomposition of the data matrix. With least squares auto tuning, one can
select T directly.

Neural networks. The featurizer φ can be a neural network; in this case ωfeat corresponds to the
neural network’s parameters.

Feature selection. A fraction f of the features can be selected with

φ(x) = diag(a)x,

where Ωfeat = {a | a ∈ {0, 1}n1 ,1Ta = bfn1c} and b·c is the floor function. Here f is a hyper-
hyper-parameter.

4.6. Test set and early stopping

There is a risk of overfitting to the validation set when there are a large number of hyper-
parameters, since least squares auto-tuning directly minimizes the validation loss. To detect
this, a third dataset, the test dataset, can be introduced fitted model can be evaluated on it
once at the end of the algorithm. In particular, the validation loss throughout the algorithm
need not be an accurate measure of the model’s performance on new unseen data, especially
when there are many hyper-parameters.

As a slight variation, to combat overfitting, the loss of the fitted model on the test set can
be calculated at each iteration, and the algorithm halted when the test loss begins to increase.
This technique is sometimes referred to as early stopping (Prechelt 1998). When performing
early stopping, it is important to have a fourth dataset, the final test dataset, and evaluate on
this dataset one time when the algorithm terminates. This technique has been observed to work
very well in practice. However, in the numerical example, no early stopping is used and the
algorithm is run until convergence.

Another way to create more robust models is to use the loss averaged over multiple training
and validation datasets as the true objective. Mltiple training and validation dataset pairs from

15

Table 2.: Results of MNIST experiment on small dataset.

Method Hyper-parameters Validation loss Test error (%)

LS 0 1.77 13.0
LS + reg × 2 2 1.76 11.6
LS + reg × 3 + feat 4 1.54 6.1
LS + reg × 3 + feat + weighting 3504 1.54 6.0

a single dataset can be constructed via K-fold cross validation, i.e., by partitioning the data
into K equally sized groups, and letting each training dataset be all groups but one and each
validation dataset be the data points not in the respective training set (Hastie, Tibshirani, and
Friedman 2009, §7.10). A separate model is then fit to each training set, evaluate it on the
validation dataset, and then compute the gradient of the validation loss with respect to the
hyper-parameters. Having done this for each fold, the gradients can be averaged to recover the
gradient of the cross-validation loss with respect to the hyper-parameters. Since the exact same
techniques described in this manuscript can be applied to K-fold cross validation, this idea will
not be pursued further in this manuscript.

5. Numerical example

In this section the method of automatic least squares data fitting is applied to the well-studied
MNIST handwritten digit classification dataset (LeCun et al. 1998). In the machine learning
community, this task is considered ‘solved’, i.e., i.e., one can achieve arbitrarily low test error,
by, e.g., deep convolutional neural networks (Ciregan, Meier, and Schmidhuber 2012). The ideas
described in this article are applied to a large and small version of MNIST in order to show
that standard least squares coupled with automatic tuning of additional hyper-parameters can
achieve relatively high test accuracy, and can drastically improve the performance of standard
least squares. In this example, it is also worth noting that no hyper-hyper-parameter optimiza-
tion was performed.

5.1. MNIST

The MNIST dataset is composed of 50,000 training data points, where each data point is
a 784-vector (a 28 × 28 grayscale image flattened in row-order). There are m = 10 classes,
corresponding to the digits 0–9. MNIST also comes with a test set, composed of 10,000 training
points and labels. Since the task here is classification, the cross-entropy loss is used as the true
objective function. The code used to produce these results has been made freely available at
www.github.com/sbarratt/lsat. All experiments were performed on an unloaded Nvidia 1080
TI GPU using floats.

Two MNIST datasets are created by randomly selecting data points. The small dataset has
3,500 training data points and 1,500 validation data points. The full dataset has 35,000 training
data points and 15,000 validation data points. The four methods are evaluated by tuning their
hyper-parameters and then calculating the final validation loss and test error. The results are
summarized in tables 2 and 3. Each method is described below, in order.

16

www.github.com/sbarratt/lsat

Table 3.: Results of MNIST experiment on full dataset.

Method Hyper-parameters Validation loss Test error (%)

LS 0 1.74 10.3
LS + reg × 2 2 1.74 10.3
LS + reg × 3 + feat 4 1.53 4.7
LS + reg × 3 + feat + weighting 35004 1.53 4.8

5.2. Base model

The simplest model is standard least squares, using the n = 784 image pixels as the feature
vector. That is, the fitting procedure is the optimization problem

minimize ‖Xθ − Y ‖2F + ‖θ‖2F .

Here no hyper-parameter tuning is performed. This model is referred to as LS in the tables.

5.3. Regularization

To this simple model, a graph regularization term is added, and optimize the two regularization
hyper-parameters. A graph on the length 784 feature vector is constructed, connecting two
nodes if the pixels they correspond to are adjacent to each other in the original image. The
incidence matrix of this graph was formed, as described in §4.4, and denoted by A ∈ R1512×784

(it has 1512 edges). The two regularization matrices used were:

R1 = I, R2 = A.

The matrix R1 corresponds to standard ridge regularization, and R2 measures the smoothness of
the feature vector according to the graph described above. This introduces 2 hyper-parameters,
which separately weight R1 and R2. Here, no hyper-parameter regularization function is used,
and ωreg is initialized to (−2,−2). These two regularization hyper-parameters are optimized to
minimize validation loss. This model is referred to as LS + reg × 2 in the tables.

5.4. Feature engineering

For each label, the k-means algorithm was run with k = 5 on the training data points that
have that label. This results in km = 50 centers, referred to as archetypes, and denoted by
a1, . . . , a50 ∈ R784. Define the function d such that it calculates how far x is from each of the
archetypes, or

d(x)i = ‖x− ai‖2, i = 1, . . . , 50.

The following feature engineering function is considered:

φ(x) = (x, s(−d(x)/ exp(σ)), 1),

17

(a) 7 (b) 8 (c) 4 (d) 4 (e) 5 (f) 9

Figure 2.: Training data with the lowest weights. Captions correspond to labels.

(a) 8 (b) 4 (c) 4 (d) 4 (e) 9 (f) 3

Figure 3.: Training data with the highest weights. Captions correspond to labels.

where σ is a feature engineering hyper-parameter, and s is the softmax function, which trans-
forms a vector z ∈ Rn to a vector in the probability simplex, defined as

s(z)i =
ezi∑
j e

zj
.

WSeparate ridge regularization is introduced for the pixel features and the k-means features,
and still use the graph regularization on the pixel features; the regularization matrices are

R1 =
[
I 0 0

]
, R2 =

[
0 I 0

]
, R3 =

[
A 0 0

]
.

No hyper-parameter regularization function is used for ωfeat. Here σ is initialized to 3 and ωreg

to (0, 0, 0), and optimize these four hyper-parameters. This model is referred to as LS + reg ×
3 + feat.

5.5. Data weighting

To LS + reg × 3 + feat, data weighting is added, as described in §4.3. The constraint set
employed is Ωreg = {ω | 1Tω = 0} and rreg(ωreg) = (0.01)‖ωreg‖22. This introduces 3,500 hyper-
parameters in the case of the small dataset, and 35,000 hyper-parameters for the large dataset.
The initialization was ω = 0. This model is referred to as LS + reg × 3 + feat + weighting. This
method performs the best on the small dataset, in terms of test error. On the full dataset, it
performs slightly worse than the model without data weighting, likely because of the overfitting
phenomenon discussed in §4.6. Training examples with the lowest data weights are shown in
figure 2 and the training examples with the highest weights in figure 3, both on the small
dataset. The training data points with low weights seem harder to classify (for example, (b)
and (c) in figure 2 could be interpreted as nines).

5.6. Discussion

With least squares auto-tuning, the test error was cut in half for both the small and full dataset.
This experiment demonstrates that even though there are thousands of hyper-parameters, the
method does not overfit. This example is highly simplified in order to illustrate the usage of least
squares auto-tuning; better models can be devised using the very same techniques illustrated.

18

6. Conclusion

This article presented a general framework for tuning hyper-parameters in least squares prob-
lems. The algorithm proposed for least squares auto-tuning is simple and scales well. It was
shown how this framework can be used for data fitting. Finally, least squares auto-tuning was
applied to variations of a digit classification dataset, cutting the test error of standard least
squares in half. In a follow-up article, the authors have applied least squares auto-tuning to
Kalman smoothing (Barratt and Boyd 2020).

Disclosure statement

The authors declare that they have no conflicts of interest.

Funding

This work was supoprted by the National Science Foundation Graduate Research Fellowship
under Grant No. DGE-1656518.

References

Abadi, Martin, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al. 2016. “Tensorflow: a system for large-scale machine learning.” In Proc. Operating Systems Design
and Implementation, Vol. 16, 265–283.

Agrawal, A., S. Barratt, S. Boyd, E. Busseti, and W. Moursi. 2019a. “Differentiating through a cone
program.” Journal of Applied and Numerical Optimization 1 (2): 107–115.

Agrawal, A., A. Modi, A. Passos, A. Lavoie, A. Agarwal, A. Shankar, A. Ganichev, et al. 2019b. “Ten-
sorFlow Eager: a Multi-Stage, Python-Embedded DSL for Machine Learning.” Proceedings SysML
Conference .

Agrawal, Akshay, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico Kolter.
2019c. “Differentiable convex optimization layers.” In Proc. Advances in Neural Information Processing
Systems, 9558–9570.

Agrawal, Akshay, Shane Barratt, Stephen Boyd, and Bartolomeo Stellato. 2019d. “Learning Convex
Optimization Control Policies.” In Conf. Learning for Decision and Control 2020, To appear.

Amos, B. 2017. “A fast and differentiable QP solver for pytorch.” https://github.com/locuslab/qpth.
Amos, B., I. Jimenez, J. Sacks, B. Boots, and Z. Kolter. 2018. “Differentiable MPC for End-to-end

Planning and Control.” In Proc. Advances in Neural Information Processing Systems, 8299–8310.
Amos, B., and Z. Kolter. 2017. “Optnet: Differentiable optimization as a layer in neural networks.” In

Proc. Intl. Conf. on Machine Learning, 136–145.
Amos, Brandon, and Denis Yarats. 2019. “The Differentiable Cross-Entropy Method.” arXiv preprint

arXiv:1909.12830 .
Anderson, E., Z. Bai, C. Bischof, L. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, and A. McKenney. 1999. LAPACK Users’ guide. SIAM.
Barratt, S. 2018. “On the differentiability of the solution to convex optimization problems.” arXiv

preprint arXiv:1804.05098 .
Barratt, Shane, Guillermo Angeris, and Stephen Boyd. 2020. “Automatic Repair of Convex Optimization

Problems.” arXiv preprint arXiv:2001.11010 .
Barratt, Shane, and Stephen Boyd. 2020. “Fitting a Kalman smoother to data.” In American Control

Conf. 2020, To appear.
Baur, W., and V. Strassen. 1983. “The complexity of partial derivatives.” Theoretical Computer Science

22 (3): 317–330.

19

https://github.com/locuslab/qpth

Baydin, A., and B. Pearlmutter. 2014. “Automatic differentiation of algorithms for machine learning.”
In ICML 2014 AutoML Workshop, .

Baydin, A., B. Pearlmutter, A. Radul, and J. Siskind. 2018. “Automatic differentiation in machine
learning: a survey.” Journal of Machine Learning Research 18: 1–43.

Beck, A. 2017. First-order methods in optimization. SIAM.
Belanger, D., and A. McCallum. 2016. “Structured prediction energy networks.” In Proc. Intl. Conf. on

Machine Learning, 983–992.
Belanger, D., B. Yang, and A. McCallum. 2017. “End-to-end learning for structured prediction energy

networks.” In Proc. Intl. Conf. on Machine Learning, 429–439.
Bengio, Y. 2000. “Gradient-based optimization of hyperparameters.” Neural Computation 1889–1900.
Bergstra, J., and Y. Bengio. 2012. “Random search for hyper-parameter optimization.” Journal of Ma-

chine Learning Research 281–305.
Björck, A., and I. Duff. 1980. “A direct method for the solution of sparse linear least squares problems.”

Linear Algebra and its Applications 34: 43–67.
Bottou, L., F. Curtis, and J. Nocedal. 2018. “Optimization methods for large-scale machine learning.”

SIAM Review 60 (2): 223–311.
Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. “Distributed optimization and statistical

learning via the alternating direction method of multipliers.” Foundations and Trends R© in Machine
Learning 3 (1): 1–122.

Boyd, S., and L. Vandenberghe. 2004. Convex optimization. Cambridge University Press.
Boyd, S., and L. Vandenberghe. 2018. Introduction to applied linear algebra: vectors, matrices, and least

squares. Cambridge University Press.
Chapelle, O., V. Vapnik, O. Bousquet, and S. Mukherjee. 2002. “Choosing multiple parameters for

support vector machines.” Machine Learning 46: 131–159.
Chen, G., M. Gan, C. Chen, and H. Li. 2018. “A regularized variable projection algorithm for separable

nonlinear least-squares problems.” IEEE Transactions on Automatic Control 64 (2): 526–537.
Ciregan, D., U. Meier, and J. Schmidhuber. 2012. “Multi-column deep neural networks for image classi-

fication.” In 2012 IEEE Conference on Computer Vision and Pattern Recognition, June, 3642–3649.
de Avila Belbute-Peres, F., K. Smith, K. Allen, J. Tenenbaum, and Z. Kolter. 2018. “End-to-end differen-

tiable physics for learning and control.” In Proc. Advances in Neural Information Processing Systems,
7178–7189.

Domke, J. 2012. “Generic methods for optimization-based modeling.” In Proc. Intl. Conf. Artificial
Intelligence and Statistics, 318–326.

Dongarra, J., J. Cruz, S. Hammarling, and I. Duff. 1990. “Algorithm 679: A set of level 3 basic linear
algebra subprograms: model implementation and test programs.” ACM Transactions on Mathematical
Software 16 (1): 18–28.

Dontchev, A., and T. Rockafellar. 2009. Implicit functions and solution mappings. Springer.
Donti, P., B. Amos, and Z. Kolter. 2017. “Task-based end-to-end model learning in stochastic optimiza-

tion.” In Proc. Advances in Neural Information Processing Systems, 5484–5494.
Douglas, J., and H. Rachford. 1956. “On the numerical solution of heat conduction problems in two and

three space variables.” Transactions of the American Mathematical Society 82 (2): 421–439.
Eigenmann, R., and J. Nossek. 1999. “Gradient based adaptive regularization.” In Proc. Neural Networks

for Signal Processing, 87–94.
Foo, C., C. Do, and A. Ng. 2008. “Efficient multiple hyperparameter learning for log-linear models.” In

Proc. Advances in Neural Information Processing Systems, 377–384.
Fu, J., H. Luo, J. Feng, and T. Chua. 2016. “Distilling Reverse-Mode Automatic Differentiation (DrMAD)

for Optimizing Hyperparameters of Deep Neural Networks.” arXiv preprint arXiv:1601.00917 .
Gauss, C. 1809. Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Vol. 7.

Perthes et Besser.
Golub, G. 1965. “Numerical methods for solving linear least squares problems.” Numerische Mathematik

7 (3): 206–216.
Golub, G., and V. Pereyra. 1973. “The differentiation of pseudo-inverses and nonlinear least squares

problems whose variables separate.” SIAM Journal on Numerical Analysis 10 (2): 413–432.
Golub, G., and V. Pereyra. 2003. “Separable nonlinear least squares: the variable projection method and

its applications.” Inverse problems 19 (2): R1.

20

Golub, G., and C. Van Loan. 2012. Matrix computations. JHU Press.
Griewank, A., and A. Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic

differentiation. SIAM.
Hansen, N., and A. Ostermeier. 1996. “Adapting arbitrary normal mutation distributions in evolution

strategies: The covariance matrix adaptation.” In Proc. IEEE Intl. Conf. on Evolutionary Computa-
tion, 312–317. IEEE.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media.

Hestenes, M., and E. Stiefel. 1952. Methods of conjugate gradients for solving linear systems. Vol. 49.
NBS Washington, DC.

Higham, N. 2002. Accuracy and stability of numerical algorithms. Vol. 80. Siam.
Hurter, Ferdinand, and Vero Driffield. 1890. “Photochemical investigations and a new method of deter-

mination of the sensitiveness of photographic plates.” Journal of the Society of the Chemical Industry
9: 455–469.

Innes, M. 2018. “Don’t Unroll Adjoint: Differentiating SSA-Form Programs.” In Workshop on Systems
for ML at NeurIPS 2018, .

Keerthi, S., V. Sindhwani, and O. Chapelle. 2007. “An efficient method for gradient-based adaptation
of hyperparameters in SVM models.” In Proc. Advances in Neural Information Processing Systems,
673–680.

Lall, S., and S. Boyd. 2017. “Lecture 11 Notes for EE104.” http://ee104.stanford.edu/lectures/

prox_gradient.pdf.
Larsen, J., C. Svarer, L. Andersen, and L. Hansen. 1998. “Adaptive regularization in neural network

modeling.” In Prob. Neural Networks: Tricks of the Trade, 113–132.
Lawson, C. 1961. “Contribution to the theory of linear least maximum approximation.” Ph.D. disserta-

tion .
Lawson, C., and R. Hanson. 1995. Solving least squares problems. Vol. 15. SIAM.
LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-based learning applied to document

recognition.” Proc. IEEE 86 (11): 2278–2324.
Legendre, A. 1805. Nouvelles méthodes pour la détermination des orbites des comètes.
Ling, C., F. Fang, and Z. Kolter. 2018. “What game are we playing? End-to-end learning in normal and

extensive form games.” In Intl. Joint Conf. on Artificial Intelligence, .
Ling, C., F. Fang, and Z. Kolter. 2019. “Large Scale Learning of Agent Rationality in Two-Player Zero-

Sum Games.” .
Lions, P., and B. Mercier. 1979. “Splitting algorithms for the sum of two nonlinear operators.” SIAM

Journal on Numerical Analysis 16 (6): 964–979.
Lorraine, J., and D. Duvenaud. 2018. “Stochastic Hyperparameter Optimization through Hypernet-

works.” arXiv preprint arXiv:1802.09419 .
Maclaurin, D., D. Duvenaud, and R. Adams. 2015a. “Autograd: Effortless gradients in NumPy.” In Proc.

ICML 2015 AutoML Workshop, .
Maclaurin, D., D. Duvenaud, and R. Adams. 2015b. “Gradient-based hyperparameter optimization

through reversible learning.” In Proc. Intl. Conf. on Machine Learning, 2113–2122.
Mairal, J., F. Bach, and J. Ponce. 2012. “Task-driven dictionary learning.” IEEE Transactions on Pattern

Analysis and Machine Intelligence 34 (4): 791–804.
Martinet, B. 1970. “Brève communication. Régularisation d’inéquations variationnelles par ap-

proximations successives.” ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique 4 (R3): 154–158.

Močkus, J. 1975. “On Bayesian methods for seeking the extremum.” In Proc. Optimization Techniques
Conf., 400–404.

Nesterov, Y. 2013. “Gradient methods for minimizing composite functions.” Mathematical Programming
140 (1): 125–161.

Nocedal, J., and S. Wright. 2006. Numerical optimization. Springer Science & Business Media.
Paige, C., and M. Saunders. 1975. “Solution of sparse indefinite systems of linear equations.” SIAM

journal on Numerical Analysis 12 (4): 617–629.
Paige, C., and M. Saunders. 1982. “LSQR: An algorithm for sparse linear equations and sparse least

squares.” ACM Transactions on Mathematical Software 8 (1): 43–71.

21

http://ee104.stanford.edu/lectures/prox_gradient.pdf
http://ee104.stanford.edu/lectures/prox_gradient.pdf

Parikh, N., and S. Boyd. 2014. “Proximal algorithms.” Foundations and Trends R© in Optimization 1 (3):
127–239.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, et al. 2019. “PyTorch: An imperative style, high-performance deep learning library.” In Proc.
Advances in Neural Information Processing Systems, 8024–8035.

Prechelt, L. 1998. “Early stopping-but when?” In Neural Networks: Tricks of the Trade, 55–69. Springer.
Rasmussen, C. 2004. Gaussian Processes in Machine Learning. Springer.
Ren, M., W. Zeng, B. Yang, and R. Urtasun. 2018. “Learning to reweight examples for robust deep

learning.” arXiv preprint arXiv:1803.09050 .
Rice, J., and K. Usow. 1968. “The Lawson algorithm and extensions.” Mathematics of Computation 22

(101): 118–127.
Shor, N. 1985. Minimization methods for non-differentiable functions. Vol. 3. Springer Science & Business

Media.
Smith, S. 1995. “Differentiation of the Cholesky algorithm.” Journal of Computational and Graphical

Statistics 4 (2): 134–147.
Snoek, J., H. Larochelle, and R. Adams. 2012. “Practical Bayesian optimization of machine learning

algorithms.” In Proc. Advances in Neural Information Processing Systems, 2951–2959.
Speelpenning, B. 1980. Compiling fast partial derivatives of functions given by algorithms. Technical

Report.
van Merriënboer, B., D. Moldovan, and A. Wiltschko. 2018. “Tangent: Automatic differentiation using

source-code transformation for dynamically typed array programming.” In Proc. Advances in Neural
Information Processing Systems, 6259–6268.

Wengert, Robert Edwin. 1964. “A simple automatic derivative evaluation program.” Communications of
the ACM 7 (8): 463–464.

Appendix A. Derivation of gradient of least squares solution

Consider the least squares solution map φ : Rk×n ×Rk×m → Rn×m, given by

θ = φ(A,B) = (ATA)−1ATB.

The goal is to find the linear operator DAφ(A,B) : Rk×n → Rn×m, i.e., the derivative of φ
with respect to A, and the linear operator DBφ(A,B) : Rk×m → Rn×m, i.e., the derivative of
φ with respect to B.

A.1. Derivative with respect to A

Here

DAφ(A,B)(∆A) = (ATA)−1∆ATB − (ATA)−1(∆ATA+AT∆A)θ,

since

φ(A+ ∆A,B) = ((A+ ∆A)T (A+ ∆A))−1(ATB + ∆ATB)

≈ (ATA)−1
(
I −∆ATA(ATA)−1 −AT∆A(ATA)−1

)
(ATB + ∆ATB)

≈ φ(A,B) + (ATA)−1∆ATB − (ATA)−1(∆ATA+AT∆A)θ,

where the approximation (X + Y)−1 ≈ X−1 − X−1Y X−1 for Y small was used, and higher
order terms were dropped. Suppose f = ψ ◦ φ and C = (ATA)−1∇θψ for some ψ : Rn×m → R.

22

Then the linear map DAf(A,B) is given by

DAf(A,B)(∆A) = Dθlsψ(DAφ(A,B)(∆A))

= tr
(
∇θψT

(
(ATA)−1∆ATB − (ATA)−1(∆ATA+AT∆A)θ

))
= tr((BCT −AθCT −ACθT)T∆A),

from which it can be concluded that ∇Af = (B −Aθ)CT −ACθT .

A.2. Derivative with respect to B

Here DBφ(A,B)(∆B) = (ATA)−1AT∆B, since

φ(A,B + ∆B) = φ(A,B) + (ATA)−1AT∆B.

Suppose f = ψ ◦ φ for some ψ : Rn×m → R and C = (ATA)−1∇θψ. Then the linear map
DBf(A,B) is given by

DBf(A,B)(∆B) = Dθlsψ(DBφ(A,B)(∆B))

= tr(∇θψT (ATA)−1AT∆B)

= tr((AC)T∆B),

from which it can be concluded that ∇Bf = AC.

Appendix B. Derivation of stopping criterion

The optimality condition for minimizing ψ + r is

∇ωψ + g = 0,

where g ∈ ∂ωr, the subdifferential of r. It follows from elementary subdifferential calculus that

tk∂r(ωk+1) + ωk+1 − ωk + tk∇ωkψ = 0,

which implies that

(ωk − ωk+1)/tk − gk ∈ ∂r(ωk+1).

Therefore, the optimality condition for ωk+1 is

(ωk − ωk+1)/tk + (gk+1 − gk) = 0,

which leads to the stopping criterion (7).

23

	Introduction
	Related work
	Automatic differentiation
	Argmin differentiation
	Variable projection method
	Unrolled optimization
	Hyper-parameter optimization

	Least squares auto-tuning
	Least squares problem
	Multi-objective least squares
	Solving the least squares problem

	Least squares tuning problem
	Solving the least squares tuning problem
	Computing the gradient
	Implementation
	Equality constrained extension

	Least squares data fitting
	Least squares data fitting
	True objective function
	Regression penalty function
	Classification penalty function

	Data weighting
	Regularization
	Feature engineering
	Scalar feature engineering functions
	Multi-dimensional feature engineering functions

	Test set and early stopping

	Numerical example
	MNIST
	Base model
	Regularization
	Feature engineering
	Data weighting
	Discussion

	Conclusion
	Derivation of gradient of least squares solution
	Derivative with respect to A
	Derivative with respect to B

	Derivation of stopping criterion

