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Abstract— This paper addresses the problem of finding
bounds on the optimal maximum a posteriori (or maximum
likelihood) estimate in a linear model under the presence of
model uncertainty. We introduce the novel concepts of at least
as likely as the maximum a posteriori (ALAMAP) estimate, or
at least as likely as the maximum likelihood (ALAML) estimate.
The concept is formulated in terms of a convex optimization
problem. We specifically make use of second order conic
programming techniques to compute the likelihood bounds in
an efficient manner. The procedure of computing the bounds is
illustrated by examples in state estimation (smoothing/filtering)
and in system identification.

I. INTRODUCTION

Many estimation problems in decision and control are
ill-conditioned. These include state estimation or trending,
identification of the system model parameters, and others.
Reliable estimation in the presence of noise, uncertainty and
ill-conditioning can be achieved by using a prior knowledge
of the unknown state. The maximum a posteriori (MAP)
estimate is based on this concept of using an a priori known
probabilistic distributions of the unknown state. Another
method of reliable computation of the estimates is through
robust estimation, which makes explicit use of the model
uncertainty, see [1], [2], [3], [4]. Tikhonov’s regularization
is another well known technique to overcome ill-conditioning
in the problem data, see [5], [6]. The MAP and robust
estimation techniques essentially provide a systematic way
of choosing the regularization for ill-conditioned estimation
problems.

While providing a regularized solution (no bad behavior
of the inverse along small singular values) it is not clear how
reliable is the estimate. The solutions may be very sensitive
to noise and perturbations in the data matrices. What are
the confidence bounds for such a maximum likelihood (ML)
solution? The answer is practically important to understand
how far the real parameters can be from the ML estimates.
We provide a novel approach of computing bounds for the
ML solution in the presence of data perturbations. The main
contribution of this work is to introduce the concept of at
least as likely as the maximum likelihood (ALAML) solu-
tion. The proposed approach is applicable to systems where
constrained linear state estimation is required in the presence
of bounded data uncertainty. A large class of estimation
problems result in a quadratic programming formulation, and
can be efficiently solved using numerical optimization to
compute the estimates.

The solution approach to the ALAML relies on con-
strained convex optimization based estimation. It provides
upper and lower likelihood bounds for the ML estimate under
uncertainty instead of computing the robust optimal solution.
Constrained estimation using numerical optimization has
been studied extensively, see [7], [8], [9]. However most
previous work in determining bounds for the ML solution
is done in the unconstrained least squares framework, where
ellipsoidal sets of all possible states consistent with the given
measurements are found. The work presented in this paper
is similar in spirit but the implementation in the constrained
framework requires additional tools that are provided by
second order conic programming (SOCP) techniques.

The paper is organized as follows; Section II explains
the problem statement of finding likelihood bounds under
uncertainty. The problem is formulated mathematically in
Section III, where we also propose a solution involving
second order conic constraints. The concept of at least as
likely as the maximum a posteriori estimate (ALAMAP) is
explained using a simple univariate example in Section IV.
Section V shows the application of the concept to monotonic
trending using constrained state estimation. The proposed
concept is applied to finite impulse response (FIR) model
identification in Section VI. Some concluding remarks are
given in Section VII.

II. TECHNICAL PROBLEM STATEMENT

In this work, we deal with linear state estimation problems
in the presence of sensor noise and data uncertainty. We
consider both the constrained and the unconstrained formula-
tions. The objective is to find meaningful confidence bounds
for the unknown state given some observed parameters.
The fundamental assumption in this paper is the linear
dependence of the observed parameters on the unknown
state. This data model can be conveniently expressed in the
form

y = Ax + e, (1)

where y ∈ R
m is the vector of observations, x ∈ R

n is
the vector of unknown state vector, and A ∈ R

m×n is the
known data matrix that defines the linear mapping between
the unknown state and the observed vector. e ∈ Rm is the
vector of noise sequence. The noise term is added in the
above data model to account for any modeling errors and
sensor noise.



The known data matrix A is in general allowed to be
time varying. The linear data model in (1) is useful for a
wide class of linear state estimation problems. It appears
in many practical applications related to data trending and
system identification. One case of interest is the trending of
fault parameters, where the unknown state x represents a
fault condition in a physical system. In the fault estimation
setting, the observed quantity y is referred to as the vector of
residuals, and the linear map A is the matrix of fault signa-
tures. It describes a linear dependence of the unknown faults
on the observed vector of residuals. For implementation of
the linear data model in practical trending applications, we
refer the reader to [10].

To obtain a statistically optimal estimate of the unknown
parameter vector x, such as the ML estimate or the MAP
estimate, we make use of the concept of conditional proba-
bility. The MAP estimate of the unknown vector x given y

is

MAP := arg max
x

px|y; (2)

where px|y denotes the conditional probability density of x

given the observed vector y. For px|y 6= 0, we define the
loss index J as the negative log-likelihood of the conditional
probability density, i.e.,

J(x) := − log px|y (3)
= − log py|x − log px + c, (4)

where (4) follows from (3) by a direct application of the
Bayes’ rule. The constant c = log py has no role in deter-
mining the MAP estimate, which is obtained by minimizing
the loss index J. The first term in the loss index, − log py|x,

depends on the noise sequence e in the data model (1). We
assume for now that the noise is uncorrelated gaussian with
zero mean and covariance Q, i.e.,

e ∼ N(0, Q). (5)

For this gaussian distribution of the sensor noise e, we can
substitute for the conditional probability density − log py|x.

The MAP estimate is then obtained by minimizing the loss
index

J(x) = [Ax − y]T Q−1[Ax − y] − log px (6)

Some other noise distributions that result in a convex loss
index can be handed accordingly. However, for the scope of
this work we limit our focus to the gaussian noise sequence.

It is evident from the loss index (6) that the MAP estimate
depends on the assumption we make about the probabilistic
distribution of the unknown state vector x. The MAP es-
timate reduces to the ML estimate if the initial condition
covariance is assumed very large. This is the case when
no a priori information is available about initial condition
distribution. We deal with a more broad problem formulation
where any a priori knowledge about the unknown state
can be incorporated in the form of constraints. In general,

the minimization of the loss index (6) may be subject to
constraints on the unknown state, which we represent as

x ∈ C, (7)

where we require C to be a convex set. This results in a
constrained quadratic programming (QP) problem. For the
examples in this paper, we are only interested in linear state
constraints for which C is a polyhedral set. The penalty
terms in the loss index are determined by − log px, e.g., an
assumed gaussian distribution of the unknown state results
in a quadratic penalty term which is explained in Section V.

The formulation in (6) assumes that the linear map is
known precisely over the entire interval of interest. Assume
that the resulting minimization yields the optimal estimate
x∗ and the corresponding minimum value of the loss index
J∗. In most practical applications, there is always some
uncertainty in the assumed linear map A. This uncertainty
can be due to a variety of reasons. The most common cause
of uncertainty is that all physical systems are inherently
nonlinear. The linearized model (1) is used only as an
approximation of the actual system. It is therefore natural
to deal with the imprecise nature of the linearization by
considering uncertainty in the linear map A. Our formulation
also accounts for any uncertainty in the observed vector y

due to possible sensor limitations.
Assuming that the matrix A and the vector y are not known
precisely, we introduce uncertainty parameters ∆A and ∆y

for the data matrix and the observed vector respectively. The
uncertainty is considered to be norm bounded. We assume
∆A to be of the same dimension as A. The individual
columns of the matrix ∆A account for the uncertainty in
the corresponding columns of the matrix A. For the problem
with model uncertainty

y −→ y + ∆y, (8)
A −→ A + ∆A. (9)

We consider the two uncertainty parameters to be norm
bounded, i.e.,

|∆y| ≤ ry, (10)
|∆A| ≤ rA, (11)

where rA := maxj=1,...,n

∑m
i=1 |∆aij |. The choice of norm

for the uncertainty bounds on ∆A and ∆y depends on the
specific nature of the problem. Typically we are interested
in the `∞ norm bound but in some applications the `1 or
`2 norm may be more suitable. The question of how far
the solution of the problem with uncertainty can be off the
nominal solution x∗ is addressed in this paper. We consider
a novel at least as likely as the MAP (ALAMAP) or at least
as likely as the ML (ALAML) setting. The choice depends
on whether we are interested in the MAP estimate, or we
have no a prior knowledge about the distribution px and
only require the ML estimate of the unknown state. In the
problem with model uncertainty, the loss index (6) becomes



a function of the parameters ∆A and ∆y. We consider a set
W such that

W = {(x,∆A,∆y) : J(x;∆A,∆y) ≤ J∗} , (12)

where J∗ is obtained from the optimal solution of the
nominal problem (6). We call it the ALAMAP or the ALAML
set. The set contains all the possible uncertainty parameter
values that yield an estimate of the unknown state which is
at least as likely as the optimal estimate x∗ for the nominal
model (6). For practical purposes we are interested in the
likelihood bounds or extreme points (worst case solution)
for a given uncertainty. We follow the approach of the next
section to compute these bounds.

III. SOLUTION APPROACH

We now mathematically formulate the problem of finding
the likelihood bounds for the unknown state given some
uncertainty in the problem data. Introducing the uncertainty
parameters ∆A and ∆y in the loss index (6), we get

J(x,∆A,∆y) = [(A + ∆A)x − y + ∆y]T Q−1

[(A + ∆A)x − y + ∆y] − log px,

(13)

Define a new uncertainty variable z ∈ R
m as

z := ∆Ax − ∆y. (14)

Substituting z in (6) yields

J(x; z) = [Ax + z − y]T Q−1

[Ax + z − y] − log px, (15)

To obtain the likelihood bounds in the presence of uncer-
tainty, the ALAMAP estimate problem can be formulated
as

min
x

cT x, (16)

subject to the following constraints

J(x; z) ≤ J∗ (17)
|z| ≤ rA|x| + ry. (18)

To obtain the upper bound we simply solve minx −cT x.

The row vector cT ∈ R
1×n is used to pick point wise the

components of x, and can be thought of as a unit vector along
the corresponding x. The minimization is also subject to any
original problem constraints on the unknown state, as given
in (7). To ensure the convexity of the problem, we replace
the decision variable x in constraint (18) by the optimal x∗

obtained from the nominal problem, i.e.,

|z| ≤ rA|x
∗| + ry (19)

The above simplification will yield an approximate solution
of the ALAMAP problem. The approximation can be im-
proved by replacing x∗ with the solution of the minimization
problem (16) in successive iterations.

We now show that the ALAMAP estimation is a convex
optimization problem. The objective (16) is linear. The
constraints on the state in (7) are assumed convex. The
uncertainty bound constraint in (19) is linear. If we can
cast (17) as a convex constraint then the likelihood bounds
can be easily obtained by solving a linear objective subject
to the convex constraints. We now show that (17) can be
formulated as a second order conic constraint. Second order
conic programming (SOCP) problems are well known in
optimization theory. For a detailed description of the SOCP
formulation, see [11]. Rewrite the first term in the loss index
(15) for the problem with uncertainty in terms of a new
matrix P ∈ R

m×(n+m+1) and a vector v ∈ R
n+m+1, where

P :=
[

A I −y
]

, (20)

v :=





x

z

1



 , (21)

where I ∈ R
m×m is the identity matrix. For notational

simplicity, assume unit covariance of the noise term e, i.e.,
Q = 1. The constraint (17) can now be conveniently written
as

J(x; z) = ‖Pv‖2 − log px ≤ J∗ (22)

The probabilistic distribution of the unknown state deter-
mines the second term in the above expression. In most
cases an assumed distribution of x results in either a linear
or a quadratic penalty term in the loss index. We define the
function f : Rn → R as

f(x) := − log px (23)

where f(x) is either a quadratic or a linear function of
the unknown state x. In its most general form, an SOCP
constraint is expressed as

‖Pv + b‖ ≤ aT v + d, (24)

where b ∈ R
m, a ∈ R

n, and d ∈ R can be chosen according
to the problem at hand. It is straight forward to see that the
constraints (19) and (22) can be easily incorporated as one
SOCP constraint of the form (24). Most state constraints (7)
are also captured by this SOCP formulation. The problem

The main contribution of this work is to introduce the
novel concept of ALAMAP or ALAML estimate and to
cast the problem of finding the likelihood bounds as a
minimization of a linear objective subject to convex (second
order conic) constraints. The convex optimization framework
allows for efficient computations of the bounds in a reason-
able amount of time. We now illustrate the concept by some
examples in the following sections.

IV. DESCRIPTION OF ALAMAP ESTIMATE

We now explain the concept of finding the estimate that
is at least as likely as the MAP estimate using a one
dimensional example. In this univariate case, y,A, x, and



e are all scalars. The assumed values for these scalars can
be thought of as the values of the quantities at a particular
instant during an interval of interest. The values chosen for
the simulation are; observed parameter y = 10, A = 1, unit
noise covariance for the noise e, i.e., Q = 1, The unknown
state x is assumed gaussian with zero mean and covariance
r. This implies that the term − log px in the loss index is
just a quadratic penalty rx2, where r is covariance of x.
We choose r = 10 for the MAP estimate in this simulation.
The nominal loss index for this case without uncertainty is
plotted using (6) and is shown in Fig. 1.

We now introduce uncertainty in this problem setup. We
assume the uncertainty ∆A to be bounded by rA = 0.1,
i.e., at most than 10% uncertainty in the given A. For this
example ∆y = 0 and z is simply ∆Ax. Limiting our
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Fig. 1. Nominal loss index J(x) with positive and negative uncertainty

attention to the worst case uncertainty, we first substitute
for ∆A = rA = 0.1, and then ∆A = −rA = −0.1 in the
uncertainty loss index (15). The two corresponding parabolas
are shown in Fig. 1 along with the loss index for the nominal
case.

The optimal value for the nominal loss index naturally
occurs at the vortex of the parabola. In this example x∗ is
0.9 and the corresponding optimal value of loss index is
J∗(x∗) = 90.9. The introduction of negative uncertainty,
∆A = −0.1, shifts the parabola upwards. This results in a
higher value of optimal loss index, i.e., J∗(x, z = −0.1x) >

J∗. In this case the constraint in (17) is not satisfied and
our set W in (12) of uncertainty parameters that yield an
estimate at least as likely as the nominal MAP estimate is
empty. On the other hand, when we consider the positive
worst case uncertainty ∆A = 0.1, the parabola J(x, z) is
shifted below the nominal parabola J(x). In this case, we
have a range of solutions that are at least as likely as the
nominal MAP solution x∗, and satisfy the constraint in (17).
It is therefore meaningful to find the likelihood bounds for
this point estimate by performing the minimization in (16).

For the case of positive worst case uncertainty z = rA|x|,
when our feasible set W is not empty, it is useful to get
an idea about the convexity of the constraint by plotting the

function J(x, z). The loss index J(x, z) in (15) is plotted in
the (x, z) plane. The result is shown in Fig. 2. The important
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Fig. 2. Quadratic J(x,z) surface in the (x,z) plane

thing to note about this region is that it is convex (quadratic).
This makes the constraint minimization (16) of finding the
point wise confidence bounds for the estimate a convex
optimization problem which is computationally feasible.

The problem of finding the estimate that is at least as
likely as the nominal MAP or ML estimate can be easily
explained by Fig 3. We find the level sets of J(x, z) that
satisfy J(x, z) ≤ J∗ = 90.9. A contour that satisfies the
equality is shown in Fig 3. The uncertainty bound z = rAx

is superimposed on the contour J(x, z) = J∗ in Fig. 3. The
uncertainty bound is satisfied by all the points below the
constraint line z = rx. As can be seen, there is a range of
solutions (x, z) that satisfy the constraint (17) and the set W

is not empty. There is a range of possible values for which
the estimate is at least as likely as the nominal MAP or
ML estimate and the extreme points that give the likelihood
bounds can be computed using the minimization in (16).
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V. APPLICATION TO MONOTONIC TRENDING

We now apply the concept of ALAML estimate to mono-
tonic trending. Monotonic trends are a priori known to in-



crease (or decrease) with time. This prior knowledge appears
in the form of constraints on the unknown state. Monotonic
trends are particularly common in a fault estimation setting.
The unknown trend may denote a gradually accumulating
fault state such as mechanical damage during the course
of a flight. For details about monotonic trending reference
to fault estimation, see [10], [12]. This example illustrates
the application of the concept of likelihood bounds to the
case of constrained state estimation, i.e., where the nominal
MAP or ML estimate cannot be obtained using least squares
formulation.
We consider a univariate formulation. Assume that the time
interval of interest is t = {1, . . . , N} for which we have the
known data sequence

y = {y(1), . . . , y(N)}. (25)

We take A to be an identity matrix of size N. The noise
distribution e is assumed to be gaussian with covariance Q =
1. The sequence y (observed raw data) is generated by adding
random noise to an underlying monotonic trend as shown in
Fig. 4. There are N = 25 time samples for this simulation.

The monotonic trending problem is to estimate the un-
known state x, where

x = {x(1), . . . , x(N)}, (26)

given the observed sequence y and the data matrix A. Each
diagonal entry of A represents the linear relationship between
the unknown state x(t) and the observed parameter y(t) at a
particular instant. For a linear time invariant state estimation
problem, all the entries of the diagonal of A are the same. In
this example we consider a one sided gaussian distribution
for the unknown state x. If the covariance of the state is r,

then the penalty term in the loss index (6) reduces to

− log px =

N
∑

t=2

r[x(t) − x(t − 1)]2, (27)

We choose r = 1 in this example. The initial state covariance
is assumed large, i.e., no prior knowledge is available about
the state x(0). As a result we are interested in computing
the ML estimate. The loss index (6) is minimized subject to
the monotonic state constraints

x(t + 1) ≥ x(t). (28)

This is a linearly constrained quadratic programming (QP)
problem which yields the ML estimate for the nominal
uncertain model. The nominal ML estimate is shown in
Fig. 4. We introduce uncertainty parameters ∆A and ∆y

to compute the likelihood bounds. The bounds are chosen to
reflect a 10% uncertainty in the measured y and the known
map A, i.e., worst case ∆A = 0.1A and the worst case
∆y = 0.1y. The likelihood bounds obtained by solving the
minimization in (16) subject to the constraints (17), (19)
and the state constraints (28) are shown in Fig. 4. The
likelihood bounds can be made tight or loose depending upon
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Fig. 4. Likelihood bounds for constrained state estimation

the magnitude of the allowed uncertainty. Fig. 5 shows a
comparison of the likelihood bounds for uncertainty of 10%
and 20%. The bounds for 10% uncertainty are much tighter
as expected. The uncertainty bounds rA and ry can thus
be used as tuning parameters to obtain different likelihood
bounds.
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Fig. 5. Likelihood bounds for two uncertainty levels

VI. APPLICATION TO SYSTEM IDENTIFICATION

We now apply the concept of ALAML to estimate a mov-
ing average (MA) or finite impulse response (FIR) model.
We measure input u(t) and output y(t) for t = 0, . . . , N of
unknown system. The system identification problem deals

u yh

Fig. 6. System identification schematic

with finding a reasonable model for a system based on
measured input output data u, y. We illustrate the ALAML
concept by an example of scalar input u and output y. The
vector case is handled readily.



Consider a moving average model with n delays

y(t) = h0u(t) + h1u(t − 1) + · · · + hnu(t − n) (29)
where h0, . . . , hn ∈ R. We can write the model or predicted
output as
2
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y(N)
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3

7

7

7

7
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+ e (30)

The above model is in the standard linear state estimation
form (1). These models arise in a variety of different appli-
cations. The objective is to find the likelihood bounds for the
FIR kernel h. The input and output pair used for simulation is
shown in Fig. 7, where N = 12. Assuming a unit covariance
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Fig. 7. Input and output for MA model

for the nose e, we are interested in estimating a model
with n = 10 delays. The solution obtained through an over
determined least squares (LS) problem is used to predict
the nominal model output shown in Fig. 8. The likelihood
bounds are obtained using a 10% uncertainty bound on the
uncertainty in the vector y and the matrix of inputs u. The
upper and lower bounds are shown in Fig. 8 along with the
outputs from the actual MA model. In practice, the model
order selection is an important consideration and may effect
the likelihood bounds as well. However here we knew the
actual model had n delays and so the issue of model order
selection was not explored.

VII. CONCLUSION

In this paper we introduce the concept of ALAMAP (or
ALAML) estimate in the presence of data uncertainty for
constrained linear state estimation problems. The presented
concepts are illustrated by application to FIR model iden-
tification and monotonic trending. The approach is based
on convex optimization techniques and casts the problem in
terms of minimization of a linear objective subject to second
order cone constraints. The computed likelihood bounds can
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Fig. 8. Likelihood bounds for MA model predicted outputs

be tuned by varying the uncertainty bounds specified for a
particular problem.
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