Maximizing a Sum of Sigmoids

Madeleine Udell Stephen Boyd
May 5, 2014

Abstract

The problem of maximizing a sum of sigmoidal functions over a convex constraint
set arises in many application areas. This objective captures the idea of decreasing
marginal returns to investment, and has applications in mathematical marketing, net-
work bandwidth allocation, revenue optimization, optimal bidding, and lottery design.
We define the sigmoidal programming problem and show how it arises in each of these
application areas. We show that the general problem is NP-hard, and propose an ap-
proximation algorithm (using a branch and bound method) to find a globally optimal
approximate solution to the problem. We show that this algorithm finds approximate
solutions very quickly on problems of interest. To illustrate the power of this approach,
we compute the optimal positions which might have allowed the candidates in the 2008
United States presidential election to maximize their vote shares.

1 Introduction

1.1 Overview

The ability to efficiently solve large classes of convex optimization problems has enabled
many of the greatest advances in operations research, machine learning, and control. By
posing problems as convex programs, researchers and practitioners are able to take advan-
tage of standard and scalable solvers which allow them to quickly find a global solution to
their problems. When confronted with a non-convex problem, researchers may be tempted
to give up hope of finding a global solution, and instead rely on heuristics and local optimiza-
tion procedures. However, the quality of the solution obtained in this manner is generally
unknown.

In this paper, we define a class of non-convex, NP-hard problems which we call sigmoidal
programs, and describe an algorithm to find provably optimal global solutions. A sigmoidal
program resembles a convex program, but allows a controlled deviation from convexity in
the objective function. The framework that we present for sigmoidal programming is general
enough to capture a wide class of objective functions, and any convex constraint set.

Our algorithm for sigmoidal programming relies on the well-known branch and bound
method for non-convex optimization (Lawler and Wood 1966, Balas 1968). We compute
upper and lower bounds for the sigmoidal programming problem by relaxing it to a tractable
convex program. These upper and lower bounds are used as the basis of a recursion that
eventually converges to the global solution to the problem. Sigmoidal programming derives
its speedy performance in practice from the ease with which the convex relaxation may be
computed. The time required to compute a solution using our proposed algorithm is a small
multiple of the time required to solve a linear program, for problems that are “almost”
convex programs or for problems with a small number of constraints.

Our main contributions in this paper are the identification of SP as a broad problem
class with numerous applications; a method for constructing concave envelopes of sigmoidal
functions, which makes the branch and bound approach computationally feasible; and a
self-contained proof of convergence. We have also released an associated software package,
sigopt, which implements the algorithm described here.

1.2 Outline

We first define the class of functions and problems that can be optimized using sigmoidal
programming. We move on to applications in §3, and give a few examples of domains in
which sigmoidal programming may be useful, and we discuss related work in §4. In §5
we prove the problem class is NP-hard, and give some results on approximability of SP.
We describe our method for solving sigmoidal programming problems in §6, and we report
numerical results in §7. In Appendix A, we prove that our method always converges to the
optimal solution in (worst-case) exponential time.

2 Problem definition

In this paper, we consider the sigmoidal programming problem

maximize Z:-L:l fi(ws) (1)
subject to x € C,

where f;(z) : [l,u] — R is a sigmoidal function for each i, and the variable z € R" is
constrained to lie in a nonempty bounded closed convex set C.

A continuous function f : [[,u] — R is defined to be sigmoidal if it is either convex,
concave, or convex for x < z € [l,u| and concave for z > z for some parameter z € R (see
Figure 1).

concave

convex

Figure 1: A sigmoidal function with inflection point at z.

2.1 Sigmoidal functions

Sigmoidal functions arise in a number of modeling contexts. We note first that all con-
vex, concave, and affine functions are sigmoidal, according to our definition. The class
also includes those functions whose graphs are “s-shaped”, including the logistic function
logistic(z) = exp(x)/(1 + exp(x)), and the error function erf(z) = 2/y/7 [exp(—t*)dt.
More generally, the cumulative distribution function (CDF) of any bounded quasi-concave
probability distribution is sigmoidal. See Figure 2 for a few examples of sigmoidal functions.

Statistical models. Sigmoidal functions arise in the guise of CDFs in machine learning
models for binary events. For example, if the probability of winning an auction or an election
is fit using a logit or probit model, then that model gives the probability of winning as a
sigmoidal function of the control parameters used to fit the model, such as money or time
invested. The problem of winning a number of auctions or votes from separately modelled
groups then becomes a sigmoidal programming problem.

A%
V)

Figure 2: A few examples of sigmoidal functions.

Utility functions. In economics, the idea that curvature of the utility function might
change sign dates back at least to Friedman and Savage (1948), who considered utility
functions that were concave at low and high income levels, and convex in between (see Figure
3). They argued that the eponymous Friedman-Savage utility function might explain the
willingness of a person to buy insurance for large losses (concave utility for losses) while also
playing the lottery (convex utility for medium gains). The concavity of the utility function
for extremely high gains was used to explain why lottery prizes are typically divided into
many prizes of roughly similar size, as though to extend the income offered by the prize only
to the upper limit of the convex portion of the utility curve. The Friedman-Savage utility
function can be written as the sum of two sigmoids using the decomposition given below in
equation (2). More recently, prospect theory has also posited sigmoidal utility functions for
similar reasons (Kahneman and Tversky 1979, Tversky and Kahneman 1992). Hence the
classical problem of societal utility maximization may be viewed as a sigmoidal programming
problem.

Figure 3: A Friedman-Savage utility function.

Step functions. Sigmoidal functions may also be used to approximate a step function to
any arbitrary accuracy: for example, the admittance function

0 z <0
flz)=12 z/e O<z<e,
1 T > €

which approximates a step function arbitrarily well as e — 0, is sigmoidal for any € > 0.
Sigmoidal functions that approximate a step function can be used to describe the utility from
goods that are only useful in sufficient quantities, such as communications bandwidth for
videoconferencing, or votes in a first-past-the-post election. Thus the problems of network
bandwidth allocation and of winning elections in an electoral college system fit naturally in
the sigmoidal programming paradigm.

Economies of scale. Sigmoidal functions aptly describe the profits of a firm that enjoys
economies of scale as it increases to a moderate size and diseconomies of scale when it grows
excessively large.

Everything else. It is worthwhile noting that while our definition of a sigmoidal function
allows for only one inflection point, there is also a simple reduction of a known-inflection-
point problem to a sigmoidal programming problem. Any function whose k inflection points
are all known may be written as the sum of k£ — 1 of sigmoidal functions.

For example, if f : [I,u] — R is convex on [[, z1], concave on [z1, 5], and convex on [z, ul,
then f may be written as

f(@) = filz) + fa(2)

where f; and fy are both sigmoidal, i.e.,

_J f@) = 1/2f(22) (% — 22) z < 2
hie) = { f(22) +1/2f"(z0)(x — 22) @ > 2

_ 1/2f/(22)(93 - 22) T < 29
falo) = { F) =) — 120 (o)t — 22) @ > 2

(see Figure 4). (Note that we must add a constraint requiring the arguments of f; and fs to
be equal in order to fit the standard form SP.) It is also easy to search for inflection points
z numerically using bisection.

Hence an algorithm for sigmoidal programming is effectively an algorithm for optimizing
sums of functions with known curvature. Furthermore, sums of sigmoidal functions of the

form
Z filay + b;)
i=1,....,n

are dense in the space of continuous functions on a bounded domain D C R™ (Cybenko
1989). Hence we can approximate any continuous function arbitrarily well by a suitably
large linear combination of sigmoidal functions f;(z;) if we add to the problem the affine
constraint x = Ay + b for some y € R™.

200 T T T T T T T

150_ ‘z_
100 |- . <7
50F T~ e s
= s _

—50 |

—100 \M
7 ~

—150 |- s =~ o .

200 =~ -

—250 | | | | | | |
—-10 =5 O 5 10 15 20 25 30

Figure 4: Decomposition of a function with two inflection points into two sigmoidal
functions. The function f (solid line) is the sum of f; (dashed line) and fo (dot-
dashed line).

3 Applications

In this section, we give a few applications of sigmoidal programming. The paradigm of
sigmoidal programming is particularly well suited to solve allocation problems, in which
a decision maker seeks to allocate a number of scarce resources between several objectives.
Allocation problems arise naturally as a consequence of a decision maker’s desire to maximize
the positive outcomes of each of a number of different models, subject to resource constraints.

3.1 Machine learning models

For example, suppose an agent wishes to target each of n groups, with populations p; > 0,
t = 1,...,n. The agent might be an advertising agency seeking to win market share, a
political campaign seeking to win votes, a public health agency seeking to prevent disease,
or a law enforcement agency seeking to detect criminal activity. The agent has access to a
model for the efficacy of his actions on each group that depends on the quantity of a number
m of scarce resources allocated to each group. This model gives the expected proportion
fi(wly;) of the group i for which the agent will be successful as a sigmoidal function f; of
a linear combination of the resources y; € R™ allocated to that group, where w; € R™ and
fi : R — R are parameters of the model, which we assume are given, and characterize the
expected reaction of each market segment to the agent’s actions. We may have a constraint
on the total amount of each resource allocated,

i=1

for some Y € R™, and also a constraint on how much of each resource may be used for each

group,
ymmgyigymaxa Z.:17"'7”7

where y™, ™8 ¢ R™. The expected population that will be swayed by the agent’s actions,
summed over all groups, is

Zpifi(’wiTyi)-

The problem is to choose y so as to maximize this quantity.

We can write this problem as a standard form sigmoidal programming problem using
an auxiliary variable x whose 1th component represents the linear combination of resources
wly;. The problem can be written as

maximize Y . p;fi(z;)
subject to Z:L v <Y
yrt <y <yt di=1,...n

3.2 Cumulative distribution functions

Sigmoidal functions can arise as the cumulative distribution function of any quasi-concave
probability distribution. We show in this section how to cast an optimal bidding problem as
a sigmoidal programming problem.!

A bidder at an auction has a budget of B with which to bid on n different goods. The
bidder privately believes that each good has a value v;, i = 1, ..., n, and models the likelihood
of winning the item as a sigmoidal function f; of the bid b;, ¢ = 1, ..., n. The value derived by
the bidder from a given bid is the expected profit from that bid, (v; — b;) f;(b;). The bidder
will not tolerate a negative expected profit, so we restrict our attention to bids b; < v,
1=1,...,n.

The problem is to maximize the total expected profit,

n

> (= b) fi(by),

=1

subject to the limits on the bid values, > b; < Band b; <v;, i =1,...,n.
It is a simple exercise in univariate calculus to show that

(vi — bi) fi(Ds)
is sigmoidal on the interval (—oo,v;) if f; is a sigmoidal CDF for every i = 1,... n.
Lottery design. We note that the opposite problem may also be of interest: that of

designing a lottery or auction system that maximizes profit to the proprietor. Friedman and
Savage (1948) argue that the curvature of the utility function implies that there is a unique

"'We thank AJ Minich for developing this formulation of the optimal bidding problem in his class project
for EE364b (Spring, 2011) at Stanford.

prize amount that lotteries ought to offer to maximize profit. The fact that lotteries often
split their top prize into two or three equally sized prizes is evidence for their conjecture.
Using sigmoidal programming, we can quantitatively test this theory. Suppose that all
people have the same utility curve f(z) as a function of income x. (This assumption makes
no difference to the argument, but simplifies the notation.) The expected utility a person
derives from a lottery ticket with prizes x; > 0,7 =1,...,n, and a cost per ticket ¢ > 0 is

Participants will be willing to buy tickets for the lottery so long as the expected utility gain
of participating is positive. The profit of the proprietor of the lottery is given by nc—3y | z;.
Hence a given profit P is feasible if the optimal value of the problem

maximize Y ., f(z; —c¢)

subject to nc—3 ", x; > P
.’L’ZEO, izl,...,n
c>0

is greater than zero. This problem can be transformed into a sigmoidal problem by decom-
posing the utility function into sigmoidal functions and introducing auxiliary variables, as
was shown in §2.1.

The proprietor of the lottery maximizes his profit by finding the largest value of P such
that the optimal value of (3.2) is positive, which can be computed by solving a sequence of
sigmoidal programming problems to find a maximal P. Conversely, economists might use
sigmoidal programming to infer the shape of lottery players’ utility functions from a schedule
of prizes.

3.3 Economies of scale

Sigmoidal functions also arise naturally in problems involving economies and diseconomies
of scale. We give an example from revenue optimization.

A firm expects to enjoy economies of scale in the production of each of n goods, leading
to increasing marginal returns as the amount of each good produced increases. However, the
total market for each finished product is finite, and as the quantity of the good produced
increases, the marginal return for each product will diminish or even become negative. The
characteristic shape of the revenue curve is given by a function f; for each good i =1,...,n,
which is concave for large production volume, when the beneficial economies of scale are
outweighed by the negative price pressure due to market saturation. The total expected
revenue from product 7 if a quantity y; of the good is produced is f;(y;).

The quantity of each good produced is limited by the availability of each of m inputs,
which might include money, labor, or raw materials. The plant has access to a quantity z;
of each input j = 1,...,m, and can choose to allocate a;; of each input j to the production
of each good i =1,...,n,so long as > 1" a;; < z;. The firm requires 7;; of input j for every

8

input j = 1,...,m to produce each unit of output 7, so the total production y; is always
controlled by the limiting input,

Yy <minvya; 1=1,...,n.
J

The firm may also be subject to sector constraints limiting investment in each of a number
of sectors either in absolute size or as a proportion of the size of the firm. These constraints

can be written, respectively, as
Ay <b

or
Ay <6117y,

where A is a matrix mapping outputs y into sectors, b gives absolute constraints on the size
of each sector, ¢ is the maximum proportion of the total output that may be concentrated
into any single sector, and 1 is the vector of all ones.

The total revenue of the firm can be written as

R = Z fi(i)-

The problem is to choose y (subject to the input and sector constraints) so as to maximize
R.

3.4 Network utility maximization

Sigmoidal programming has previously received attention as a framework for network utility
maximization (NUM). Fazel and Chiang (2005) consider the problem of maximizing the
utility of a set of flows through a network G = (V, E'), where the utility of a flow is a sigmoidal
function of the volume of the flow, and each edge e € F is shared by many flows ¢ € S(e)
in the network. Here, we let z; denote the volume of each flow i = 1,...,n and f;(z;) the
utility of that flow, while c(e) gives the capacity of edge e. Fazel and Chuang consider only
utilities that are expressible as polynomials f;, which are required by their solution method.
Using sigmoidal programming, one can solve NUM problems with polynomial utilities, but
we can also solve problems in which utilities take other (sigmoidal) forms. We might take
the utility to be an admittance function,

0 <0
flz)y=¢ z/e 0O0<z<e
1 T > €.

For example, the utility of network bandwidth to be used for videoconferencing or other
realtime applications is nearly zero until a certain flow rate can be guaranteed, and saturates
when the application is able to send data at the same rate as it is produced.

The NUM problem is to maximize the total utility of the flows > " | f;(z;) subject to
the bandwidth constraints 3, ¢y i < c(e). Define the edge incidence matrix A € RIEn
mapping flows onto edges, with entries a.;, i = 1,...,n, e € E. An entry a.; = 1if i € S(e),
i.e., if flow ¢ uses edge e, and 0 otherwise. We write the NUM problem as

maximize Y ., fi(z;)
subject to Az <c¢
x> 0.

4 Related work

While our treatment of sigmoidal programming problems as a distinct problem class is new,
our methods have deep historical roots. Below, we review some of the previous work for
readers interested in a more thorough treatment of these topics.

Branch and bound. The branch and bound method for solving non-convex optimization
problems has been well-known since the 1960s; see, for example, Balas (1968) for a brief
overview of the branch and bound method applied to problems with discrete optimization
variable, or Lawler and Wood (1966) for a more detailed review of the general method with
continuous and discrete examples.

Nonconvex separable problems. A number of authors working before the advent of
fast routines for convex optimization examined the possibility of using branch and bound
techniques to solve nonconvex separable problems (McCormick 1976, Falk and Soland 1969).
As in this paper, the authors suggested the use of convex subproblems based on convex
envelopes as part of a larger branch and bound routine; but these papers did not give com-
putationally efficient routines for computing the convex envelopes of the general univariate
functions f; they consider.

Convex optimization. In this paper, we treat convex optimization methods as an oracle
for solving the subproblems that emerge in the iterations of the branch and bound method.
That is, we compute the complexity of our algorithm in terms of the number of calls to
a convex solver. The reader unfamiliar with convex optimization might consult Boyd and
Vandenberghe (2004) for a comprehensive treatment of these methods and their applications.
Linear programming solvers suffice as oracles for the applications we describe, all of which
have only linear constraints; however, our convergence results and the algorithm presented
encompass more general convex constraints, such as second order cone (SOCP) or semidefi-
nite (SDP) constraints. Many fast solvers for LP, SOCP, and SDP are freely available in a
variety of programming languages. See, for example, cvxopt (Andersen et al 2013), SeDuMi
(Sturm 1999), SDPT3 (Toh et al 1999), and GLPK (Makhorin 2006).

10

Sigmoidal programming. To our knowledge, this paper presents the first unified ap-
proach to sigmoidal programming, and the first use of the branch and bound technique to
globally optimize sigmoidal programming problems by solving a sequence of convex subprob-
lems. However, other authors have previously considered special cases of the problem. For
example, Fazel and Chiang (2005) explore an algorithm to compute global bounds on the
optimal value of sigmoidal programming problems in the particular case of network utility
maximization (NUM), though their method requires objective functions to be polynomi-
ally representable. They compute an upper bound on the optimal value using a sum of
squares decomposition (Parrilo 2003), and a lower bound via a method of moments relax-
ation (Lasserre 2001, Henrion and Lasserre 2005), which are both found by solving an SDP.
The quality of the bounds is controlled by the degree of polynomial allowed in the SDP;
they find a small degree generally gives fine accuracy. However, even for small degrees, the
complexity of these SDPs grow so quickly in the number of variables in the problem that
all but the simplest problems are prohibitively expensive to solve. For example, the largest
numerical example in (Fazel and Chiang 2005) has only 9 variables and 7 constraints.

Difference of convex programmming. Difference of convex (DC) programming (Horst
et al 2000) can also be used to solve sigmoidal problems. The DC technique allows global
optimization of a difference of (multivariate) convex functions. It is easy to see that sig-
moidal functions can be written in this form (using a decomposition technique similar to
equation (2)). However, known algorithms for DC programming require the solution of a
sequence of (possibly) exponentially many NP-hard subproblems (Horst et al 2000), whereas
the algorithm for sigmoidal programming presented here requires, even in the worst case,
only the solution of exponentially many convex (and hence polynomial-time computable)
subproblems.

5 Complexity

Hardness of sigmoidal programming. It is easy to see that sigmoidal programing is
NP-hard. For example, one can reduce integer linear programming,

find x
subject to Ax =0
z € {0,1}",

which is known to be NP-hard (Karp 1972), to sigmoidal programming:

maximize Y ., g(z;) = x;i(x; — 1)
subject to Ax =b
0<z, <1, i=1,...,n,

where g(z) is a function chosen to enforce a penalty on non-integral solutions, e.g., g(z) =
x(xz — 1). Then the solution to the sigmoidal program is 0 if and only if there is an integral
solution to Ax = b.

11

Approximation guarantees. However, sigmoidal programming works extremely well for
problems with a small number of linear constraints. Suppose that

C={z]| Az <b, Gz = h},

with A € R™*", so there are m, linear inequality constraints, and G' € R"?*", so there are
my linear equality constraints. Let m = my + my be the total number of constraints.

In a related paper (Udell and Boyd 2014), the authors show that it is possible to obtain an
approximate solution for SP in polynomial time whose quality depends only on the number
of constraints and the non-convexity of the functions f;, and not on the dimension n of the
problem. They define the nonconvezity p(f) of a function f: S — R to be

plf) = sup(f(x) - f(2)),

They suggest approximating a solution to SP by solving a convex relaxation of the original
problem. The approximation error of this solution is bounded by

min(m,n)

Z P
i=1

where we define py; to be the ith largest of the nonconvexities p(f1),...,p(f). Hence for
problems that are close to convex (i.e., pp is small), or with very few constraints or variables
(i.e., m or n is small), we can expect that we can find a good approximate solution in a very
small number of iterations. We take advantage of this property in the algorithm presented
below.

The ease of solving sigmoidal programming problems with a small number of constraints
makes this approach particularly well suited to solve allocation problems with a small number
of resources. Indeed, we will see in §7 that all of the numerical examples we consider
(including a problem with 10,000 variables) can be solved to very good accuracy in a few
tens of iterations.

6 Method

The algorithm we present for sigmoidal programming uses a concave approximation to the
problem in order to bound the function values and to locate the local maxima that are high
enough to warrant consideration. In the worst case we may solve exponentially many convex
optimization problems, but frequently we find bounds that are sufficiently tight after solving
only a small number of concave subproblems. Furthermore, we may terminate the algorithm
at any time to obtain upper and lower bounds on the possible optimal value, along with a
feasible point that realizes the lower bound.

12

Branch and bound. The branch and bound method (Lawler and Wood 1966, Balas
1968, Balakrishnan et al 1991) is a recursive procedure for finding the global solution to
an optimization problem restricted to a bounded rectangle ;.. The method works by
partitioning the rectangle Q)i into smaller rectangles () € Q, and computing upper and
lower bounds on the value of the optimization problem restricted to those small regions.
Denote by p*(Q) the optimal value of the problem

maximize Z?:l fi(x;) (2)
subject to z€CNQ

for any rectangle () € Q. The global optimum must be contained in one of these rectangles,
so if U(Q) and L(Q) denote the upper and lower bounds on p*(Q),

L(Q) < p(Q) <U(Q),

then

max L(Q) < p*(Qumit) < max U (Q).

The method relies on the fact that it is easier to compute tight bounds on the function
value over small regions than over large ones. Hence by branching (dividing promising regions
into smaller subregions), the algorithm obtains global bounds on the value of the solution
that become arbitrarily tight.

Bound. Insigmoidal programming, we quickly compute a lower and upper bound on p*(Q)
by solving a convex optimization problem. Let) = I; X - - - x I, be the Cartesian product of
the intervals Iy, ..., I,. For each function f;, ¢ = 1,...,n in the sum, suppose that we have
a concave upper bound ﬁ on the value of f; over the interval I;,

~

filz) > filx), =z € 1,.

Let (@) be the solution to the problem

maximize Z?:I fz(%)
subject to z € CNQ.

Then .
P(Q) <) filx(Q) = U(Q),
i=1
which gives an upper bound U(Q) on the optimal value. (Note that Problem 6 could be
infeasible, in which case we know that the solution to the original problem cannot lie in @).)

To construct a lower bound, note that the value of the objective at any feasible point
gives a lower bound on p*(@), and so in particular,

M@zZMW@Kﬁ@-

13

Theorem 2 from Udell and Boyd (2014) guarantees that these bounds satisfy

min(m,n)

U(Q) - L(Q) < Z Pl

where

p(f) = sup(f(x) = f(x))
reQ
and pp;) to be the ith largest of the nonconvexities p(f1), ..., p(fn). As the algorithm proceeds,
the size of the rectangles decreases, and so U(Q) — L(Q) also decreases.

Concave envelope. If we choose fz to be concave, then subproblem (6) is a convex opti-
mization problem, and can be solved efficiently (Boyd and Vandenberghe 2004). The tightest
concave approximation to f is obtained by choosing f to be the concave envelope of the func-
tion f, which is defined as the pointwise infimum over all concave functions g that are greater
than or equal to f. For a sigmoidal function, the concave envelope is particularly easy to
calculate. We can write f of f piecewise as

w—l

fw)—f W) () v < w
(x):{f(l)Jr (x—1) I<z<

for some w > z (see Figure 5). The point w can easily be found by bisection: if x < w, then
the line from (I, f(I) to (z, f(x) crosses the graph of f at = (from lying above the graph to
lying below); if z > w, it crosses in the opposite direction.

Figure 5: The concave envelope f (dashed line) of the logistic function f (solid
line).

When all the constraints are linear, it may be convenient to construct a piecewise linear
concave upper bound on the function f, and to maximize this piecewise linear upper bound
instead of the concave envelope (see Figure 6). In this case, if C is a polyhedron, the

14

computation of upper and lower bounds on p*(Q) reduces to a linear programming problem
(Boyd and Vandenberghe 2004).

A piecewise linear bound f with sup, f (z)— f(x) < e may be constructed as the minimum
of the set of lines tangent to the graph of f at each point z; in S = {I}US for any S C [w, c0).
(If f is not differentiable at z; € S, then any line tangent at z; will work.) Since the maximum
error f (z) — f(x) in the approximation must occur where adjacent lines intersect, the points
of intersection may be added to the set S” until the maximum error is less than e.

Figure 6: A piecewise linear approximation (dashed line) to the concave envelope
of the (solid line) logistic function.

Branch. The concave envelope of f over the interval (I,u) is equal to f at [and u, and
in general will lie closer to f on small intervals, or on intervals over which f is less strongly
convex (closer to linear). These properties allow us to find tighter bounds on the optimal
value of the problem over a smaller region than over a larger one, with the size required to
find a bound of a given tightness controlled by the convexity of the function. Hence, we
branch by splitting the rectangle with the largest upper bound along the coordinate ¢ with
maximum error ¢ = f;(23(Q)) — f;(23(Q)) into two subrectangles that meet at 2*(Q). The
concave approximation of f; on the subrectangles is then exact at 27(Q), so that each branch
maximally reduces the error at the previous solution.

Convergence. FEach cut reduces the error by at least a factor of 1/n, so only a finite
number of cuts need be made before a given error tolerance is achieved. In Appendix A,
we use this ideas to show that the number of concave subproblems that must be solved to
achieve accuracy €4* is bounded by

(-])

=1

15

where Qinix = (I1,u1) X -+ X (ln,), 2; = argmaxy,] hi(x) for i = 1,...,n, and fi(z) =
flf hi(t) dt for some upper semi-continuous quasi-concave function h; : R — R (which always
exists, if f; is sigmoidal).

Pruning. If maxgeg L(Q) > U(Q'), we know with certainty that the solution is not in
rectangle)', and we may safely delete rectangle @' from the list. In this case we say that
rectangle Q' has been pruned. Conversely, we use the notion that a rectangle is active
to mean that the possibility of finding the optimum in that rectangle has not been ruled
out. The list of active rectangles maintained by the branch and bound algorithm then has
an interpretation as the set of rectangles in which one is guaranteed to find at least one
point for which the value of the objective differs from the optimal value by no more than

maxgeo U(Q) — MaXgQeQ L(Q)

6.1 Extensions

Sums of sigmoidal functions. It is worthwhile noting that the algorithm given above
may be applied to other problem classes. The only requirement of the algorithm is the ability
to construct a concave upper bound on the function to be maximized on any rectangle, which
becomes provably tight as the size of the rectangle decreases. Hence this algorithm may be
applied not only to sums of sigmoidal functions, but to sums of other functions with other
convexity properties.

We showed in the introduction that any univariate function with known regions of con-
vexity and concavity can be written as a sum of sigmoidal functions. However, applying this
algorithm directly to the original function might result in more tight concave approxima-
tions, and hence a faster rate of convergence. Conversely, we might decompose a sigmoidal
function into one convex and one concave function, and apply the algorithm directly to these.
However, the concave envelope of the convex function over the region will never be tighter
than the concave envelope of the sigmoidal function. Hence the algorithm is unlikely to
converge more quickly.

Penalty functions. Our method also extends to problems of the form

maximize Y . fi(z;) + ()
subject to z € C,

where ¢ is a concave reward function.

7 Numerical examples

All experiments were conducted on a desktop computer with a 3 GHz Intel Core 2 Duo
processor, running Mac OS X 10.8.

16

7.1 Bidding example

As our first numerical example we consider an instance of the bidding problem given in §3.2.
In Figure 7, results are shown for an example in which

fi(bi) = logistic(a;b; + B;) — logistic(5;),

with v; drawn uniformly at random from the interval [0,4], a; = 10, 5; = —3v;, and B =
237" v, fori = 1,...,n. Each graph represents one variable and its associated objective
function (solid line) and concave approximation (dashed line) on the rectangle containing
the solution. The solution x7 for each variable is given by the x coordinate of the red X. The
rectangle containing the solution is bounded by the solid grey lines and the endpoints of the
interval. For n = 36, the solution even after the first iteration is quite close to optimality,
and the sigmoidal programming algorithm reaches a solution within € = .01 of optimality
after solving only 17 convex subproblems. Notice that the solution lies along the concave
part of the curve, or at the lower bound, for nearly every coordinate. This phenomenon
illustrates a generic feature of allocation problems: the convex portion of the curve offers the
best “bang-per-buck” (i.e., utility as a function of the resources used), and so the optimal
solution generally exploits this region fully or gives up on the coordinate entirely.

Figure 7: Solution for bidding example.

Table 1 gives the performance of the algorithm on bidding problems ranging in size n
in producing a solution within ¢ = .01n of the global solution, with the other problem
parameters drawn according to the same model as above. The table shows the average
number of subproblems solved and time to achieve a solution averaged over 5 random problem
instances. As n increases, the time to solve each problem increases (since the linear program
that we solve at each step is substantially larger), but the number of subproblems solved
stabilizes at two. One subproblem solve establishes a tentative solution, while the second
verifies that the solution on the first subproblem is globally optimal by making the convex
approximation tight at the previous solution.

17

Table 1: SP performance on bidding problems.
n subproblems time (s)

10 7.6 0.10
20 9.0 0.28
50 6.4 1.18
100 2.0 2.39
200 2.0 26.89
300 2.0 92.08
400 2.0 211.46
500 2.0 406.85

7.2 Network utility maximization

Our second example demonstrates the speed of the method on a typical allocation type
problem. We consider the network utility maximization problem previously introduced in
§3.4,
maximize Y ., fi(z;)
subject to Az <c¢
x>0,

where x represent flows, ¢ are edge capacities, A is the edge incidence matrix mapping flows
onto edges, and f;(x;) is the utility derived from flow 1.

Figure 8 shows the convergence of the algorithm for a network with n = 500 flows over
500 edges, with each flow using on average 2.5 edges each, where we use admittance functions
as the utility functions f;, and each edge has capacity 2.5. Within 14 iterations, the solution
is within 3% of optimality.

7.3 Political marketing example

We now consider an application of the targeted marketing problem (§3.1) to political mar-
keting, in which the decision variables correspond to the positions that a politician takes on
each particular issue, and the functions correspond to the expected number of votes for that
politician from a given constituency. The goal of the politician is to choose positions on each
issue to maximize his vote share.

The idea that politicians might opportunistically choose their positions in order to maxi-
mize their vote share is very old, going back to Downs (1957) and Hotelling (1929), in which
voters’ preferences are assumed to be distributed in some one-dimensional parameter space.
Today, the spatial theory of voting expresses the idea that voters pick candidates based on
the distance in “policy space” between the voter and candidate (Merrill and Grofman 1999).
However, this model has generally proven intractable, since the nonconvexity of the politi-
cian’s objective leads to a difficult (as we have shown) optimization problem, even with a
relatively low-dimensional issue space (Roemer 2006). See, Adams et al (2005), Roemer

18

198

— lower bound
— upper bound
196F .
194f
el
C
3192F
Ko}
190
188f ////
1865 2 4 6 8 10 12 14

iteration

Figure 8: Convergence for NUM with admission function utilities, with n = 500
flows over 500 edges, with each flow using on average 2.5 edges each.

(2006, 2004) for more detailed models of party competition based on the spatial theory of
voting.

Data. Problem data is generated using responses from the 2008 American National Elec-
tion Survey (ANES) ANES (2008). Each respondent r in the survey rates each candidate ¢
in the 2008 U.S. presidential election as having positions y™ € [1, 7)™ on m issues. Respon-
dents also say how happy they would be h™ € [1,7] if the candidate ¢ won. We suppose a
respondent would vote for a candidate ¢ if A" > ¢ for any other candidate ¢’. If so, v"¢ = 1
and otherwise v™ = 0.

For each candidate ¢ and state 7, we predict that a respondent r € \S; in state ¢ will vote
for candidate ¢ with probability logistic((w¢)?y™), depending on the candidate’s perceived
positions y". The parameter vector wy is found by fitting a logistic regression model to the
ANES data for each candidate and state pair.

Note that the data from the ANES 2008 survey is not meant to be representative of the
population of the US on a state by state basis. It includes information on respondents from
only 34 states, some with only 14 respondents.

19

Optimizing electoral votes. Suppose each state i has p; votes, which are allocated en-
tirely to the winner of the popular vote. Let y € R™ denote the positions the politician
takes on each of the m issues. The politician’s pandering to state i is given by z; = w!y.
Using our model, the expected number of votes from state i is

(1) = logistic(z;) — .5
F) =t <\/10gistic(xi)(1 — logistic(xi))/N) ’

which is sigmoidal in z;, where ® is the normal CDF and N; is the number of voters in state
1. Hence the politician will win the most votes if y is chosen by solving

maximize Y . fi(z;)
subject to x; =wly, i=1,...,n
1<y<T.

Using SP, we find the optimal positions y* for Obama (Table 2) to take in the 2008
election, with optimal pandering levels shown in Figure 9. We compare these with average
position gy that respondents in the survey reported he took. Each graph represents one
variable and its associated objective function (solid line) and concave approximation on the
rectangle containing the solution (dashed line). The solution for each variable is given by
the x coordinates of the red x. The rectangle containing the solution is bounded by the
solid grey lines and the endpoints of the interval. The positions are represented using the
seven-point Likert scale described in Table 3.

AZ CA co CcT

O pa S O e
B R

NM

. N
N ol
x o

Figure 9: Optimal pandering for Obama in 2008.

A Convergence proof

In this section, we bound the number of convex subproblems that must be computed be-
fore obtaining a solution of some specified accuracy to the original sigmoidal programming
problem (2).

20

Table 2: Optimal positions for Obama.

Issue y* Yo

spending/services 1.26 5.30
defense spending 1.27 3.69
liberal /conservative 1.00 3.29

govt assistance to blacks 1.00 3.12

Table 3: Encoding of positions.

Issue 1 7
spending/services fewer services more services
defense spending decrease spending increase spending
liberal/conservative liberal conservative

govt assistance govt should help blacks should help
to blacks blacks themselves

Before beginning the proof, we remind the reader of a few of our definitions. For each sig-
moidal function f; : [l;, u;] = R, we define an upper semi-continuous quasi-concave function
hz’ : [lz, uz] — R such that

filz) = fi(l;) + /lx hi(t)dt, i=1,...,n.

(Such a function h; always exists.) We let z; € [l;,u;] be a point maximizing h; over the
interval [l;,u;]. (This is equivalent to saying that f; is convex for x < z;, and concave for
x > z;.) We define fz . [l;,u;) = R, as before, as the concave envelope of the function f;, so
that f;(x) < fi(z) for every z € [I;,u,;]. This envelope defines a unique point

w; = min{z € [z,] | fi(zr) = fi(z)}.

Furthermore, since f; is sigmoidal,

~

f1<x) = fz(x)v S [wiaui]'

Note in particular that z; < w;.
Recall the operation of the sigmoidal programming algorithm. Let z* = 2*(Q) be the
solution to the problem
maximize S fi(z;)
subject to z € CNAQ.

21

So long as the total error is still greater than the desired tolerance e,

Z fz z > des7

the algorithm proceeds by splitting the rectangle) in order to attain a better approximation
on each of the subrectangles. The rectangle () is split along the coordinate ¢ with the greatest
error ; = fi(z?) — f;(x7) into two smaller boxes that meet at &

We wish to show that this algorithm will terminate after a ﬁnlte number of splits.

Notice that there can be no error in coordinate ¢ if 7 > w; or if 27 = [;, since ﬁ is the
concave envelope of f;. Furthermore, since f; and ﬁ are both Lipshitz continuous, the error in
the approximation is bounded by a constant (depending on h;) times the minimum distance
of x7 to [;. We formalize this logic below to show that the size of the rectangles explored
cannot be too small, which bounds the number of rectangles we may have to explore.

Error bounds. Since we have chosen h; to be upper semi-continuous,

x€(l,2)

max h;(z) = hi(z).

xe[li,zi}
We use these to bound f; below on (I;, 2;):

lz
fillh) + (min A() (x —1;)
se(l; zl)
> filly) + hi(L)(x = 1),

Similarly, we bound ﬁ above on (l;, 2;):

ﬂ(a:) = fillh) + W(x —1;)
fl:l)l maXe (.2 hi(s)dt
< A+ =)

< fill) + hi(zi)(z — ;).

Hence the error ¢;(z) = fi(z) — fi(x) in the approximation to the ith objective function
fi at any point [; < x < z; obeys

. i h;(t)d @
(@) = i) - fi@) L—¢£ﬂw4»—[hﬁﬂt

< (hi(zi) = hi(ly)) (2 = ;).

22

The maximum difference between f; and f; must occur where f; is convex, i.e., between [;
and z; Thus,

¢ = max ¢(x)
xG[li,ui]

= max ¢(x)
.Z’E[li,zi]

(hi(zi) — hi(li)) (2 — ;).

IN

Bounds on rectangle size. A rectangle can be split no further when the error on that

rectangle is less than €4, A sufficient condition is ¢; < €4 /n fori = 1,...,n. This condition
motivates the definition of the minimal side length,
6des /TL

O) —)
Using equation (3), we see that if each side of the rectangle has
min(z;, u;) — l; < 4,
then the sufficient condition is met, guaranteeing that the error on the rectangle is less than

6des)

Bounds on number of convex subproblems. The worst case for our branch and bound
algorithm occurs when the initial rectangle is split into a tiling with smaller rectangles whose
side lengths exactly match this minimal size. The maximum number of splits along any

dimension is
Zi — ll
0; ’

since a split can only occur if [; + §; < xF < min(z;, u;).
This implies the number of leaves [in the tree of rectangles can be at most

1< ﬁ {ZZ(S_ZZJ 1 1.
i=1 ¢

A binary tree with [leaves has in total 2] — 1 nodes.Hence the number of convex subproblems
solved before the algorithm terminates is bounded by

aA—1 < 2HV§ZJ 11

%

_ Qﬁ {(hz‘(zz‘) _egigl/i) (2 — li)J ey

This shows that the algorithm may require the solution of an exponential number of convex
subproblems, in the worst case.

23

References

Adams JF, Merrill IIT S, Grofman B (2005) A unified theory of party competition: a cross-national
analysis integrating spatial and behavioral factors. Cambridge University Press

Andersen MS, Dahl J, Vandenberghe L (2013) CVXOPT: A Python package for convex optimiza-
tion, version 1.1.5. URL abel.ee.ucla.edu/cvxopt

ANES (2008) The ANES 2008 time series study dataset. www.electionstudies.org

Balakrishnan V, Boyd S, Balemi S (1991) Branch and bound algorithm for computing the minimum
stability degree of parameter-dependent linear systems. International Journal of Robust and
Nonlinear Control 1(4):295-317, DOI 10.1002/rnc.4590010404

Balas E (1968) A note on the branch-and-bound principle. Operations Research 16(2):442-445
Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press

Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals, and Systems (MCSS) 2:303-314, 10.1007/BF02551274

Downs A (1957) An economic theory of political action in a democracy. Journal of Political Economy
65(2):135-150

Falk JE, Soland RM (1969) An algorithm for separable nonconvex programming problems. Man-
agement Science 15(9):550-569

Fazel M, Chiang M (2005) Network utility maximization with nonconcave utilities using sum-
of-squares method. In: 44th IEEE Conference on Decision and Control, pp 1867 — 1874,
DOI 10.1109/CDC.2005.1582432

Friedman M, Savage LJ (1948) The utility analysis of choices involving risk. The Journal of Political
Economy 56(4):279-304

Henrion D, Lasserre JB (2005) Detecting global optimality and extracting solutions in gloptipoly.
In: Henrion D, Garulli A (eds) Positive Polynomials in Control, Lecture Notes in Control and
Information Science, vol 312, Springer Berlin Heidelberg, pp 293-310, DOI 10.1007/10997703\
X

Horst R, Pardalos PM, Van Thoai N (2000) Introduction to global optimization. Kluwer Academic
Pub

Hotelling H (1929) Stability in competition. The Economic Journal 39(153):pp. 41-57

Kahneman D, Tversky A (1979) Prospect theory: An analysis of decision under risk. Econometrica:
Journal of the Econometric Society pp 263-291

Karp RM (1972) Reducibility among combinatorial problems. Springer

Lasserre JB (2001) Global optimization with polynomials and the problem of moments. STAM
Journal on Optimization 11:796-817

Lawler EL, Wood DE (1966) Branch-and-bound methods: A survey. Operations Research
14(4):699-719
Makhorin A (2006) GLPK (GNU linear programming kit)

McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: Part
iconvex underestimating problems. Mathematical programming 10(1):147-175

Merrill S, Grofman B (1999) A Unified Theory of Voting: Directional and Proximity Spatial Models.
Cambridge University Press

24

Parrilo PA (2003) Semidefinite programming relaxations for semialgebraic problems. Mathematical
programming 96(2):293-320

Roemer JE (2004) Modeling party competition in general elections. Cowles Foundation Discussion
Paper

Roemer JE (2006) Political competition: Theory and applications. Harvard University Press

Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization methods and software 11(1-4):625-653

Toh KC, Todd MJ, Tiitiinci RH (1999) SDPT3 — a MATLAB software package for semidefinite
programming, version 1.3. Optimization Methods and Software 11(1-4):545-581

Tversky A, Kahneman D (1992) Advances in prospect theory: Cumulative representation of un-
certainty. Journal of Risk and uncertainty 5(4):297-323

Udell M, Boyd S (2014) Bounding duality gap for problems with separable objective, URL http:
//www.stanford.edu/~boyd/papers/duality_bound.html, manuscript.

25

