
Automatica 62 (2015) 1–10
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Metric selection in fast dual forward–backward splitting✩

Pontus Giselsson a, Stephen Boyd b

a Department of Automatic Control, Lund University, Sweden
b Electrical Engineering Department, Stanford University, CA, United States

a r t i c l e i n f o

Article history:
Received 11 December 2013
Received in revised form
30 April 2015
Accepted 28 August 2015
Available online 3 October 2015

Keywords:
First order optimization algorithms
Metric selection
Preconditioning
Model predictive control
Distributed optimization

a b s t r a c t

The performance of fast forward–backward splitting, or equivalently fast proximal gradient methods,
depends on the conditioning of the optimization problem data. This conditioning is related to a metric
that is defined by the space on which the optimization problem is stated; selecting a space on which
the optimization data is better conditioned improves the performance of the algorithm. In this paper, we
propose severalmethods,with different computational complexity, to find a space onwhich the algorithm
performs well. We evaluate the proposed metric selection procedures by comparing the performance
to the case when the Euclidean space is used. For the most ill-conditioned problem we consider, the
computational complexity is improved by two to three orders of magnitude. We also report comparable
to superior performance compared to state-of-the-art optimization software.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fast gradient methods have been around since the early 1980s
when the seminal paper Nesterov (1983) was published. The al-
gorithm in Nesterov (1983) is applicable to unconstrained smooth
optimization problems and has since been extended and gener-
alized in various directions. In Nesterov (2003), new acceleration
schemes were presented as well as fast gradient methods for con-
strained optimization. In Nesterov (2005), smoothing techniques
for nonsmooth problems are presented. Fast proximal gradient
methods, or equivalently fast forward–backward splitting meth-
ods, that solve composite convex optimization problems of the
form

minimize f (x) + g(x) (1)

where f is required to be smooth, are proposed in Beck and
Teboulle (2009) and Nesterov (2013). In Tseng (2008), general-
izations and unifications of many fast forward–backward splitting
methods are presented.

The smooth part of the composite objective function, f in (1),
is in fast forward–backward splitting approximated by the r.h.s.

✩ Thematerial in this paperwas partially presented at the 19thWorld Congress of
the International Federation of Automatic Control, August 24–29, 2014, Cape Town,
South Africa and the 53rd Conference on Decision and Control, December 15–17,
2014, Los Angeles, CA, USA. This paper was recommended for publication in revised
form by Associate Editor Lalo Magni under the direction of Editor Ian R. Petersen.

E-mail addresses: pontusg@control.lth.se (P. Giselsson), boyd@stanford.edu
(S. Boyd).

http://dx.doi.org/10.1016/j.automatica.2015.09.010
0005-1098/© 2015 Elsevier Ltd. All rights reserved.
of

f (x) ≤ f (y) + ⟨∇f (y), x − y⟩ +
β

2 ∥x − y∥2 (2)

where the normand inner-product are given by the space onwhich
the problem is defined. The condition that (2) holds for all x and y is
referred to as f being β-smooth. Since the r.h.s. of the smoothness
condition (2) is the only information the algorithm has about the
smooth function, the smaller the gap in (2) (i.e. the better the
r.h.s. of (2) approximates f), the better the performance of the
algorithm is likely to be. In this paper, we show how to select a
space (or metric, we will use these notions interchangeably since
the metric defines the space) on which the fast forward–backward
splitting method performs well, when solving the dual of strongly
convex composite optimization problems. The spaces we consider
are Euclidean spaces with inner product ⟨x, y⟩ = xTy and scaled
norm ∥x∥K =

√
xTKx, where K is a positive definite metric matrix.

We show how to select themetric K such that the gap in (2) for the
smooth part of the dual problem is minimized. Using this metric in
the algorithm often leads to improved performance compared to
using the Euclidean metric with K = I .

Recently, Patrinos and Bemporad (2014); Richter, Jones, and
Morari (2013) proposed to use fast dual forward–backward split-
ting for embedded model predictive control. They apply fast for-
ward–backward splitting with the standard Euclidean metric on
two different dual problems. We show how these algorithms can
be improved by choosing a metric that reduces the gap in (2). The
performance improvement is confirmed by applying the methods
to a pitch control problem in an AFTI-16 aircraft. This benchmark

http://dx.doi.org/10.1016/j.automatica.2015.09.010
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.09.010&domain=pdf
mailto:pontusg@control.lth.se
mailto:boyd@stanford.edu
http://dx.doi.org/10.1016/j.automatica.2015.09.010

2 P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10
has previously been studied in Bemporad, Casavola, and Mosca
(1997) and Kapasouris, Athans, and Stein (1990) and is a challeng-
ing problem for first ordermethods since it is fairly ill-conditioned.
We report computation time improvements by two to three orders
of magnitude. Besides this, we also compare the performance to
the ADMM-based (see Boyd, Parikh, Chu, Peleato, & Eckstein, 2011
for more on ADMM—the alternating direction method of multipli-
ers) algorithm in Jerez et al. (2014) and O’Donoghue, Stathopou-
los, and Boyd (2013). We also compare our algorithms, that are
implemented in the MATLAB toolbox QPgen Giselsson (2014a),
to several other toolboxes and software for embedded optimiza-
tion, namely: DuQuad, see Necoara and Patrascu (2015), FiOrdOs,
see Ullmann and Richter (2012), FORCES, see Domahidi, Zgraggen,
Zeilinger, Morari, and Jones (2012), CVXGEN, see Mattingley and
Boyd (2012), qpOASES, see Ferreau, Bock, and Diehl (2008) and
the MPT Toolbox, see Herceg, Kvasnica, Jones, and Morari (2013).
Finally, we also compare to the general commercial QP-solver
MOSEK, see Mosek (2013). QPgen, with the proposed fast dual for-
ward–backward splitting method, performs little to much better
than the other methods on this example.

Fast dual forward–backward splitting can also be used for
distributed optimization when the objective to be minimized is
separable. In the context of gradientmethods, this has been known
since Benders (1962), Danzig andWolfe (1961) and Everett (1963).
Recently such approaches have been proposed for distributed
model predictive control (DMPC) (Doan, Keviczky, & De Schutter,
2011; Giselsson, 2013; Giselsson, Doan, Keviczky, De Schutter,
& Rantzer, 2013; Negenborn, 2007), and resource optimization
over networks (Beck, Nedic, Ozdaglar, & Teboulle, 2014; Ghadimi,
Shames, & Johansson, 2013; Necoara & Nedelcu, 2015). Often,
centralized coordination is needed when selecting the step-size
for the gradient-step. This is relaxed in Beck et al. (2014), where
the authors noted that the smooth part of the dual problem
consists of a sum of local functions. Each of these can compute
its own step-size, share with its neighbors and sum, to get a fully
distributed step-size selection. This procedure can be augmented
by the results of this paper to select local metrics instead of step-
sizes. This leads to more efficient algorithms which is confirmed
by a numerical example which shows improvements of about one
order of magnitude. We also compare the performance to the dual
Newton conjugate gradient method in Kozma, Klintberg, Gros, and
Diehl (2014), which is outperformed in our numerical example.

This paper unifies and extends the conference publications
Giselsson (2014b,c) and Giselsson and Boyd (2014).

2. Notation and preliminaries

We denote by R, Rn, Rm×n, the sets of real numbers, column
vectors, and matrices. We use notation (x, y, z) := [xT yT zT]T for
stacked real column vectors. We also use notation R̄ = R ∪ {∞}

for the extended real line. Sn
⊆ Rn×n is the set of symmetric

matrices, and Sn
++

⊆ Sn, [Sn
+
] ⊆ Sn, are the sets of positive [semi]

definite matrices. We use Euclidean spaces with the standard
inner product ⟨x, y⟩ = xTy and different norms. When using the
induced norm ∥x∥ =

√
⟨x, x⟩, we get the standard Euclidean

space. We also consider spaces EH with Euclidean inner product
and scaled norm ∥x∥H =

√
⟨x,Hx⟩, where H ∈ Sn

++
. The dual

space to EH is denoted by E∗

H . The dual norm to ∥y∥H is ∥y∥∗

H =

maxx {⟨y, x⟩2 : ∥x∥H = 1} = ∥y∥H−1 , i.e., E∗

H = EH−1 . Further,
the class of closed, proper, and convex functions f : EH → R̄
is denoted by Γ0(EH). The conjugate function f ∗

: E∗

H → R̄ to
f ∈ Γ0(EH) is defined as f ∗(y) = supx {⟨y, x⟩ − f (x)}. The adjoint
operator to a bounded linear operator A : EH → EK is denoted by
A∗

: E∗

K → E∗

H and is defined as the unique operator that satisfies
⟨Ax, y⟩ = ⟨A∗y, x⟩ for all x ∈ EH and y ∈ E∗

K . Since the ambient
space for EH is the standard Euclidean space, we often denote the
matrix that corresponds to the operator A : EH → EK by A ∈

Rm×n. We use notation IX for the indicator function for the set X,
and Ig(x)≤0 for the indicator function for the setX = {x | g(x) ≤ 0}.

A function f ∈ Γ0(EH) is β-strongly convex (w.r.t. EH) if f −
β

2 ∥ · ∥
2
H is convex. A function f ∈ Γ0(EH) is β-smooth (w.r.t. EH)

if it is differentiable and β

2 ∥ · ∥
2
H − f is convex. An equivalent

characterization of β-smoothness w.r.t. EH is that

f (x) ≤ f (y) + ⟨∇f (y), x − y⟩ +
β

2 ∥x − y∥2
H (3)

holds for all x, y ∈ EH . As seen in the following proposition, these
notions are related through the conjugate function.

Proposition 1. Suppose that f ∈ Γ0(EH). Then the following are
equivalent:

(i) f is β-strongly convex (w.r.t. EH).
(ii) f ∗ is 1

β
-smooth (w.r.t. E∗

H = EH−1).

A proof to this can be found, e.g., in Zalinescu (2002, Proposition
3.5.3).

3. Problem formulation

We consider optimization problems of the form

minimize f (x) + g(y)
subject to Ax = y (4)

and assume that the following assumption holds throughout the
paper:

Assumption 2. (a) The extended valued function f ∈ Γ0(EH) is
1-strongly convex (w.r.t. EH).

(b) The extended valued function g ∈ Γ0(EK).
(c) A : EH → EK is a bounded linear operator.

Remark 3. A function that satisfies Assumption 2(a) is f (x) =
1
2x

THx + f̂ where H ∈ Sn
++

and f̂ ∈ Γ0(EH). Since f̂ (and g) are
allowed to be extended valued, they can, e.g., be indicator functions
for nonempty, closed, and convex constraint sets. Further, the
operator A : EH → EK has an associated matrix A : Rn

→ Rm

that satisfies Ax = Ax for all x ∈ Rn.

To arrive at the dual problem, we introduce Lagrange multipli-
ers µ ∈ EK−1 , to get Lagrangian

L(x, y, µ) = f (x) + g(y) + ⟨Ax − y, µ⟩.

By minimizing the Lagrangian over x, and y, we get

inf
x,y

L(x, y, µ) = inf
x


⟨A∗µ, x⟩ + f (x)


+ inf

y
{⟨−y, µ⟩ + g(y)}

= − sup
x


⟨−A∗µ, x⟩ − f (x)


− sup

y
{⟨µ, y⟩ − g(y)}

= −f ∗(−A∗µ) − g∗(µ).

Negating this, we get the negated dual problem to (4) (see, e.g.,
Rockafellar, 1970, §31 for more details):

minimize d(µ) + g∗(µ) (5)

where

d(µ) := f ∗(−A∗µ). (6)

Note that d, g∗
∈ Γ0(EK−1). The efficiency of solving this dual prob-

lem using fast forward–backward splitting is highly dependent on
which metric that is used. This paper is about choosing metrics to
make the algorithm perform well.

P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10 3
4. Dual problem properties

Here, we will present tight characterizations of the smooth
part of the dual problem, i.e. d in (5). These characterizations will
later guide us in choosing metric for the dual forward–backward
splitting scheme.

From, e.g., Rockafellar (1970, Theorem 23.5) combinedwith the
chain rule, we know that d is differentiable with

∇d(µ) = −A∗x⋆(µ) (7)

where

x⋆(µ) = argmin
x


⟨A∗µ, x⟩ + f (x)


. (8)

It is also well known, see e.g. Nesterov (2005, Theorem 1), that
∇d is Lipschitz continuous with constant ∥A∗

∥
2

= ∥A∥
2 (since

f is 1-strongly convex (w.r.t. EH) due to Assumption 2), where
the norm is the operator norm. (This also follows directly from
Proposition 1, i.e., from Zalinescu (2002, Proposition 3.5.3), and the
Cauchy–Schwarz inequality.) Since A : EH → EK , the norm ∥A∥

is defined by

∥A∥ = max
x

{∥Ax∥K : ∥x∥H ≤ 1}

=

∥K 1/2Ax∥2 : ∥H1/2x∥2 ≤ 1


=


∥K 1/2AH−1/2v∥2 : ∥v∥2 ≤ 1


= ∥K 1/2AH−1/2

∥2

where ∥ · ∥2 denotes the standard induced Euclidean norm and
A is the Euclidean matrix representation of A. By defining d on
EI , i.e., by choosing K = I , we get that d ∈ Γ0(EI) is Lipschitz
continuouswith constant ∥AH−1/2

∥
2
2 = ∥AH−1AT

∥2. This is exactly
the Lipschitz constant provided in Richter et al. (2013) which
implies that

d(µ) ≤ d(ν) + ⟨∇d(ν), µ − µ⟩2 +
∥AH−1AT ∥2

2 ∥µ − ν∥
2
2 (9)

holds for all µ, ν ∈ Rm. This upper bound can be improved
by defining d on EK−1 with K = (AH−1AT)−1 (where we have
implicitly assumed that A has full row rank). This implies that d
is 1-smooth w.r.t. EAH−1AT , i.e., that

d(µ) ≤ d(ν) + ⟨∇d(ν), µ − µ⟩2 +
1
2∥µ − ν∥

2
AH−1AT (10)

holds for all µ, ν ∈ EAH−1AT . This is obviously a tighter
characterization of d than (9).

Remark 4. We improve the upper bound on d by defining it on
a different space. It is straight-forward to verify that this does
not influence the shape of the function d itself, only the bound is
improved.

When selecting K = (AH−1AT)−1, we implicitly assume that A
has full row rank. In the following result, we show that (10) also
holds when A is not full row rank.

Proposition 5. Suppose that Assumption 2 holds. Then d∈Γ0(EK−1)
as defined in (6) satisfies

d(µ) ≤ d(ν) + ⟨∇d(ν), µ − ν⟩ +
1
2∥µ − ν∥

2
L (11)

for any L ≽ AH−1AT and for all µ, ν ∈ EK−1 , where A ∈ Rm×n is the
matrix representation of A.

Proof. Since Assumption 2 states that f is 1-strongly convex w.r.t.
EH , Proposition 1, gives that f ∗ is 1-smooth w.r.t. EH−1 . Thus, (3)
holds for f ∗ for any x, y ∈ EH−1 . Further, since f ∗ is independent of
the norm on the space (it only depends on the inner product) (3)
holds for f ∗ also for any x, y ∈ Rn. Especially, let x = −ATµ and
y = −ATν to get

d(µ) = f ∗(−ATµ)

≤ d(ν) + ⟨∇f ∗(−ATν), −AT (µ − ν)⟩ +
1
2∥A

T (µ − ν)∥2
H−1

= d(ν) + ⟨−A∇f ∗(−ATν), µ − ν⟩ +
1
2∥µ − ν∥

2
AH−1AT

= d(ν) + ⟨∇d(ν), µ − ν⟩ +
1
2∥µ − ν∥

2
AH−1AT .

Since the inequality holds for AH−1AT , it also holds for any L ≽

AH−1AT . This concludes the proof.

Next, we show that for many interesting functions f , the bound
provided in Proposition 5 on d is indeed tight. Essentially, we show
that if the strong convexity bound on the primal is tight, so is the
smoothness bound on the dual. A proof is provided in Appendix A.

Proposition 6. Suppose that Assumption 2 holds and that there ex-
ists a full-dimensional ballBn

r (x
⋆(µ̄)) centered around x⋆(µ̄) for some

µ̄ ∈ EK−1 on which f −
1
2∥ · ∥

2
H is linear. Then no matrix L ⋡ AH−1AT

exists such that d : EK−1 → R as defined in (6) satisfies (11) for all
µ, ν ∈ EK−1 .

The assumptions in Proposition 6 are met, for instance, if A
has full column rank and f (x) =

1
2∥x∥

2
H + h(x) where h is the

indicator function for a closed and convex constraint set with
nonempty interior, the 1-norm, a linear function, or any other
function that is linear on a convex subset with nonempty interior.
For these examples, Proposition 6 indeed gives the best obtainable
quadratic majorizer of d. However, for f being a quadratic plus the
indicator functions for an affine subspace IBx=b, the assumptions in
Proposition 6 are notmet since the interior of IBx=b is empty (except
for in trivial cases). In the following propositionwe take care of that
specific case. A proof is provided in Appendix B.

Proposition 7. Assume that f (x) =
1
2x

THx + ξ T x + IBx=b(x) with
H ∈ Sn

+
, ξ ∈ Rn, B ∈ Rp×n, and b ∈ Rp. Further assume that

xTHx > 0whenever x ≠ 0 and Bx = 0, i.e., that H is positive definite
on the null-space of B. Then d : EK−1 → R satisfies

d(µ) ≤ d(ν) + ⟨∇d(ν), µ − ν⟩ +
1
2∥µ − ν∥

2
L (12)

for any L ≽ AM11AT and all µ, ν ∈ EK−1 , where
M11 M12
M21 M22


=


H BT

B 0

−1

. (13)

Further, no matrix L ⋡ AM11AT exists such that (12) holds for all
µ, ν ∈ EK−1 .

Note that the results in Propositions 5–7 are independent on
which space the function d is defined, i.e., they are independent of
K . The results merely relate the curvature of d to AH−1AT .

5. Fast dual forward–backward splitting

We apply fast dual forward–backward splitting to solve the
dual problem (5), which is defined on EK−1 . In this section, we
introduce the notation L = K−1, i.e., the dual problem is defined
on EK−1 = EL. The algorithm is

νk
= µk

+ αk(µ
k
− µk+1)

µk+1
= proxg∗(νk

− L−1
∇d(νk))

whereαk grows in a specific way, see Beck and Teboulle (2009) and
Nesterov (2003) for details, and the prox (backward) step is defined
as

proxg∗(z) := argmin
µ


g∗(µ) +

1
2∥µ − z∥2

L


.

4 P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10
The µk+1-update can equivalently be written as (expand the
square, remove constant terms and add d(νk)which does not affect
the minimizer):

argmin
µ


d(νk) + ⟨∇d(νk), µ − νk

⟩ +
1
2∥µ − νk

∥
2
L + g∗(µ)


.

We see that d is approximated by the r.h.s. of the smoothness
definition in (3), i.e., by

d(νk) + ⟨∇d(νk), µ − νk
⟩ +

1
2∥µ − νk

∥
2
L . (14)

Indeed, the algorithm converges if d is 1-smooth w.r.t. EL where L
is used in the algorithm, see Zuo and Lin (2011). A bound on the
convergence rate is (see Zuo and Lin (2011))

D(µk) − D(µ⋆) ≤
2∥µ⋆

− µ0
∥
2
L

(k + 1)2
(15)

where D = d + g∗ and µ⋆ is a solution to (5). Also, convergence
rates for the primal iterates as well as the primal infeasibility can
be obtained, see Necoara and Nedelcu (2014), Nedelcu, Necoara,
and Tran-Dinh (2014) and Patrinos and Bemporad (2014).

Remark 8. The constant in the rate bound in (15) can be
compared to the constant in the rate bound for standard fast
dual forward–backward splitting used, e.g., in Richter et al. (2013),
which is

D(µk) − D(µ⋆) ≤
2β∥µ⋆

− µ0
∥
2
2

(k + 1)2
(16)

where β = ∥AH−1AT
∥2 is a (tight) Lipschitz constant for d, see

(9). Comparing this to (15) where we can choose L = AH−1AT ,
see Proposition 5, we conclude that the constant in (15) can be
significantly smaller than the constant in (16), especially for ill-
conditioned problems.

Remark 9. From Giselsson and Boyd (2014) it follows that for-
ward–backward splitting algorithm applied on EK−1 is equivalent
to applying forward–backward splitting on the Euclidean spaceRm

to the dual of the preconditioned problem

minimize f (x) + g(y)
subject to DAx = Dy

where K = DTD. We can also define the dual problem on the
space with inner product ⟨x, y⟩ = xTKy and induced norm ∥x∥ =
√
xTKx. When applying the forward–backward splitting algorithm

on this Hilbert space, we get another equivalent algorithm (note
that the metric K is inverted compared to EK−1). These equivalent
approaches are, however, not further discussed here due to space
limitations and clarity of exposition.

The important question how to choose L = K−1 remains.
As mentioned, the smooth part of the dual problem, d in (6), is
approximated by a quadratic majorizer, namely the r.h.s. of the
smoothness definition (3). The tighter this quadratic majorizer is,
themore accurate function approximation is used in the algorithm,
and consequently the faster the convergence of the algorithm is
likely to be. For example, if themajorizer is tight (i.e., (3) holdswith
equality for all x, y), the algorithm converges in one iteration. This
can be seen from the µk+1-update

argmin
µ


d(νk) + ⟨∇d(νk), µ − νk

⟩ +
1
2∥µ − νk

∥
2
L + g∗(µ)


= argmin

µ


d(µ) + g∗(µ)


which reduces to solving the original problem (5). Proposition 5
suggests that L = AH−1AT is a good metric for the algorithm,
since the r.h.s. of (3) would (in many cases) be the best quadratic
majorizer of d, see Proposition 6. In most cases, however, it is
not advisable to let L = AH−1AT since the prox operation of g∗

could become computationally too expensive. For instance, if g∗

is separable, using a non-diagonal L would typically increase the
computational cost in each iteration more than what is saved by
the reduced number of iterations. Therefore, we should choose L ≈

AH−1AT with a structure of L to keep the computational complexity
of evaluating the prox operator low. We also need L ≽ AH−1AT to
guarantee convergence of the algorithm. By letting an invertible
matrix E satisfy L = (ETE)−1, these objectives can be formulated
as choosing E such that I ≈ EAH−1ATET and I ≽ EAH−1ATET .
A natural choice is then to minimize κ(EAH−1ATET) subject to
I ≽ EAH−1ATET , where κ denotes the condition number. However,
if A does not have full row rank, or if the objective is to satisfy
L ≈ AM11AT (when the assumptions in Proposition 7 hold), the
matrix APAT (with P = H−1 or P = M11) is rank deficient and does
not have a well defined condition number. Then, the ratio between
the largest and smallest non-zero eigenvalues of EAPATET could be
minimized instead. This is reasonable, since the zero eigenvalues
of APAT cannot be affected or made positive by pre- and post-
multiplying APAT with E and ET respectively.

6. Computing the metric matrix

In this section, we show how to solve

minimize
λ1(EQET)

λr(EQET)
(17)

where λ1 denotes the largest (non-zero) eigenvalue, λr denotes
the smallest non-zero eigenvalue, and Q ∈ Sn

+
is Q = AH−1AT

or AM11AT . We restrict the matrix E to be full, block-diagonal, or
diagonal, since then also L = (ETE)−1 has the same structure. We
denote by E any of these structural constraints. Besides showing
how to solve (17) exactly, we also present heuristic methods to
(hopefully) reduce the (pseudo) condition number in (17).

6.1. Exact condition number minimization

First, we show how to solve (17) exactly. We consider two
different cases; Q positive definite, and Q positive semi-definite.
In Boyd, El Ghaoui, Feron, and Balakrishnan (1994), it has been
shown that minimizing the ratio between the largest and smallest
eigenvalues of (FRET)T (FRET) by selecting E and F can be posed as
a quasi convex optimization problem. Here, we are interested in
the case where either E = I or F = I . For these cases, (17) can
be solved by convex optimization. Before we show this, we state
the following lemma which follows directly from the definition of
singular values.

Lemma 10. For any matrix Φ ∈ Rm×n, the non-zero eigenvalues of
ΦTΦ are the same as the non-zero eigenvalues of ΦΦT .

The positive definite case. Here, we assume that Q ∈ Sn
++

, which
occurs, for instance, if Q = AH−1AT , whereH ∈ Sn

++
and A ∈ Rm×n

has full row rank.

Proposition 11. Assume that Q ∈ Sm
++

. Then a matrix E ∈ E that
minimizes the ratio (17) can be computed by solving the convex semi-
definite program

minimize t
subject to tQ ≽ L

Q ≼ L
L ∈ E

(18)

where L = (ETE)−1. Further, L ≽ Q .

P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10 5
Proof. Since Q has full rank, (17) is the condition number. Thus,
according to Boyd et al. (1994, Section 3.1), (18) can be solved in
order tominimize (17). Since the cost and constraints in (18) are all
convex, this is a convex optimization problem. Further, the second
constraint implies that L ≽ Q .

The condition number minimization problem (17) is also investi-
gated in Lu and Pong (2011), where they search for E directly using
a convex relaxation of the nonconvex constraint EQET

≽
1
t I . It is

shown that the convex relaxation is tight if E is diagonal. Therefore
the approach in Lu and Pong (2011) is slightlymore restrictive than
our setting since we allow also for block-diagonal structures.
The positive semi-definite case. Here, we assume that Q is positive
semi-definite. This situation occurs, e.g., if Q = AH−1AT and A ∈

Rm×n with m > n, or if Q = AM11AT .

Proposition 12. Assume that Q ∈ Sm
+

is factorized as Q = RTR,
where R ∈ Rq×n has rank q. Then a matrix E ∈ E that minimizes
the ratio (17) can be computed by solving the convex semi-definite
program

minimize −t
subject to RMRT

≼ I
RMRT

≽ tI
M ∈ E

(19)

where M = (ETE). Further L = M−1
= (ETE)−1

≽ Q .

Proof. Since RMRT has full rank, we get from Lemma 10 and
equalities M = ETE and Q = RTR that minimizing the condition
number of RMRT is equivalent tominimizing the ratio between the
largest and smallest non-zero eigenvalues of EQET , i.e. equivalent
to solving (17). From Boyd et al. (1994, Section 3.1), we get that
(19) minimizes the condition number of RMRT , i.e., it minimizes
(17). Since the cost and constraints in (19) are all convex, this is a
convex optimization problem. Further, the first inequality in (19)
implies through Lemma 10 that EQET

≼ I , which is equivalent to
that L = (ETE)−1

≽ Q . This concludes the proof.

6.2. Heuristic 1—trace minimization

We also propose to use a traceminimization heuristic to reduce
the (pseudo) condition number of EQET . Let L = (ETE)−1 to get

minimize trace L
subject to Q ≼ L

L ∈ E .

Also this is a semi-definite program and therefore restricted to
small-scale problems.

6.3. Heuristic 2—equilibration

In symmetric equilibration, given a matrix Q ∈ Rm×n, the
objective is to find a positive and diagonal matrix E ∈ Rn×n such
that all rows and columns of EQET have the same norm. This is a
heuristic to reduce the condition number of EQET compared to Q ,
see Bradley (2010) for an overview of (symmetric) equilibration
and further references. There are no guarantees that the condition
number is reduced, but in practice this is most often the case.
Below, we present different methods to achieve symmetric
equilibration in the 1-norm, 2-norm and ∞-norm. These methods
do not guarantee that I ≽ EQET , which is required to get
convergence of the fast dual forward–backward splitting method
when metric L = (ETE)−1 is used. However, this is achieved by
appropriately scaling E afterward using a norm computation.
Equilibration in 1-norm and 2-norm. For a symmetric matrix, the ith
row and column are the same, hence also their norms. Therefore,
we need only equilibrate either the rows or the columns. The
1-norm of row i of EQET is given by[EQET

]i,·

1 =

m
j=1

EiiQijEjj
 = Eii

m
j=1

Qij
 Ejj

since E is diagonal with Eii > 0. Similarly, the squared 2-norm is
given by[EQET

]i,·
2
2 =

m
j=1

(EiiQijEjj)2 = E2
ii

m
j=1

Q 2
ij E

2
jj .

Thus, by introducing the matrices T1 = |Q | (where | · | denotes
element-wise absolute value) and T2 = (Q)(2) (where (·)(2)

denotes element-wise square), and by letting E = diag(e),
symmetric equilibration can be stated as finding E (and e) such that

ET1e = 1 (20)

in the 1-norm case and

E(2)T2e(2)
= 1 (21)

in the 2-norm case. We treat these cases simultaneously by
introducingE = diag(e) and T that satisfiesE = E and T = T1
in the 1-norm case, andE = E(2) and T = T2 in the 2-norm case.
The conditions (20) and (21) can then be written as

0 = Te −E−11.

This is indeed the gradient of the function

φ(e) =
1
2eTTe −

n
i=1

log(ei). (22)

SinceeTTe ≥


i(Tiie2ii) ≥ (mini Tii)∥e∥2
2 for alle ∈ domφ, i.e. for

alle > 0, and since − log is convex, φ is convex on its domain. If
in addition mini Tii > 0 (which is the case we are interested in),
then φ is strongly convex. Since φ(e) < ∞ for alle ∈ int(domφ)
and since it is coercive, we conclude that φ has a uniqueminimizere⋆

∈ int(domφ). This unique minimizer can be found in various
ways.

One approach is to perform element-wise optimization and
cycle through the elements until convergence. Another classic
method is the (symmetric) Sinkhorn–Knopp algorithm, Sinkhorn
and Knopp (1967), which was originally developed to generate
doubly stochastic matrices from positive matrices. The symmetric
Sinkhorn–Knopp algorithm is given by the iterationek+1

= (Tek)−1

where (·)−1 denotes element-wise reciprocal. This is known to
converge, see Sinkhorn and Knopp (1967) under some technical
conditions on T , see Bradley (2010) and Sinkhorn and Knopp
(1967) for details. Also other equilibration methods exist, see
Bradley (2010), Knight, Ruiz, and Uçar (2011) and Ruiz (2001).
Common for all these methods is that they are computationally
very cheap and that two to five passes over the data are usually
sufficient to obtain a close to equilibrated matrix.
Equilibration in ∞-norm. In ∞-norm equilibration of general
symmetric matrices, the magnitude of the largest element in each
row (or column) is set to 1. For positive semi-definite matrices
S ∈ Sn

+
, we have Sii ≥ 0 and maxi Sii ≥ maxi≠j

Sij, see Horn
and Johnson (1990, p. 398). Therefore, if Sii > 0 for all i, making
Sii = 1 gives an ∞-norm equilibrated matrix. For S = EQET with
Q positive semi-definitewith positive diagonal, this scaling (which
is also called Jacobi scaling) is obtained by letting Eii = 1/

√
Qii,

which is computationally very cheap.

6 P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10
7. Applications

We consider two quadratic programming formulations; one
with no specific structure that we solve in two different ways,
and one that has a separable structure that allows for distributed
implementation. We show how the algorithms look when applied
to solve these problems andwediscuss how to selectmetricmatrix
L = K−1.

7.1. Two QP splittings

Here, we consider the following quadratic program

minimize 1
2x

THx + ξ T x
subject to Bx = b

d ≤ Cx ≤ d̄

where H ∈ Sn
++

, ξ ∈ Rn, B ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, and
d, d̄ ∈ Rp. Below, we present two different splitting schemes for
this problem.

QP splitting 1. In the first splitting, which has been used in Patrinos
andBemporad (2014) in the context of fast dual forward–backward
splitting and in O’Donoghue et al. (2013) in the context of ADMM,
we set f and g in (4) to

f (x) =
1
2x

THx + ξ T x + IBx=b(x)

g(y) = Id≤y≤d̄(y)

which gives equality constraint Cx = y. (Here, it is enough to
assume that H is positive definite on the null-space of B.) We
form the dual as in (5) and restrict L = K−1 in the algorithm
to be diagonal. After some simplification, the resulting fast dual
forward–backward splitting algorithm on EL = EK−1 becomes

νk
= µk

+ αk(µ
k
− µk−1) (23)

xk = argmin
x

 1
2x

THx + ξ T x + IBx=b(x) + νTCx


(24)

µk
= min


νk

+ L−1(Cxk − d),

max

νk

+ L−1(Cxk − d̄), 0


. (25)

The restriction that L is diagonal implies that the prox-operation
becomes a min–max operation, hence very cheap. The matrix
L should be computed in accordance with the suggestions in
Section 6. Specifically, according to Proposition 7, we need L ≽

CM11CT , where M11 is defined in (13). Obviously also L ≽ CH−1CT

holds sinceM11 ≼ H−1.
Eq. (24) can be efficiently implemented since it is an equal-

ity constrained quadratic problem. It can be solved by forming
and storing M11 and M12 in (13), and reuse these in all iterations.
Another option, that might be beneficial if


H BT

B 0


(from (13))

is sparse, is to compute and store a sparse LDL factorization of
H BT

B 0


and perform forward and backward substitution on the

precomputed factors in each subsequent iteration.

QP splitting 2. The second splitting, which has been used in Richter
et al. (2013), is obtained by letting f and g in (4) be

f (x) =
1
2x

THx + ξ T x + Id≤Cx≤d̄(x)

g(y) = Iy=b(y)

which gives equality constraint Bx = y. Without structural re-
strictions on L = K−1, the resulting fast dual forward–backward
splittingmethod on EL = EK−1 becomes after some simplification:

νk+1
= µk

+ αk(µ
k
− µk−1) (26)

xk = argmin
x

 1
2x

THx + ξ T x + Id≤Cx≤d̄(x) + νTBx


(27)

µk
= νk

+ L−1(Bxk − b). (28)

Since we have no structural constraints on L, we can choose any
L ≽ BH−1BT . If BH−1BT is sparse, an efficient choice is to let
L = BH−1BT and compute and store a sparse Cholesky factorization
of BH−1BT . Updating µk then reduces to a forward and backward
solve in each subsequent iteration.

The complexity of solving (27) depends highly on the structures
of H and C . If H and C are block-diagonal with sufficiently small
blocks, then (27) can be solved efficiently and exactly in parallel
using, e.g., the MPT toolbox, Herceg et al. (2013). If H and C are
diagonal, solving (27) reduces to an element-wise clip operation.
For problemswhere solving (27) is computationally expensive and
no exact solutions can be obtained easily or fast, we suggest to
instead use QP splitting 1.

7.2. The distributed case

We consider separable optimization problems of the form:

minimize
M
i=1

(fi(xi) + gi(yi))

subject to Ax = y
(29)

where fi : EHi → R̄ is 1-strongly convex (w.r.t. EHi), gi ∈ Γ0(EKi),
x = (x1, . . . , xM), y = (y1, . . . , yM), and

A =

A11 · · · A1M
...

. . .
...

AM1 · · · AMM

 .

We further assume that many Aij = 0. The non-zero block entries
of A are indexed by the sets

Ni =

j ∈ {1, . . . ,M} | Aij ≠ 0


Mj =


i ∈ {1, . . . ,M} | Aij ≠ 0


.

We introduce the notation xNi = (. . . , xj, . . .) that stacks all xj with
j ∈ Ni, and ANi = [. . . , Aij, . . .] that collects all Aij ≠ 0 in block-
row i. This implies that (29) can equivalently be written as

minimize
M
i=1

(fi(xi) + gi(yi))

subject to ANixNi = yi, for all i ∈ {1, . . . ,M}.

We introduce dual variablesµi for all equality constraints ANixNi =

yi and define the vectors µMj = (. . . , µi, . . .) that stacks all µi

with i ∈ Mj. We also define the matrix AMj = [. . . , AT
ij, . . .]

T that
collects all Aij ≠ 0 in block-column j. This implies that the dual
problem can be written as

minimize
M
i=1


di(µMi) + g⋆

i (µi)


where

di(µMi) := f ⋆
i (−AT

Mi
µMi).

In Beck et al. (2014), it is shown how to compute a matrix L that
defines a space EL, using distributed computations only, on which

d(µ) :=

m
i=1

di(µMi)

P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10 7
is 1-smooth. The procedure from Beck et al. (2014) is presented
below:

LMj =
∥AMj∥

2
2

λmin(Hj)
(30)

Li =


j∈Ni

LMj (31)

L = blkdiag(L1I, . . . , LM I). (32)

This metric selection procedure relies on that di is
∥AMi∥

2
2

λmin(Hi)
-smooth

w.r.tEI . FromProposition 5,we know that di is 1-smoothw.r.t.ELMi

for any LMi ≽ AMiH
−1
i AT

Mi
, which gives a tighter characterization of

di. Using Proposition 5, the distributed metric selection procedure
proposed in Beck et al. (2014) can be modified to yield a less
conservative set from which Lmay be chosen:

LMj = blkdiag(. . . , LMj,i, . . .) ≽ AMjH
−1
j AT

Mj
(33)

Li =


j∈Ni

LMj,i (34)

L = blkdiag(L1, . . . , LM) (35)

where LMj,i are sub-blocks of the same dimension asµi. This struc-
ture allows for a distributed implementation of the fast dual for-
ward–backward splitting algorithm on EL. Also, the proof in Beck
et al. (2014) to show 1-smoothness of d w.r.t. EL with L from
(30)–(32) easily generalized to that d is 1-smooth w.r.t. EL with
L from (33)–(35). This is needed to guarantee convergence of the
distributed fast dual forward–backward splitting algorithm using
metric L. The local LMj could be chosen using some method from
Section 6 to give the algorithm a good approximation of d, which
will lead to improved performance.

Remark 13. Note that LMj should be block-diagonal to facilitate
a distributed implementation. However, we could superimpose
additional internal structural constraints on each sub-block LMj,i
(e.g., diagonal, sparse) that may differ from one block to the next.

8. Numerical examples

To evaluate the proposed methods, we apply them on a
(small-scale) aircraft control problem and on large-scale separable
randomly generated problems that are solved in distributed
fashion. We also compare to other methods in the literature.

8.1. Aircraft control

Here, we apply QP-splitting 1 and QP-splitting 2 from Sec-
tion 7.1 to the AFTI-16 aircraft model in Bemporad et al. (1997)
and Kapasouris et al. (1990). As in Bemporad et al. (1997), the con-
tinuous time model from Kapasouris et al. (1990) is sampled us-
ing zero-order hold every 0.05 s. The system has four states x =

(x1, x2, x3, x4), two outputs y = (y1, y2), two inputs u = (u1, u2),
and obeys the following dynamics

x+
=

 0.999 −3.008 −0.113 −1.608
−0.000 0.986 0.048 0.000
0.000 2.083 1.009 −0.000
0.000 0.053 0.050 1.000

 x

+

−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002

 u,

y =


0 1 0 0
0 0 0 1


x

where x+ denotes the state in the next time step. The system is
unstable, the magnitude of the largest eigenvalue of the dynam-
ics matrix is 1.313. The outputs are the attack and pitch angles,
while the inputs are the elevator and flaperon angles. The inputs
are physically constrained to satisfy |ui| ≤ 25°, i = 1, 2. The out-
puts are soft constrained to satisfy −s1 − 0.5 ≤ y1 ≤ 0.5 + s2
and −s3 − 100 ≤ y2 ≤ 100 + s4 respectively, where s =

(s1, s2, s3, s4) ≥ 0 are slack variables. The cost in each time step is

ℓ(x, u, s) =
1
2


(x − xr)TQ (x − xr) + uTRu + sT Ss


where xr is a reference, Q = diag(10−4, 102, 10−3, 102), R =

10−2I , and S = 106I . This gives a condition number of 1010 of the
full cost matrix. Further, the terminal cost is Q , and the control and
prediction horizon is N = 10. The numerical data in Tables 1 and
2 are obtained by following a reference trajectory on the output.
The objective is to change the pitch angle from 0° to 10° and then
back to 0°while the angle of attack satisfies the output constraints
−0.5° ≤ y1 ≤ 0.5°. The full optimization problem can be written
on the form

minimize 1
2 z

THz + rTt z
subject to Bz = bxt

d ≤ Cz ≤ d̄
(36)

where xt and rt may change between sampling instants.
In Table 1 we compare the performance of QP-splitting 1 and

QP-splitting 2 from Section 7.1, when solving (36). We compare
the performance when applied in the Euclidean setting and
when using an appropriated metric L. Since QP-splitting 1 in the
Euclidean space is the algorithm in Patrinos and Bemporad (2014),
andQP-splitting 2 in the Euclidean space is the algorithm in Richter
et al. (2013), we compare to those methods. We also compare to
the performance of the ADMM-based method in O’Donoghue et al.
(2013). Since this method is based on ADMM, the ρ-parameter
much be chosen. Table 1 provides results for the best performing
ρ, namely ρ = 3, and two other choices. All algorithms are
implemented in MATLAB and the numerical results in Table 1 are
obtained by running the simulations on a Linux machine using a
single core running at 2.9 GHz. We use termination criterion ∥zk −

z⋆
∥2/∥z⋆

∥2 ≤ 0.005,where zk is the primal iterate in the algorithm
at iteration k and z⋆ is the solution computed to high accuracywith
an interior point method. Table 1 shows that the proposed metric
selection improves the performance for QP-splitting 1 with one to
two orders of magnitude, and for QP-splitting 2 with three orders
of magnitude. Also, the proposedmethods outperform themethod
in O’Donoghue et al. (2013).

In Table 2, we compare different solvers implemented in C. For
QP-splitting 1 we use QPgen (Giselsson, 2014a) which implements
this methods. For QP-splitting 2, we generate C code that take the
reference trajectory and the initial state as inputs. We see that the
two QP-splittings perform similarly, and we see improvements of
more than a factor 20 compared to the MATLAB implementations
in Table 1. The other pieces optimization software in our compar-
ison are FORCES, CVXGEN, qpOASES, FiOrdOs, DuQuad, the MPC
toolbox, and MOSEK. FORCES (Domahidi et al., 2012) and CVXGEN
(Mattingley & Boyd, 2012) are based on interior pointmethods.We
see that our methods are three to five times faster for this prob-
lem. DuQuad (Necoara & Patrascu, 2015) and FiOrdOs (Ullmann
& Richter, 2012) are based on first order methods with inexact
(DuQuad) or exact (FiOrdOs) inner minimizations. In DuQuad, the
fast gradient method is chosen, and in FiOrdOs, the primal–dual
method in Chambolle andPock (2011) is chosen. Table 2 shows that
our methods outperform these methods on this example. This is
largely due to the developed preconditioning techniques. We also
compare to qpOASES, which performs similarly as our methods for
this problem in the warm-starting case. The problem is too big for

8 P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10
Table 1
Comparison to other first-order methods, all implemented in MATLAB. FDFBS refers to fast dual forward–backward splitting, ADMM refers to alternating direction method
of multipliers, QPi refers to QP-splitting i (for i = 1, 2).

Algorithm/splitting(/reference) Parameters exec time (ms) nbr iters
avg. max avg. max

FDFBS/QP1 L diag fr. (19) with Q = CM11CT 1.4 7.1 23.5 128
FDFBS/QP1 L diag fr. (18) with Q = CH−1CT 1.2 5.8 20.0 105
FDFBS/QP1/Patrinos and Bemporad (2014) L = ∥CM11CT

∥2I 98.5 673.0 1835.9 12686
FDFBS/QP1/Patrinos and Bemporad (2014) L = ∥CH−1CT

∥2I 98.9 679.4 1850.1 12783
FDFBS/QP2 L = BH−1BT 2.3 12.1 21.7 102
FDFBS/QP2/Richter et al. (2013) L = ∥BH−1BT

∥2I 4713.9 28411 50845 308210
ADMM/QP1/O’Donoghue et al. (2013) ρ = 0.3 193.9 920.6 3129.5 15037
ADMM/QP1/O’Donoghue et al. (2013) ρ = 3 29.7 142.2 457.3 2179
ADMM/QP1/O’Donoghue et al. (2013) ρ = 30 35.1 264.4 556.7 4194
Table 2
Comparison to other solvers, all implemented in C. We report average and worst case execution times, code size for methods that generate problem specific code, and what
type of algorithm that is used.

Alg. or software (/split.) Comments exec time (ms) Code size Algorithm type
avg. max

FDFBS/QP1 (QPgen) L diag fr. (19) with Q = CH−1CT 0.083 0.212 36 kB First order
FDFBS/QP2 L = BH−1BT 0.079 0.232 54 kB First order
FORCES 0.347 0.592 109 kB Interior-point
CVXGEN 0.639 0.760 404 kB Interior-point
MPT toolbox N = 3 and no tracking 0.22 0.31 9.8 MB Explicit
qpOASES Warm-starting version 0.189 5.8 – Online active set
qpOASES Cold-starting version 4.7 6.0 – Active set
DuQuad Alg: inexact fast dual grad. method 27.2 s 56.5 s – First order
FiOrdOs Alg: Chambolle and Pock (2011) 38.4 58.2 27 kB First order
MOSEK 4.6 8.1 – Interior-point
the MPT toolbox. However, we have compared to the MPT toolbox
when the horizon is shortened to three (instead of ten), and when
no reference tracking is used. This gives 30 instead of 100 decision
variables and 4 instead of 64 parameters. Even in this reduced set-
ting, the execution time is not better than for our methods and the
code size is much larger. Finally, we compare to the commercial
solver MOSEK, which is more than one order of magnitude slower
than our methods.

8.2. Distributed examples

Here, we apply the fast dual forward–backward splitting
method to solve randomly generated DMPC optimization prob-
lems. The systems to be controlled have a sparse dynamic inter-
action structure, which is decided using the method in Kraning,
Chu, Lavaei, and Boyd (2013, §6.1). The resulting average degree
of the generated interconnection structures is 2.27, 2.23, and 2.23
respectively and the number of subsystems is 500, 2000, and 8000
respectively. The number of states in each subsystem is between
10 and 20, the number of inputs is three or four, and the control
horizon is N = 10. This gives a total number of 87060, 350860,
and 1405790decision variables respectively. The entries in the dy-
namics and input matrices are randomly chosen from the intervals
[−0.7 1.3] and [−1 1] respectively. Then the dynamics matrix is
re-scaled to get a spectral radius of 1.15. The states and inputs are
upper and lower bounded by random bounds generated from the
intervals [0.4 1] and [−1 − 0.4] respectively. The state and in-
put costmatrices are diagonal and each diagonal entry is randomly
chosen from the interval [1 106

].
We evaluate the distributed fast dual forward–backward

splitting when applied on the Euclidean space, when applied on EL
where L is computed as in (30)–(32) (this is the method proposed
in Beck et al. (2014)), and when applied on EL where L is computed
by the procedure proposed in this paper, (33)–(35). Thesemethods
are compared to the dual Newton conjugate gradient (CG) method
proposed in Kozma et al. (2014).
The evaluation in Table 3 is obtained by generating 200 feasible
random initial conditions for each system. The corresponding
optimal control problems are solved using the different algorithms.
For each problem size, we compare the performance when the L-
matrix (that defines EL) is computed using (33)–(35). We include
the cases where the local metric matrices LMj in (33) are computed
by trace-minimization and 2-norm equilibration only. (Other
options are computationally too expensive or give compatible
performance.) These methods are compared to the performance
of the method from Beck et al. (2014), i.e., when the L-matrix is
computed using (30)–(32), and to fast dual decomposition with
the optimal parameter selection given by L = ∥AH−1AT

∥2I .
Table 3 shows that the algorithm with L computed using trace
minimization has the fewest communications rounds, then L
computed using equilibration, thereafter the method from Beck
et al. (2014), and finally fast dual decomposition with a global
step-size. This is expected since, as we traverse up the list, the
approximations of the smooth part of the dual function used in the
algorithm become better. For the algorithm where the L-matrix is
computed using local trace-minimization problems, the L-matrix
is block-diagonal, while the remaining algorithms have diagonal
L-matrices. This added flexibility enables for a reduced number of
iterations.We also note that the dual Newton CGmethod in Kozma
et al. (2014) is outperformed on this example.

The execution times in Table 3 are pure execution times for the
DMPC scheme when solved on 12 cores, i.e., without the metric
computation step. To solve a semi-definite program, to find the
metric L is often only computationally beneficial if it can be com-
puted offline and used to solve many optimization problems, as
in DMPC. Thus the first row in Table 3 of every problem size is
merely for DMPC applications, or other applications with the same
characteristic. The computational complexity for equilibration is
only slightly higher than for the method in Beck et al. (2014). Both
these methods are considerably less computationally demanding
than computing ∥AH−1AT

∥2 which is required to compute a global
step-size. Therefore, these methods are useful for metric selection
also in general distributed optimization.

P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10 9
Table 3
Numerical evaluation for fast dual forward–backward splitting (FDFBS) applied on different spaces EL , including the space selection from Beck et al. (2014) and the Euclidean
space. The comparison also includes the dual Newton CG method in Kozma et al. (2014).

Algorithm Parameters # ss/vars./constr. # communication rounds avg. exec. time
Local Global 12 cores [mm:ss.s]

avg. max avg. max

FDFBS L fr. (33)–(35), min trace 500/87k/246k 523.7 774 – – 3.2
FDFBS L fr. (33)–(35), ∥ · ∥2-equil. 500/87k/246k 1912.5 3022 – – 10.1
Beck et al. (2014) L fr. (30)–(32) 500/87k/246k 4789.8 7558 – – 25.4
FDFBS L = ∥AH−1AT

∥2I 500/87k/246k 6114.7 6556 – – 32.4
Kozma et al. (2014) ϵi = 10−4, µ = 0.8, σ = 0.3 500/87k/246k 6661.1 28868 4082.6 17694 2:06.0

FDFBS L fr. (33)–(35), mintrace 2000/351k/993k 356.8 652 – – 15.6
FDFBS L fr. (33)–(35), ∥ · ∥2-equil. 2000/351k/993k 1138.0 1666 – – 33.0
Beck et al. (2014) L fr. (30)–(32) 2000/351k/993k 2530.5 3218 – – 1:13.5
FDFBS L = ∥AH−1AT

∥2I 2000/351k/993k 4474.9 4608 – – 2:09.9
Kozma et al. (2014) ϵi = 10−4, µ = 0.8, σ = 0.3 2000/351k/993k 6464.1 20624 3961.9 12641 41:28.0

FDFBS L(33)–(35), min trace 8000/1.41M/3.98M 340.2 426 – – 44.6
FDFBS L fr. (33)–(35), ∥ · ∥2-equil. 8000/1.41M/3.98M 1350.1 1776 – – 2:10.8
Beck et al. (2014) L fr. (30)–(32) 8000/1.41M/3.98M 3050.2 3458 – – 4:55.5
FDFBS L = ∥AH−1AT

∥2I 8000/1.41M/3.98M 10583.4 10688 – – 17:05.3
9. Conclusions

We have proposed several methods, with different computa-
tional complexity, to compute spaces onwhich to perform fast dual
forward–backward splitting. We have evaluated these methods by
applying them to an aircraft control problem and to randomly gen-
erated DMPC problems. For the most ill-conditioned problem, the
numerical evaluations show improvements of up to three orders of
magnitude compared to if the standard Euclidean metric is used.

Acknowledgments

The first author is financially supported by the Swedish
Foundation for Strategic Research (ICA14-0050) and he is a
member of the LCCC Linnaeus Center at Lund University. Financial
support from the Swedish Research Council for the first author’s
Postdoctoral studies at Stanford University is also gratefully
acknowledged.

Further, Alexander Domahidi is gratefully acknowledged for
suggesting the AFTI-16 control problem as a benchmark and pro-
viding FORCES code for the same. Finally, the authors acknowledge
the anonymous reviewers for constructive feedback.

Appendix A. Proof to Proposition 6

The function f −
1
2∥ · ∥

2
H is linear on Bn

r (x
⋆(µ̄)) if and only if

f (x) =
1
2∥x∥

2
H + ⟨ξ, x⟩2 + θ for some ξ ∈ EH−1 , θ ∈ R and all

x ∈ Bn
r (x

⋆(µ̄)). Since x⋆(µ̄) ∈ Bn
r (x

⋆(µ̄)), we have

x⋆(µ̄) = argmin
x

 1
2∥x∥

2
H + ⟨ξ, x⟩2 + θ + ⟨AT µ̄, x⟩2


= −H−1(ξ + AT µ̄).

Due to continuity of H−1AT we also have x⋆(µ̄ + µd) = −H−1(ξ +

AT (µ̄ + µd)) ∈ Br(x⋆(µ̄)) for sufficiently small µd ∈ Rm pointing
in any direction. Thus, there exists a ball Bm

ϵ (µ̄) such that for each
µ ∈ Bm

ϵ (µ̄)

d(µ) = −min
x

 1
2∥x∥

2
H + ⟨ξ, x⟩2 + θ + ⟨ATµ, x⟩2


=

1
2∥A

Tµ + ξ∥
2
H−1 − θ.

That is, d is a quadratic with Hessian AH−1AT on Bm
ϵ (µ̄). This

implies that for any L ⋡ AH−1AT , where exist ν, µ ∈ Bm
ϵ (µ̄) (since

Bm
ϵ (µ̄) has non-empty interior) such that (11) does not hold. This

concludes the proof.
Appendix B. Proof to Proposition 7

Since H is positive definite on the null-space of A, the inverse
in (13) exists, see Boyd and Vandenberghe (2004, p. 523). Thus
x⋆(µ) = −M11(ATµ+ξ)+M12b, where x⋆ is defined in (8). Further

d(µ) =
1
2
µTA(2M11 − M11HM11)ATµ + ζ Tµ + θ

=
1
2
µTAM11ATµ + ζ Tµ + θ

where ζ ∈ Rm+p and θ ∈ R collect the linear and constant
terms, and where M11HM11 = M11 is used in the second
equality. This identity follows from the upper left block of
M11 M12
M21 M22

 
H BT

B 0

 
M11 M12
M21 M22


=


M11 M12
M21 M22


and using MT

11B =

M11B = BM11 = 0, where BM11 = 0 follows from the lower left
block of


H BT

B 0

 
M11 M12
M21 M22


=


I 0
0 I


. This implies that (12) holds

with L = AM11AT and obviously for any L ≽ AM11AT . Further,
since d is a quadratic function with Hessian AM11AT , (12) is tight
for L = AM11AT for all µ, ν ∈ EK−1 . Thus, no L ⋡ AM11AT exists
such that (12) holds for all µ, ν ∈ EK−1 . This concludes the proof.

References

Beck, A., Nedic, A., Ozdaglar, A., & Teboulle, M. (2014). An O (1/k) Gradient method
for network resource allocation problems. IEEE Transactions on Control of
Network Systems, 1(1), 64–73.

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

Bemporad, A., Casavola, A., & Mosca, E. (1997). Nonlinear control of constrained
linear systems via predictive reference management. IEEE Transactions on
Automatic Control, 42(3), 340–349.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik, 4(1), 238–252.

Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Studies in applied
mathematics: Vol. 15. Linear matrix inequalities in system and control theory.
Philadelphia, PA: SIAM.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning , 3(1), 1–122.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY: Cambridge
University Press.

Bradley, A. (2010). Algorithms for the equilibration of matrices and their application
to limited-memory quasi-Newton methods (Ph.D. thesis). Stanford University.

Chambolle, A., & Pock, T. (2011). A first-order primal–dual algorithm for convex
problems withapplications to imaging. Journal of Mathematical Imaging and
Vision, 40(1), 120–145.

Danzig, G. B., & Wolfe, P. (1961). The decomposition algorithm for linear
programming. Econometrica, 4, 767–778.

http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref1
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref2
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref3
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref4
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref5
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref6
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref7
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref8
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref9
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref10

10 P. Giselsson, S. Boyd / Automatica 62 (2015) 1–10
Doan, M. D., Keviczky, T., & De Schutter, B. (2011). An iterative scheme for
distributed model predictive control using Fenchel’s duality. Journal of Process
Control, 21(5), 746–755. Special Issue on Hierarchical and distributed model
predictive control.

Domahidi, A., Zgraggen, A., Zeilinger,M. N.,Morari,M., & Jones, C. N. (2012). Efficient
interior point methods for multistage problems arising in receding horizon
control. In 51st IEEE conference on decision and control (pp. 668–674) Maui, HI,
USA, December.

Everett, H. (1963). Generalized Lagrangemultiplier method for solving problems of
optimum allocation of resources. Operations Research, 11, 399–417.

Ferreau, H. J., Bock, H. G., & Diehl, M. (2008). An online active set strategy to
overcome the limitations of explicit MPC. International Journal of Robust and
Nonlinear Control, 18(8), 816–830.

Ghadimi, E., Shames, I., & Johansson, M. (2013). Multi-step gradient methods
for networked optimization. IEEE Transactions on Signal Processing , 61(21),
5417–5429.

Giselsson, P. (2013). A generalized distributed accelerated gradient method for
DMPCwith iteration complexity bounds. In Proceedings of 2013 American control
conference (pp. 327–333). Washington DC. June.

Giselsson, P. (2014a). QPgen: A C code generator for quadratic optimization
problems. http://www.control.lth.se/user/pontus.giselsson/qpgen/.

Giselsson, P. (2014b). Improved dual decomposition for distributed model
predictive control. In Proceedings of 2014 IFAC world congress (pp. 1203–1209).
Cape Town, South Africa, August.

Giselsson, P. (2014c). Improved fast dual gradient methods for embedded model
predictive control. In Proceedings of 2014 IFAC world congress (pp. 2303–2309).
Cape Town, South Africa, August.

Giselsson, P., & Boyd, S. (2014). Preconditioning in fast dual gradient methods. In
Proceedings of the 53rd Conference on Decision and Control (pp. 5040–5045).
Los Angeles, CA, December.

Giselsson, P., Doan, M. D., Keviczky, T., De Schutter, B., & Rantzer, A. (2013).
Accelerated gradient methods and dual decomposition in distributed model
predictive control. Automatica, 49(3), 829–833.

Herceg, M., Kvasnica, M., Jones, C. N., &Morari, M. (2013). Multi-parametric toolbox
3.0.

Horn, R. A., & Johnson, C. R. (1990).Matrix analysis. Cambridge University Press.
Jerez, J. L., Goulart, P. J., Richter, S., Constantinides, G. A., Kerrigan, E. C., & Morari,

M. (2014). Embedded online optimization for model predictive control at
megahertz rates. IEEE Transactions on Automatic Control, 59(12), 3238–3251.

Kapasouris, P., Athans, M., & Stein, G. (1990). Design of feedback control systems for
unstable plants with saturating actuators. In Proceedings of the IFAC symposium
on nonlinear control system design (pp. 302–307). Pergamon Press.

Knight, P. A., Ruiz, D., & Uçar, B. (2011). A symmetry preserving algorithm for matrix
scaling. Research Report RR-7552. INRIA.

Kozma, A., Klintberg, E., Gros, S., & Diehl, M. (2014). An improved distributed dual
Newton-cg method for convex quadratic programming problems. In American
control conference (ACC) 2014 (pp. 2324–2329). Portland, Oregon.

Kraning, M., Chu, E., Lavaei, J., & Boyd, S. (2013). Dynamic network energy
management via proximal message passing. Foundations and Trends in
Optimization, 1(2), 70–122.

Lu, Z., & Pong, T. K. (2011). Minimizing condition number via convex programming.
SIAM Journal on Matrix Analysis and Applications, 32(4), 1193–1211.

Mattingley, J., & Boyd, S. (2012). Cvxgen: a code generator for embedded convex
optimization. Optimization and Engineering , 13(1), 1–27.

Mosek (2013). Optimization software. http://www.mosek.com/.
Necoara, I., & Nedelcu, V. (2014). Rate analysis of inexact dual first-order methods

application to dual decomposition. IEEE Transactions on Automatic Control,
59(5), 1232–1243.

Necoara, I., & Nedelcu, V. (2015). On linear convergence of a distributed
dual gradient algorithm for linearly constrained separable convex problems.
Automatica, 55, 209–216.

Necoara, I., & Patrascu, A. (2015). DuQuad: An inexact (augmented) dual first order
algorithm for quadratic programming, March.
Available: http://arxiv.org/abs/1504.05708.

Nedelcu, V., Necoara, I., & Tran-Dinh, Q. (2014). Computational complexity of
inexact gradient augmented lagrangian methods: Application to constrained
mpc. SIAM Journal on Control and Optimization, 52(5), 3109–3134.

Negenborn, R. R. (2007). Multi-agent model predictive control with applications to
power networks (Ph.D. thesis). TU Delft.

Nesterov, Y. (1983). A method of solving a convex programming problem with
convergence rate O (1/k2). Soviet Mathematics Doklady, 27(2), 372–376.
Nesterov, Y. (2003). Introductory lectures on convex optimization: a basic course (1st
ed.). Netherlands: Springer.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical
Programming , 103(1), 127–152.

Nesterov, Y. (2013). Gradient methods for minimizing composite functions.
Mathematical Programming , 140(1), 125–161.

O’Donoghue, B., Stathopoulos, G., & Boyd, S. (2013). A splitting method for optimal
control. IEEE Transactions on Control Systems Technology, 21(6), 2432–2442.

Patrinos, P., & Bemporad, A. (2014). An accelerated dual gradient-projection
algorithm for embedded linear model predictive control. IEEE Transactions on
Automatic Control, 59(1), 18–33.

Richter, S., Jones, C. N., &Morari, M. (2013). Certification aspects of the fast gradient
method for solving the dual of parametric convex programs. Mathematical
Methods of Operations Research, 77(3), 305–321.

Rockafellar, R. T. (1970). Convex analysis. Vol. 28. Princeton, NJ: Princeton Univercity
Press.

Ruiz, D. (2001). A scaling algorithm to equilibrate both rows and columns norms in
matrices. Technical report. Rutherford Appleton Laboratories.

Sinkhorn, R., & Knopp, P. (1967). Concerning nonnegative matrices and doubly
stochastic matrices. Pacific Journal of Mathematics, 21(2), 343–348.

Tseng, P. (2008). On accelerated proximal gradient methods for convex-concave
optimization. Technical report, May.
Available: http://www.csie.ntu.edu.tw/~b97058/tseng/papers/apgm.pdf.

Ullmann, F., & Richter, S. (2012). FiOrdOs: Code generation for first order methods.
http://fiordos.ethz.ch/.

Zalinescu, C. (2002). Convex analysis in general vector spaces. World Scientific.
Zuo, W., & Lin, Z. (2011). A generalized accelerated proximal gradient approach for

total-variation-based image restoration. IEEE Transactions on Image Processing ,
20(10), 2748–2759.

Pontus Giselsson is an Assistant Professor at the Depart-
ment of Automatic Control at Lund University, Sweden.
His current research interests include mathematical op-
timization and its applications in, e.g., control and signal
processing. He received an M.Sc. degree from Lund Uni-
versity in 2006 and a Ph.D. degree from Lund University in
2012. During 2013 and 2014, he was a postdoc at Stanford
University. In 2012, he received the Young Author Price
at an IFAC Symposium, in 2013 he was a finalist for the
Best Student Paper Award at the American Control Con-
ference, in 2014, he received the Young Author Price at the

IFAC World Congress, and in 2015 he received the Ingvar Carlsson Award from the
Swedish Foundation for Strategic Research.

Stephen Boyd is the Samsung Professor of Engineering,
in the Information Systems Laboratory, Electrical Engi-
neering Department, Stanford University. He is a member
of the Institute for Mathematical and Computational and
Engineering, and holds courtesy appointments in the de-
partment of Computer Science and the department of
Management Science and Engineering. His current inter-
ests include convex programming applications in control,
signal processing, and circuit design. He received an AB
degree in Mathematics, summa cum laude, from Harvard
University in 1980, and a Ph.D. in EECS from U.C. Berke-

ley in 1985. He holds an honorary Ph.D. from Royal Institute of Technology, Stock-
holm. He is the author of Linear Controller Design: Limits of Performance (with
Craig Barratt, 1991), Linear Matrix Inequalities in System and Control Theory (with
L. El Ghaoui, E. Feron, and V. Balakrishnan, 1994), and Convex Optimization (with
Lieven Vandenberghe, 2004). He received an ONR Young Investigator Award, a
Presidential Young Investigator Award, the 1992 AACC Donald P. Eckman Award,
and the 2013 IEEE Technical Field Award in Control Systems. In 2012, he and for-
mer student Michael Grant were awarded the Mathematical Optimization Society
Beale–Orchard-Hays award for computational optimization. He has received the
Perrin Award for OutstandingUndergraduate Teaching in the School of Engineering,
and an ASSUGraduate Teaching Award. In 2003, he received the AACC Ragazzini Ed-
ucation award. He is a fellowof the IEEE, a Distinguished Lecturer of the IEEE Control
Systems Society, and a member of the National Academy of Engineering.

http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref11
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref13
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref14
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref15
http://www.control.lth.se/user/pontus.giselsson/qpgen/
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref21
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref23
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref24
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref25
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref26
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref27
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref28
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref29
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref30
http://www.mosek.com/
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref32
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref33
http://arxiv.org/abs/1504.05708
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref35
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref36
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref37
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref38
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref39
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref40
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref41
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref42
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref43
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref44
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref45
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref46
http://www.csie.ntu.edu.tw/%7Eb97058/tseng/papers/apgm.pdf
http://fiordos.ethz.ch/
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref49
http://refhub.elsevier.com/S0005-1098(15)00361-1/sbref50

	Metric selection in fast dual forward--backward splitting
	Introduction
	Notation and preliminaries
	Problem formulation
	Dual problem properties
	Fast dual forward--backward splitting
	Computing the metric matrix
	Exact condition number minimization
	Heuristic 1---trace minimization
	Heuristic 2---equilibration

	Applications
	Two QP splittings
	The distributed case

	Numerical examples
	Aircraft control
	Distributed examples

	Conclusions
	Acknowledgments
	Proof to Proposition 6
	Proof to Proposition 7
	References

