
J Optim Theory Appl (2017) 172:436–454
DOI 10.1007/s10957-016-0990-2

Stochastic Matrix-Free Equilibration

Steven Diamond1 · Stephen Boyd1

Received: 21 February 2016 / Accepted: 27 July 2016 / Published online: 5 August 2016
© Springer Science+Business Media New York 2016

Abstract We present a novel method for approximately equilibrating a matrix using
only multiplication by the matrix and its transpose. Our method is based on convex
optimization and projected stochastic gradient descent, using an unbiased estimate
of a gradient obtained by a randomized method. Our method provably converges in
expectation and empirically gets good results with a small number of iterations. We
show how the method can be applied as a preconditioner for matrix-free iterative
algorithms, substantially reducing the iterations required to reach a given level of
precision. We also derive a novel connection between equilibration and condition
number, showing that equilibrationminimizes an upper bound on the condition number
over all choices of row and column scalings.

Keywords Matrix balancing · Preconditioning · Convex optimization · Stochastic
optimization

Mathematics Subject Classification 65F35

1 Introduction

Equilibration refers to scaling the rows andcolumnsof amatrix so thenormsof the rows
are the same and the norms of the columns are the same. Equilibration has applications
to a variety of problems, including target tracking in sensor networks [1], web page

B Steven Diamond
diamond@cs.stanford.edu

Stephen Boyd
boyd@stanford.edu

1 Stanford University, Stanford, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-016-0990-2&domain=pdf
http://orcid.org/0000-0002-5523-9970

J Optim Theory Appl (2017) 172:436–454 437

ranking [2], and adjusting contingency tables to match known marginal probabilities
[3]. The primary use of equilibration, however, is as a heuristic method for reducing
condition number [4]; in turn, reducing condition number is a heuristic for speeding up
a variety of iterative algorithms [5, Chap. 5], [6,7]. Using equilibration to accelerate
iterative algorithms is connected to the broader notion of diagonal preconditioning,
which has been a subject of research for decades; see, e.g., [8, Chap. 2], [9, Chap. 10],
[10,11].

Equilibration has several justifications as a heuristic for reducing condition number.
We will show in Sect. 3.2 that, if a matrix is square and nonsingular, equilibrating the
matrix minimizes a tight upper bound on the condition number over all possible row
and column scalings. Scaling only the rows or only the columns of a matrix so they
have the same norms (rather than scaling both at once, as we do here) also has a
connection with minimizing condition number [12].

Equilibration is an old problem, and many techniques have been developed for it,
such as the Sinkhorn–Knopp [13] and Ruiz algorithms [14]. Existing equilibration
methods require knowledge of the entries of the matrix. For this reason, equilibration
cannot be used in matrix-free methods, which only interact with the matrix via multi-
plication of a vector by the matrix or by its transpose. Such matrix-free methods play a
crucial role in scientific computing and optimization. Examples include the conjugate
gradients method [15], LSQR [16], and the Chambolle–Cremers–Pock algorithm [17].

In this paper, we introduce a stochastic matrix-free equilibration method that prov-
ably converges in expectation to the correct row and column scalings. Our method
builds on work by Bradley [4], who proposed a matrix-free equilibration algorithm
with promising empirical results but no theoretical guarantees. We sketch out our
approach in Sect. 2 and develop it in detail in Sects. 3 and 4, including proving theo-
retical convergence rates for our algorithm. We present numerical examples in Sect. 5
that show our matrix-free equilibration method converges far more quickly than the
theoretical analysis suggests, delivering effective equilibration in a few tens of iter-
ations, each involving one multiplication by the matrix and one by its transpose. In
Sect. 6, we apply our method to several matrix-free iterative algorithms. We observe
that the cost of equilibration is more than compensated for by the speedup of the iter-
ative algorithm due to diagonal preconditioning. In Sect. 7, we show how our method
can be modified to handle variants of the equilibration problem, such as symmetric
and block equilibration.

2 Problem and Approach

In this section, we formally define the equilibration problem and outline our approach
to solving it. Given amatrix A ∈ R

m×n , equilibrationmeans finding diagonal matrices
D ∈ R

m×m and E ∈ R
n×n so that the rows of DAE all have �p-norm α and the

columns of DAE all have �p-norm β. (The row and column norm values α and β are
related by mα p = nβ p for p < ∞.) Common choices of p are 1, 2, and ∞; in this
paper, we will focus on �2-norm equilibration. Without loss of generality, we assume
throughout that the entries of D and E are nonnegative.

123

438 J Optim Theory Appl (2017) 172:436–454

As discussed in Sect. 1, many algorithms have been developed for �p-norm equi-
libration, but they all involve knowledge of (the entries of) the matrix |A|p, where
the function | · |p is applied elementwise. Our contribution is the first theoretically
grounded algorithm for equilibration in a matrix-free setting, in which the matrix A
is a black box that can only be accessed via multiplication by A and by AT.

Our approach is based on representing equilibration as a convex optimization prob-
lem, as in [18]. We add well-motivated regularization and constraints that make the
objective function strongly convex and bound the Lipschitz constant. We develop a
method for getting an unbiased estimate of the gradient of the objective function,which
we use to solve the problem via projected stochastic gradient descent. Our algorithm
converges in expectation to the optimal value of the problem with rate O(1/t), where
t is the number of multiplications by A and AT.

3 Equilibration via Convex Optimization

3.1 Convex Formulation

Equilibration can be posed as the convex optimization problem [18]

minimize

⎡
⎣(1/2)

m∑
i=1

n∑
j=1

(Ai j)
2e2ui+2v j − α21Tu − β21Tv

⎤
⎦ , (1)

where u ∈ R
m and v ∈ R

n are the optimization variables [19]. The notation 1 indicates
a vector whose entries are all one. The diagonal matrices D and E are obtained via

D = diag
(
eu1 , . . . , eum

)
, E = diag

(
ev1, . . . , evn

)
.

The optimality conditions for problem (1) are precisely that DAE is equilibrated, i.e.,

|DAE |21 = α21,
∣∣E ATD

∣∣21 = β21.

Problem (1) is unbounded below precisely when the matrix A cannot be equilibrated.
Problem (1) can be solved using a variety of methods for smooth convex optimiza-

tion [5,20]. One attractivemethod,which exploits the special structure of the objective,
is to alternately minimize over u and v. We minimize over u (or equivalently D) by
setting

Dii = α

⎛
⎝

n∑
j=1

A2
i j E

2
j j

⎞
⎠

−1/2

, i = 1, . . . ,m.

123

J Optim Theory Appl (2017) 172:436–454 439

We minimize over v (E) by setting

E j j = β

(
m∑
i=1

A2
i j D

2
i i

)−1/2

, j = 1, . . . , n.

When m = n and α = β = 1, the above updates are precisely the Sinkhorn–Knopp
algorithm. In other words, the Sinkhorn–Knopp algorithm is alternating block mini-
mization for the problem (1).

3.2 Equilibration and Condition Number

In this subsection, we show that equilibrating a square matrix minimizes an upper
bound on the condition number. We will not use these results in the sequel, where we
focus on matrix-free methods for equilibration.

For U ∈ R
n×n nonsingular define the function Φ by

Φ(U) = exp
(
‖U‖2F/2

)
/ det

(
UTU

)1/2 = exp

(
n∑

i=1

σ 2
i /2

)
/

n∏
i=1

σi ,

where σ1 ≥ · · · ≥ σn > 0 are the singular values of U . (Here ‖U‖F denotes the
Frobenius norm.)

Theorem 3.1 Let A be square and invertible. Then, diagonal D and E equilibrate A,
with row and column norms one, if and only if they minimize Φ(DAE) over D and E
diagonal.

Proof We first rewrite problem (1) in terms of D and E to obtain

minimize (1/2)‖DAE‖2F −
n∑

i=1

log Dii −
n∑
j=1

log E j j

subject todiag(D) > 0, diag(E) > 0, D, E diagonal,

(Here we take α = β = 1, so the row and column norms are one.) We can rewrite this
problem as

minimize (1/2)‖DAE‖2F − log det
(
(DAE)T(DAE)

)1/2

subject todiag(D) > 0, diag(E) > 0, D, E diagonal,

since the objective differs from the problem above only by the constant term
log det

(
ATA

)1/2
. Finally, taking the exponential of the objective, we obtain the equiv-

alent problem

123

440 J Optim Theory Appl (2017) 172:436–454

minimizeΦ(DAE) = exp
(
(1/2)‖DAE‖2F

)
/ det

(
(DAE)T(DAE)

)1/2

subject todiag(D) > 0, diag(E) > 0, D, E diagonal.

Thus, diagonal (positive) D and E equilibrate A, with row and column norms one, if
and only if they minimize the objective of this problem. ��

Theorem 3.1 links equilibration with minimization of condition number because
the function Φ(DAE) gives an upper bound on κ(DAE).

Theorem 3.2 Let U ∈ R
n×n have singular values σ1 ≥ · · · ≥ σn > 0 and condition

number κ = σ1/σn. Then,
2e−n/2Φ(U) ≥ κ. (2)

Moreover, this inequality is tight within a factor of 2, i.e., there exists U with condition
number κ with

2e−n/2Φ(U) ≤ 2κ. (3)

Proof We factor Φ into

Φ(U) = Ψ (σ1, σn)

n−1∏
i=2

Γ (σi),

where

Ψ (σ1, σn) = exp
((

σ 2
1 + σ 2

n

)
/2

)
/(σ1σn), Γ (σi) = exp

(
σ 2
i /2

)
/σi .

Wefirst relateΨ and the condition number, byminimizingΨ (σ1, σn)withσ1 = κσn
(i.e., with condition number κ). We must minimize over σn the function

Ψ (κσn, σn) = exp
(
σ 2
n

(
1 + κ2

)
/2

)
κσ 2

n
.

With change of variable z = σ 2
n , this function is convex. The minimizer is z =

2/(1 + κ2) and the minimum value (e/2)(κ + 1/κ). Therefore, we have

Ψ (σ1, σn) ≥ (e/2)(κ + 1/κ).

It is straightforward to show that Γ (σi) is convex and minimized when σi = 1.
Thus,we haveΓ (σi) ≥ Γ (1) = e1/2.We combine these results to obtain the inequality

Φ(U) ≥
(
en/2/2

)
(κ + 1/κ), (4)

which is sharp; indeed, it is tight when

σ1 =
(

2κ2

1 + κ2

)1/2

, σn =
(

2

1 + κ2

)1/2

,

123

J Optim Theory Appl (2017) 172:436–454 441

and σi = 1 for i = 2, . . . , n − 1.
The inequality (4) implies inequality (2), since κ + 1/κ ≥ κ . With the values of σi

that make (4) tight, the inequality (3) holds because κ + 1/κ ≤ 2κ . ��
Theorems 3.1 and 3.2 show that equilibration is the same as minimizing Φ(DAE)

over diagonal D and E and thatΦ(DAE) is an upper bound on κ(DAE), the condition
number of DAE .

3.3 Regularized Equilibration

The equilibration problem and its equivalent convex optimization problem (1) suffer
from several flaws. The first is that not allmatrices can be equilibrated [4]. For example,
if the nonzero matrix A has a zero row or column, it cannot be equilibrated. As a less
obvious example, a triangular matrix with unit diagonal cannot be equilibrated. When
the matrix A cannot be equilibrated, the convex problem (1) is unbounded [18].

The second flaw is that even when the matrix A can be equilibrated problem (1)
does not have a unique solution. Given a solution (u
, v
) to problem (1), the point
(u
 +γ, v
 −γ) is a solution for any γ ∈ R. In other words, we can scale D by eγ and
E by e−γ and still have DAE equilibrated. We would prefer to guarantee a solution
where D and E have roughly the same scale. The final flaw is that in practice we do
not want the entries of D and E to be extremely large or extremely small; we may
have limits on how much we are willing to scale the rows or columns.

We address these flaws by modifying the problem (1), adding regularization and
box constraints, and reframing the equilibration problem as

minimize (1/2)
m∑
i=1

n∑
j=1

(Ai j)
2e2ui+2v j − α21Tu − β21Tv

+(γ /2)
(
‖u‖22 + ‖v‖22

)

subject to ‖u‖∞ ≤ M, ‖v‖∞ ≤ M, (5)

where γ > 0 is the regularization parameter and the parameter M > 0 bounds the
entries of D and E to lie in the interval

[
e−M , eM

]
. The additional regularization

term penalizes large choices of u and v (which correspond to large or small row and
column scalings). It also makes the objective strictly convex and bounded below, so
the modified problem (5) always has a unique solution (u
, v
), even when A cannot
be equilibrated. Assuming that the constraints are not active at the solution, we have

1Tu
 = 1Tv
,

which means that the optimal D and E have the same scale in the sense that the
products of their diagonal entries are equal:

m∏
i=1

Dii =
n∏
j=1

E j j .

123

442 J Optim Theory Appl (2017) 172:436–454

Problem (5) is convex and can be solved using a variety of methods. Block alternat-
ing minimization over u and v can be used here, as in the Sinkhorn–Knopp algorithm.
We minimize over u (or equivalently D) by setting

Dii = Π[e−2M ,e2M]

⎛
⎝2α2/γ − W

⎛
⎝2e2α

2/γ
n∑
j=1

A2
i j E

2
j j/γ

⎞
⎠

⎞
⎠

1/2

,

for i = 1, . . . ,m. Here W is the Lambert W function [21] and Π[e−2M ,e2M] denotes
projection onto the interval [e−2M , e2M]. We minimize over v (E) by setting

E j j = Π[e−2M ,e2M]

(
2β2/γ − W

(
2e2β

2/γ
m∑
i=1

A2
i j D

2
i i/γ

))1/2

,

for j = 1, . . . , n. When M = +∞,m = n, and α = β = 1, the D and E updates
converge to the Sinkhorn–Knopp updates as γ → 0 [22]. This method works very
well, but like the Sinkhorn–Knopp method requires access to the individual entries of
A, and so is not appropriate as a matrix-free algorithm.

Of course, solving problem (5) does not equilibrate A exactly; unless γ = 0 and the
constraints are not active, its optimality conditions are not that DAE is equilibrated.
We canmake the equilibrationmore precise by decreasing the regularization parameter
γ and increasing the scaling bound M . But if we are using equilibration as a heuristic
for reducing condition number, approximate equilibration is more than sufficient.

4 Stochastic Method

In this section, we develop a method for solving problem (5) that is matrix-free, i.e.,
only accesses the matrix A by multiplying a vector by A or by AT. (Of course we can
find all the entries of A by multiplying A by the unit vectors ei , i = 1, . . . , n; then,
we can use the block minimization method described above to solve the problem. But
our hope is to solve the problem with far fewer multiplications by A or AT.)

4.1 Unbiased Gradient Estimate

Gradient expression Let f (u, v) denote the objective function of problem (5). The
gradient ∇u f (u, v) is given by

∇u f (u, v) = |DAE |21 − α2 + γ u.

Similarly, the gradient ∇v f (u, v) is given by

∇v f (u, v) = ∣∣E ATD
∣∣21 − β2 + γ v.

123

J Optim Theory Appl (2017) 172:436–454 443

The first terms in these expressions, |DAE |21 and
∣∣E ATD

∣∣2 1, are the row norms
squared of the matrices DAE and E ATD, respectively. These are readily computed
if we have access to the entries of A, but in a matrix-free setting, where we can only
access A bymultiplying a vector by A or AT, it is difficult to evaluate these row norms.
Instead, we will estimate them using a randomized method.

Estimating row norms squared Given a matrix B ∈ R
m×n , we use the following

approach to get an unbiased estimate z of the row norms squared |B|21. We first
sample a random vector s ∈ R

n whose entries si ∈ {−1, 1} are drawn independently
with identical distribution (IID), with probability one half for each outcome. We then
set z = |Bs|2. This technique is discussed in [4,23,24].

To see that E[z] = |B|21, consider (
bTs

)2
, where b ∈ R

n . The expectation of(
bTs

)2
is given by

E

[(
bTs

)2] =
n∑

i=1

b2i E
[
s2i

]
+

∑
i �= j

bi b j E[si s j] =
n∑

i=1

b2i .

As long as the entries of s are IID with mean 0 and variance 1, we have E
[(
bTs

)2] =∑n
i=1 b

2
i . Drawing the entries of s from {−1, 1}, however, minimizes the variance of(

bTs
)2
.

4.2 Projected Stochastic Gradient

Method We follow the projected stochastic gradient method described in [25] and
[26, Chap. 6], which solves convex optimization problems of the form

minimize f (x) subject to x ∈ C, (6)

where x ∈ R
n is the optimization variable, f : Rn → R is a strongly convex differ-

entiable function, and C is a convex set, using only an oracle that gives an unbiased
estimate of ∇ f , and projection onto C .

We cannot evaluate f (x) or ∇ f (x), but we can evaluate a function g(x, ω) and
sample from a distribution Ω such that Eω∼Ωg(x, ω) = ∇ f (x). Let μ be the strong
convexity constant for f and ΠC : Rn → R

n denote the Euclidean projection onto
C . Then, the method consists of T iterations of the update

xt := ΠC

(
xt−1 − ηt g(x

t−1, ω)
)

,

where ηt = 2/(μ(t + 1)) and ω is sampled from Ω . The final approximate solution x̄
is given by the weighted average

x̄ =
T∑

t=0

2(t + 1)

(T + 1)(T + 2)
xt .

123

444 J Optim Theory Appl (2017) 172:436–454

Algorithm (1) gives the full projected stochastic gradient method in the context of
problem (5). Recall that the objective of problem (5) is strongly convex with strong
convexity parameter γ .

Algorithm 1 Projected stochastic gradient method for problem (5).

Input: u0 = 0, v0 = 0, ū = 0, v̄ = 0, and α, β, γ, M > 0.

for t = 1, 2, . . . , T do

D ← diag
(
eu

t−1
1 , . . . , eu

t−1
m

)
, E ← diag

(
ev

t1
1 , . . . , ev

t−1
n

)
.

Draw entries of s ∈ R
n and w ∈ R

m IID uniform from {−1, 1}.
ut ← Π[−M,M]m

(
ut−1 − 2

(
|DAEs|2 − α21 + γ ut−1

)
/(γ (t + 1))

)
.

vt ← Π[−M,M]n
(
vt−1 − 2

(∣∣E ATDw
∣∣2 − β21 + γ vt−1

)
/(γ (t + 1))

)
.

ū ← 2ut/(t + 2) + t ū/(t + 2).
v̄ ← 2vt/(t + 2) + t v̄/(t + 2).

Output: D = diag
(
eū1 , . . . , eūm

)
and E = diag

(
ev̄1 , . . . , ev̄n

)
.

Convergence rate Algorithm (1) converges in expectation to the optimal value of
problem (5) with rate O(1/t) [25]. Let f (u, v) : Rm ×R

n → R denote the objective
of problem (5), let (u
, v
) denote the problem solution, and let g̃(u, v, s, w) : Rm ×
R
n × {−1, 1}n × {−1, 1}m → R

m+n be the estimate of ∇ f (u, v) given by

g̃(u, v, s, w) =
[|DAEs|2 − α21 + γ u∣∣E ATDw

∣∣2 − β21 + γ v

]
.

Then, after T iterations of the algorithm, we have

E(uT,vT),...,(u1,v1) f (ū, v̄) − f (u
, v
) ≤ C

μ(T + 1)
,

where C is a constant bounded above by

C ≤ max
(u,v)∈[−M,M]m×n

2Es,w‖g̃(u, v, s, w)‖22.

In the expectation, s and w are random variables with entries drawn IID uniform from
{−1, 1}.

We can make the bound more explicit. It is straightforward to show the equality

Es,w‖g̃(u, v, s, w)‖22 = ‖∇ f (u, v)‖22 − 41T|DAE |41
+ 31T

∣∣∣|DAE |2 1
∣∣∣2 + 31T

∣∣∣∣∣E ATD
∣∣21

∣∣∣2 ,

123

J Optim Theory Appl (2017) 172:436–454 445

whereas before the function | · |p is applied elementwise. The inequality

max
(u,v)∈[−M,M]m×n

‖∇ f (u, v)‖22 ≤ ‖∇ f (M1, M1)‖22 + 4γ M(α2m + β2n),

is equally straightforward. We combine these two results to obtain the bound

C/2 ≤ ‖∇ f (M1, M1)‖22 + 4γ M(α2m + β2n)

+ e8M
(
31T

∣∣∣|A|21
∣∣∣2 + 31T

∣∣∣∣
∣∣∣AT

∣∣∣2 1
∣∣∣∣
2

− 41T|A|41
)

.

Our bound on C is quite large. A more thorough analysis could improve the bound
by considering the relative sizes of the different parameters and entries of A. For
instance, it is straightforward to show that for t = 1, . . . , T we have

uti ≤ α2/γ, i = 1, . . . ,m, vtj ≤ β2/γ, j = 1, . . . , n,

which gives a tighter bound if α2/γ < M or β2/γ < M . In any case, we find that in
practice no more than tens of iterations are required to reach an approximate solution.

5 Numerical Experiments

We evaluated algorithm (1) on many different matrices A. We only describe the results
for a single numerical experiment, but we obtained similar results for our other exper-
iments. For our numerical experiment, we generated a sparse matrix Â ∈ R

m×n , with
m = 2 × 104 and n = 104, with 1% of the entries chosen uniformly at random to
be nonzero, and nonzero entries drawn IID from a standard normal distribution. We
next generated vectors û ∈ R

m and v̂ ∈ R
n with entries drawn IID from a normal

distribution with mean 1 and variance 1. We set the final matrix A to be

A = diag
(
eû1 , . . . , eûm

)
Âdiag

(
ev̂1, . . . , ev̂n

)
.

We ran algorithm (1) for 1000 iterations to obtain an approximate solution f (ū, v̄).
Weused the parametersα = (n/m)1/4, β = (m/n)1/4, γ = 10−1, andM = log(104).
We obtained the exact solution p
 to high accuracy using Newton’s method with
backtracking line search. (Newton’s method does not account for constraints, but we
verified that the constraints were not active at the solution.)

Figure 1 plots the relative optimality gap (f (ū, v̄) − p
)/ f (0, 0) and the RMS
equilibration error,

1√
m + n

⎛
⎝

m∑
i=1

(√
eTi |DAE |21 − α

)2

+
n∑
j=1

(√
eTj

∣∣E ATD
∣∣2 1 − β

)2
⎞
⎠

1/2

,

123

446 J Optim Theory Appl (2017) 172:436–454

Fig. 1 Problem (5) optimality gap and RMS error versus iterations t

versus iteration. The RMS error shows how close DAE is to equilibrated; we do not
expect it to converge to zero because of the regularization.

The objective value and RMS error decrease quickly for the first few iterations,
with oscillations, and then decrease smoothly but more slowly. The slopes of the lines
show the convergence rate. The least-squares linear fit for the optimality gap has slope
−2.0, which indicates that the convergence was (much) faster than the theoretical
upper bound 1/t .

Figure 2 shows the condition number of DAE versus iteration. While equilibration
merely minimizes an upper bound on the condition number, in this case the condition
number corresponded quite closely with the objective of problem (5). The plot shows
that after 4 iterations κ(DAE) is back to the original condition number κ(A) = 104.
After 100 iterations, the condition number is reduced by 200×, and it continues to
decrease with further iterations.

6 Applications

Diagonal preconditioning can accelerate the convergence of many iterative matrix-
free algorithms for solving linear equations or optimization problems. Our stochastic
matrix-free equilibrationmethod can be usedwith any of these algorithms as a general-
purpose tool for generating a diagonal preconditioner. Generating a preconditioner
through equilibration requires additional matrix multiplications, but ideally the algo-
rithm’s improved convergence rate due to the preconditioner will reduce the number
of matrix multiplications needed overall. In this section, we investigate the effects of
preconditioning using our equilibration method through numerical examples. In the
first example, we solve a linear system using the preconditioned LSQR algorithm. In

123

J Optim Theory Appl (2017) 172:436–454 447

Fig. 2 Condition number of DAE versus iterations t

the second example, we solve a Lasso problem using the preconditioned Chambolle–
Cremers–Pock algorithm. We find in both examples that preconditioning using our
equilibration method substantially reduces the total number of matrix multiplications
needed to reach a given level of precision. We expect that preconditioning via matrix-
free equilibration would yield similar improvements for many other algorithms.

6.1 LSQR

The LSQR algorithm [16] is an iterative matrix-free method for solving the linear sys-
tem Ax = b, where x ∈ R

n , A ∈ R
n×n , and b ∈ R

n . Each iteration of LSQR involves
one multiplication by A and one by AT. LSQR is equivalent in exact arithmetic to
applying the conjugate gradients method [15] to the normal equations ATAx = ATb,
but in practice has better numerical properties. An upper bound on the number of
iterations needed by LSQR to achieve a given accuracy grows with κ(A) [5, Chap. 5].
Thus, decreasing the condition number of A via equilibration can accelerate the con-
vergence of LSQR. (Since LSQR is equivalent to conjugate gradients applied to the
normal equations, it computes the exact solution in n iterations, at least in exact arith-
metic. But with numerical roundoff error this does not occur.)

We use equilibration as a preconditioner by solving the linear system (DAE)x̄ =
Dbwith LSQR instead of Ax = b; we then recover x from x̄ via x = Ex̄ . Wemeasure
the accuracy of an approximate solution x̄ by the residual ‖Ax − b‖2 rather than by
residual ‖DAEx̄ − Db‖2 of the preconditioned system, since our goal is to solve the
original system Ax = b.

123

448 J Optim Theory Appl (2017) 172:436–454

Fig. 3 Residual versus iterations t for LSQR

We compared the convergence rate of LSQR with and without equilibration. We
generated the matrix Â ∈ R

n×n as in Sect. 5, with n = 104. We chose b ∈ R
n by first

generating x
 ∈ R
n by drawing entries IID from a standard normal distribution and

then setting b = Ax
.
We generated equilibrated matrices D10AE10, D30AE30, D100AE100, and D300

AE300 by running algorithm (1) for 10, 30, 100, and 300 iterations, respectively. We
used the parameters α = (n/m)1/4, β = (m/n)1/4, γ = 10−1, and M = log(104).
Note that the cost of equilibration iterations is the same as the cost of LSQR iterations,
since each involves one multiply by A and one by AT.

Figure 3 shows the results of runningLSQRwith andwithout equilibration, from the
initial iterate x0 = 0.We show the relative residual ‖Axt −b‖2/‖b‖2 versus iterations,
counting the equilibration iterations, which can be seen as the original flat portions
at the beginning of each curve. We can see that to achieve relative accuracy 10−4,
LSQR without preconditioning requires around 104 iterations; with preconditioning
with 30 or more iterations of equilibration, it requires more than 10× fewer iterations.
We can see that higher accuracy justifies more equilibration iterations, but that the
choice of just 30 equilibration iterations does very well. We can see that 10 iterations
of equilibration are too few and only improve LSQR convergence a small amount.

6.2 Chambolle–Cremers–Pock

The Chambolle–Cremers–Pock (CCP) algorithm [17,27] is an iterative method for
solving convex optimization problems of the form

minimize [f (x) + g(Ax)] ,

123

J Optim Theory Appl (2017) 172:436–454 449

where x ∈ R
n is the variable, A ∈ R

m×n is problem data, and f and g are convex
functions. Each iteration of CCP requires one multiplication by A and one by AT.
Chambolle and Pock do not show a dependence on κ(A) in their analysis of the
algorithm convergence rate, but we nonetheless might expect that equilibration will
accelerate convergence.

We compared the convergence rate of CCP with and without equilibration on the
Lasso problem [28, Sect. 3.4]

minimize
[
‖Ax − b‖22/

√
λ + √

λ‖x‖1
]
.

We generated the matrix A ∈ R
m×n as in Sect. 5, with dimensions m = 104 and

n = 2 × 104. We generated b ∈ R
m by first generating x̂ ∈ R

n by choosing n/10
entries uniformly at random to be nonzero and drawing those entries IID from a
standard normal distribution. We then set b = Ax̂ + ν, where the entries of ν ∈ R

m

were drawn IID from a standard normal distribution. We set λ = 10−3
∥∥ATb

∥∥∞ and
found the optimal value p
 for the Lasso problem using CVXPY [29] and GUROBI
[30].

We generated equilibrated matrices D10AE10, D30AE30, D100AE100, and D300
AE300 by running algorithm (1) for 10, 30, 100, and 300 iterations, respectively. We
used the parameters α = (n/m)1/4, β = (m/n)1/4, γ = 10−1, and M = log(104).

Figure 4 shows the results of running CCP with and without equilibration. We used
the parameters τ = σ = 0.8/‖Dk AEk‖2 and θ = 1 and set all initial iterates to
0. We computed ‖Dk AEk‖2 using the implicitly restarted Arnoldi method [31]. We
show the relative optimality gap (f (xt) − p
)/ f (0) versus iterations, counting the
equilibration iterations, which can be seen as the original flat portions at the beginning
of each curve. We can see that to achieve relative accuracy 10−6, CCPwithout precon-
ditioning requires around 1000 iterations; with preconditioning with 100 iterations of
equilibration, it requires more than 4× fewer iterations. CCP converges to a highly
accurate solution with just 100 equilibration iterations, so additional equilibration iter-
ations are unnecessary. We can see that 10 and 30 iterations of equilibration are too
few and do not improve CCP’s convergence.

7 Variants

In this section, we discuss several variants of the equilibration problem that can also
be solved in a matrix-free manner.

Symmetric equilibration When equilibrating a symmetric matrix A ∈ R
n×n , we often

want the equilibratedmatrix DAE also to be symmetric. For example, to use equilibra-
tion as a preconditioner for the conjugate gradients method, DAE must be symmetric
[15]. We make DAE symmetric by setting D = E .

Symmetric equilibration can be posed as the convex optimization problem

123

450 J Optim Theory Appl (2017) 172:436–454

Fig. 4 Optimality gap versus iterations t for CCP

minimize

⎡
⎣(1/4)

n∑
i=1

n∑
j=1

(Ai j)
2e2ui+2u j − α21Tu

⎤
⎦ , (7)

where u ∈ R
n is the optimization variable andα > 0 is the desired value of the row and

column norms. We approximately solve problem (7) by adding regularization and box
constraints as in problem (5) and then applying algorithm (2), a simple modification
of algorithm (1) with the same convergence guarantees.

Algorithm 2 Projected stochastic gradient method for symmetric equilibration.

Input: u0 = 0, ū = 0, and α, γ, M > 0.

for t = 1, 2, . . . , T do

D ← diag
(
eu

t−1
1 , . . . , eu

t−1
n

)
.

Draw entries of s ∈ R
n IID uniform from {−1, 1}.

ut ← Π[−M,M]n
(
ut−1 − 2

(
|DADs|2 − α21 + γ ut−1

)
/(γ (t + 1))

)
.

ū ← 2ut/(t + 2) + t ū/(t + 2).

Output: D = diag
(
eū1 , . . . , eūn

)
.

Varying row and column norms In standard equilibration, we want all the row norms
of DAE to be the same and all the column norms to be the same.Wemight insteadwant

123

J Optim Theory Appl (2017) 172:436–454 451

the row and column norms to equal known vectors r ∈ R
m and c ∈ R

n , respectively.
The vectors must satisfy rTr = cTc.

Equilibration with varying row and column norms can be posed as the convex
optimization problem

minimize

⎡
⎣(1/2)

m∑
i=1

n∑
j=1

(Ai j)
2e2ui+2v j − rTu − cTv

⎤
⎦ , (8)

where as usual u ∈ R
m and v ∈ R

n are the optimization variables. We approximately
solve problem (8) by adding regularization and box constraints as in problem (5) and
then applying algorithm (1) with the appropriate modification to the gradient estimate.

Block equilibration A common constraint when using equilibration as a precondi-
tioner is that the diagonal entries of D and E are divided into blocks that all must have
the same value. For example, suppose we have a cone program

minimize cTx subject to Ax + b ∈ K,

where x ∈ R
n is the optimization variable, c ∈ R

n, b ∈ R
m , and A ∈ R

m×n are
problem data, and K = K1 × · · · × K� is a product of convex cones.

If we equilibrate A, we must ensure that DK = K. Let mi be the dimension of
cone Ki . A simple sufficient condition for DK = K is that D have the form

D = diag
(
eu1 Im1 , . . . , e

u p Im p

)
, (9)

where u ∈ R
p and Imi is the mi -by-mi identity matrix. Given the constraint on D, we

cannot ensure that each row of DAE has norm α. Instead, we view each block of mi

rows as a single vector and require that the vector have norm
√
miα.

In the full block equilibration problem, we also require that E have the form

E = diag
(
ev1 In1 , . . . , e

vq Inq
)
, (10)

where v ∈ R
q and In j is the n j -by-n j identity matrix. Again, we view each block of

n j columns as a single vector and require that the vector have norm
√
n jβ.

Block equilibration can be posed as the convex optimization problem

minimize

⎡
⎣(1/2)1T|DAE |21 − α2

p∑
i=1

uimi − β2
q∑
j=1

v j n j

⎤
⎦ , (11)

where D and E are defined as in equations (9) and (10). We approximately solve
problem (11) by adding regularization and box constraints as in problem (5) and then
applying algorithm (1) with the appropriate modification to the gradient estimate. Our
stochastic matrix-free block equilibration method is used in the matrix-free versions
of the cone solvers SCS [32] and POGS [18] described in [33,34].

123

452 J Optim Theory Appl (2017) 172:436–454

Tensor equilibration We describe here the case of three tensors; the generalization to
higher-order tensors is clear. We are given a 3-dimensional array A ∈ R

m×n×p and
seek coordinate scalings d ∈ R

m, e ∈ R
n, f ∈ R

p for which

⎛
⎝

n∑
j=1

p∑
k=1

A2
i jkd

2
i e

2
j f

2
k

⎞
⎠

1/2

= α, i = 1, . . . ,m

(
m∑
i=1

p∑
k=1

A2
i jkd

2
i e

2
j f

2
k

)1/2

= β, j = 1, . . . , n

⎛
⎝

m∑
i=1

n∑
j=1

A2
i jkd

2
i e

2
j f

2
k

⎞
⎠

1/2

= γ, k = 1, . . . , p.

Here α, β, γ > 0 are constants that satisfy mα2 = nβ2 = pγ 2.
Tensor equilibration can be posed as the convex optimization problem

minimize

⎡
⎣(1/2)

m∑
i=1

n∑
j=1

p∑
k=1

(A2
i jk)e

2(ui+v j+wk) − 1T

⎡
⎣

α2u
β2v

γ 2w

⎤
⎦

⎤
⎦ , (12)

where u ∈ R
m, v ∈ R

n , and w ∈ R
p are the optimization variables. We can solve

problem (12) using a simple variant of algorithm (1) that only interacts with the array
A via the matrix-to-vector operations

X →
m∑
i=1

n∑
j=1

Ai jk Xi j

Y →
m∑
i=1

p∑
k=1

Ai jkYik

Z →
n∑
j=1

p∑
k=1

Ai jk Z jk .

8 Conclusions

In this paper, by representing equilibration as a convex optimization problem, we
derived a stochasticmatrix-free equilibrationmethod that provably converges in expec-
tation with an O(1/t) convergence rate. We showed in numerical experiments that our
method converges in practice to an approximate solution in a few tens of iterations and
that it provides an effective preconditioner for matrix-free iterative algorithms such
as LSQR and Chambolle–Cremers–Pock. We also developed a novel interpretation of
equilibration as minimizing an upper bound on condition number.

123

J Optim Theory Appl (2017) 172:436–454 453

Acknowledgements The authors thank Reza Takapoui for helpful comments and pointers. This material
is based upon work supported by the National Science Foundation Graduate Research Fellowship under
Grant No. DGE-114747 and by the DARPA XDATA and SIMPLEX programs.

References

1. Hwang, I., Balakrishnan, H., Roy, K., Shin, J., Guibas, L., Tomlin, C.: Multiple-target tracking and
identity management. In: Proceedings of IEEE Sensors, pp. 36–41 (2003)

2. Knight, P.: The Sinkhorn–Knopp algorithm: convergence and applications. SIAMJ.MatrixAnal. Appl.
30(1), 261–275 (2008)

3. Schneider, M., Zenios, S.: A comparative study of algorithms for matrix balancing. Oper. Res. 38(3),
439–455 (1990)

4. Bradley, A.: Algorithms for the equilibration of matrices and their application to limited-memory
Quasi-Newton methods. Ph.D. thesis, Stanford University (2010)

5. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)
6. Takapoui, R., Javadi, H.: Preconditioning via diagonal scaling. EE364b: Convex Optimiza-

tion II Class Project (2014). http://stanford.edu/class/ee364b/projects/2014projects/reports/takapoui_
javadi_report.pdf

7. Giselsson, P., Boyd, S.: Diagonal scaling in Douglas–Rachford splitting and ADMM. In: Proceedings
of the IEEE Conference on Decision and Control, pp. 5033–5039 (2014)

8. Kelley, C.: Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied
Mathematics, Philadelphia (1995)

9. Greenbaum, A.: Iterative Methods for Solving Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia (1997)

10. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex
optimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1762–
1769 (2011)

11. Giselsson, P., Boyd, S.: Metric selection in fast dual forward-backward splitting. Automatica 62, 1–10
(2015)

12. Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14(1), 14–23 (1969)
13. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J.

Math. 21(2), 343–348 (1967)
14. Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms inmatrices. Technical report,

Rutherford Appleton Lab., Oxon, UK, RAL-TR-2001-034 (2001)
15. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur.

Stand. 49(6), 409–436 (1952)
16. Paige, C., Saunders, M.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM

Trans. Math. Softw. 8(1), 43–71 (1982)
17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to

imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
18. Fougner, C., Boyd, S.: Parameter selection and pre-conditioning for a graph form solver. Preprint

(2015). arXiv:1503.08366v1
19. Balakrishnan, H., Hwang, I., Tomlin, C.: Polynomial approximation algorithms for belief matrix main-

tenance in identity management. In: Proceedings of the IEEE Conference on Decision and Control,
pp. 4874–4879 (2004)

20. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
21. Corless, R., Gonnet, G., Hare, D., Jeffrey, D., Knuth, D.: On the Lambert W function. Adv. Comput.

Math. 5(1), 329–359 (1996)
22. Hoorfar, A., Hassani, M.: Inequalities on the LambertW function and hyperpower function. J. Inequal.

Pure Appl. Math. 9, 1–5 (2008)
23. Bekas, C., Kokiopoulou, E., Saad, Y.: An estimator for the diagonal of a matrix. Appl. Numer. Math.

57(11–12), 1214–1229 (2007)
24. Hutchinson, M.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing

splines. Commun. Stat. Simul. Comput. 19(2), 433–450 (1990)
25. Lacoste-Julien, S., Schmidt, M., Bach, F.: A simpler approach to obtaining an O(1/t) convergence

rate for the projected stochastic subgradient method. Preprint (2002). arXiv:1212.2002v2

123

http://stanford.edu/class/ee364b/projects/2014projects/reports/takapoui_javadi_report.pdf
http://stanford.edu/class/ee364b/projects/2014projects/reports/takapoui_javadi_report.pdf
http://arxiv.org/abs/1503.08366v1
http://arxiv.org/abs/1212.2002v2

454 J Optim Theory Appl (2017) 172:436–454

26. Bubeck, S.: Convex optimization: algorithms and complexity. Found. Trends Mach. Learn. 8(3–4),
231–357 (2015)

27. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford–Shah
functional. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1133–1140
(2009)

28. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning, Springer Series in Sta-
tistics, vol. 1. Springer, New York (2001)

29. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex optimization. J.
Mach. Learn. Res. 17(83), 1–5 (2016)

30. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2015). http://www.gurobi.com
31. Lehoucq, R., Sorensen, D.: Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J.

Matrix Anal. Appl. 17(4), 789–821 (1996)
32. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and homo-

geneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042–1068 (2016)
33. Diamond, S., Boyd, S.: Convex optimization with abstract linear operators. In: Proceedings of the

IEEE International Conference on Computer Vision, pp. 675–683 (2015)
34. Diamond, S., Boyd, S.: Matrix-free convex optimization modeling. In: Goldengorin, B. (ed.) Opti-

mization and Applications in Control and Data Sciences, Springer Optimization and Its Applications,
vol. 115. Springer (2016, to appear)

123

http://www.gurobi.com

	Stochastic Matrix-Free Equilibration
	Abstract
	1 Introduction
	2 Problem and Approach
	3 Equilibration via Convex Optimization
	3.1 Convex Formulation
	3.2 Equilibration and Condition Number
	3.3 Regularized Equilibration

	4 Stochastic Method
	4.1 Unbiased Gradient Estimate
	4.2 Projected Stochastic Gradient

	5 Numerical Experiments
	6 Applications
	6.1 LSQR
	6.2 Chambolle--Cremers--Pock

	7 Variants
	8 Conclusions
	Acknowledgements
	References

