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SUMMARY

We formulate multi-input multi-output proportional integral derivative controller design as an optimization
problem that involves nonconvex quadratic matrix inequalities. We propose a simple method that replaces
the nonconvex matrix inequalities with a linear matrix inequality restriction, and iterates to convergence.
This method can be interpreted as a matrix extension of the convex–concave procedure, or as a particular
majorization–minimization method. Convergence to a local minimum can be guaranteed. While we do not
know that the resulting controller is globally optimal, the method works well in practice, and provides a
simple automated method for tuning multi-input multi-output proportional integral derivative controllers.
The method is readily extended in many ways, for example, to the design of more complex, structured
controllers. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Single-input single-output (SISO) proportional integral derivative (PID) control is the automatic
control scheme most widely used in practice, with a long history going back at least 250 years; see
[1, Section 1.4]. It has only three parameters to tune, and achieves reasonable or good performance
on a wide variety of plants. The effect of the tuning parameters (or gains) on the closed-loop perfor-
mance is well-understood, and there are well-known simple rules for tuning these parameters; see,
for example, [1, Chap. 6] or [2]. Systems for automatically tuning SISO PID controllers have been
developed, and are available in commercial controllers [1, 3–5]. The authors of this paper recently
developed yet another SISO PID tuning method in [6], which is a precursor for the method described
in this paper.

Single-input single-output PID controllers have been used for multiple-input multiple-output
(MIMO) plants for many years. This is generally carried out by pairing inputs (actuators) and out-
puts (sensors), and connecting them with SISO PID controllers. These SISO PID controllers can
be tuned one at a time (in ‘successive loop closure’) using standard SISO PID tuning rules. For
MIMO plants that are already reasonably well-decoupled, multi-loop SISO PID design can work
well. Unlike SISO PID design, however, MIMO PID design is more complex; the SISO loops have
to be chosen carefully, and then tuned the correct way in the correct order.

An alternative to multi-loop SISO PID control is to design one MIMO PID controller, which
uses matrix coefficients, all at once. Such a controller potentially uses all sensors to drive
all actuators, but it is possible to specify a simpler structure by imposing a sparsity con-
straint on the controller gain matrices. Like SISO PID controllers for SISO plants, MIMO PID
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controllers can achieve very good performance on a wide variety of MIMO plants, even when
the plant dynamics are quite coupled. The challenge is in tuning MIMO PID controllers, which
require the specification of three matrices, each with a number of entries equal to the num-
ber of plant inputs times the number of plant outputs. For example, a MIMO PID controller
for a plant with four inputs and four outputs requires the specification of up to 48 param-
eters. This would be very difficult, if not impossible, to tune by hand one parameter at a
time. Hand tuning a MIMO PID controller with 10 inputs and 10 outputs would be impossible
in practice.

In this paper, we describe a method for designing MIMO PID controllers. The method is based
on solving a small number of convex optimization problems, specifically semidefinite programs
(SDPs), which can be carried out efficiently. Our method is a local optimization method, and we
cannot guarantee that it finds the globally optimal controller parameter values. On many examples,
however, the method seems to work very well.

We first describe a basic form for the method. We impose constraints on the sensitivity and
complementary sensitivity transfer functions, which guarantees closed-loop stability and a MIMO
stability margin, and also a limit on actuator effort. The objective is to minimize the low-frequency
sensitivity of the closed-loop system, which is an MIMO analog of maximizing the integral gain
in the SISO case. In a later section, we describe a number of generalizations of the method. These
optimization problems could be solved using other methods, for example, [7] and its references for
a number of H1 synthesis approaches.

There is an enormous literature on automated SISO PID tuning, and a very large literature on
MIMO PID tuning (e.g., [8] and its references or [9, 10]) including some methods that are very
close to the one we describe, and others that are close in spirit. We give a more detailed techni-
cal analysis of other methods in Section 6.4, after describing the details of our method. But we
mention here some earlier work that is very closely related to ours. In [11], the authors also form
a linear matrix inequality (LMI)-based restriction of a problem with nonconvex quadratic matrix
inequalities, and iterates to convergence. Another previous work that is close in spirit to ours is
in [12], which formulates the design problem as involving bilinear matrix inequalities (BMIs),
which are in turn solved (approximately) by iteratively solving a set of SDPs. (The connection
between our method and BMI formulations will be discussed in Section 6.4.) The closest prior
work appears in [13], which takes a very similar approach to ours. The authors consider MIMO
PID design, using frequency-domain specifications, and their algorithm involves LMI restrictions
of nonconvex matrix inequalities, as our method does. We will discuss some of the differences in
Section 6.4.

2. MODEL AND ASSUMPTIONS

2.1. Plant

The linear time-invariant plant has m inputs (actuators) and p outputs (sensors), and is given
by its transfer function P.s/ 2 Cp�m or more specifically by its frequency response P.i!/,
for ! 2 RC. We do not assume that P is rational; it can, for example, include transport
delay. We assume that the entries of the plant input u.t/ 2 Rm are measured in appropriate
units (or scaled), so their sizes are (roughly) the same order. We make the same assumption
about the plant output y.t/ 2 Rp . These assumptions justify the use of the (unweighted)
`2-norm to measure the actuator effort and deviation of the plant outputs from the refer-
ence signal, and more generally, it justifies the use of (unweighted) matrix norms to measure
closed-loop gains.

We make several assumptions about the plant. We assume that p 6 m, that is, there are at least as
many actuators as plant outputs, and that P.0/ is full rank. This makes it possible to achieve perfect
reference tracking in steady state (s D 0). We will also assume that the plant is stable and strictly
proper, that is, P.s/ ! 0 as s ! 1. Most of our assumptions can be relaxed or extended to more
general settings, but our goal is to keep the ideas simple for now. We will discuss various ways these
assumptions can be relaxed in Section 7.
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Figure 1. Classical feedback interconnection.

2.2. Proportional integral derivative controller

The controller is a PID controller, given by

C.s/ D KP C
1

s
KI C

s

1C �s
KD;

where KP; KI; KD 2 Rm�p are the proportional gain matrix, integral gain matrix, and derivative
gain matrix, respectively. The 3mp entries in these matrices are the design parameters we are to
choose. The constant � > 0 is the derivative action time constant, and is assumed to be fixed and
responsibly chosen, for example, a modest fraction of the desired closed-loop response time.

The plant and controller are connected in the classical loop shown in Figure 1, described by
the equations

e D r � y; u D Ce; y D P.uC d/;

where r is the reference input, e is the error, and d is an input-referred plant disturbance. The signals
u and y are the plant input and output, respectively.

2.3. Closed-loop transfer functions

We will be interested in several closed-loop transfer functions that we describe here.

Sensitivity. The transfer function from reference input r to error e is the sensitivity S D .I C
PC/�1. The size of S gives a measure of the tracking error; for low frequencies, S should be
small. When S.0/ D 0 (a constraint we will impose), we have perfect static tracking. The maximum
size of S , which occurs near the crossover frequency, is closely related to closed-loop damping and
system stability.
Q-parameter. The transfer function from r to u is denoted Q, defined as Q D C.I C PC/�1.
Its size is a measure of the actuator effort. (We use Q to match the notation often used in Youla’s
parametrization of closed-loop transfer functions; see [14].)
Complementary sensitivity function. The complementary sensitivity function is T D PC.I C
PC/�1. It is the closed-loop transfer function from r to y. It is near the identity for low frequencies,
and will be small for high frequencies; its maximum size is also related to closed-loop damping.

These three closed-loop transfer functions are sufficient to guarantee a sensible controller design
(because P is assumed stable). They are related in various ways, for example, we have

S C T D I; T D PQ; Q D CS:

Other closed-loop transfer functions. Several other closed-loop transfer functions can also be con-
sidered. For example, the closed-loop transfer function from the plant disturbance d to the tracking
error e isR D �.ICPC/�1P . It will be clear how our approach extends to other transfer functions.

2.4. Notation

For a complex matrix Z 2 Cp�q , Z� is its (Hermitian) conjugate transpose, kZk denotes the
spectral norm, that is, the maximum singular value. For full rank Z, we let �min.Z/ denote its
minimum singular value. A square matrix is Hermitian if Z D Z�. Between Hermitian matrices,
the symbol� 0 is used to denote matrix inequality, soZ � 0means thatZ is Hermitian and positive
semidefinite. We use the notation Z�� D .Z�/�1.
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For a p � q transfer function H , kHk1 is its H1-norm, kHk1 D sup<s>0 kH.s/k, which can
be expressed as

kHk1 D sup
!>0
kH.i!/k;

when H is stable (i.e., H 2 Hp�q
1 ).

3. DESIGN PROBLEM

3.1. Objective and constraints

Sensitivity and complementary sensitivity peaking. We require kSk1 6 Smax, where Smax > 1.
Reasonable values of Smax are in the range 1.1 to 1.6; lower values give a more damped closed-loop
system. This constraint ensures closed-loop stability. We also require kT k1 6 Tmax, with Tmax > 1.
Reasonable values of Tmax are similar to those for Smax.
Static and low-frequency sensitivity. Assuming that P.0/KI is nonsingular, we have S.0/ D 0,
which means that we have zero error for constant reference signals. The next term in the expansion
of the sensitivity near s D 0 is S.s/ � s.P.0/KI/

�1 for jsj small. Our objective will be to attain
the best possible low-frequency sensitivity, which means that we will minimize k.P.0/KI/

�1k. This
objective indirectly imposes the condition that we achieve perfect tracking because when it is finite,
we have P.0/KI nonsingular.
Actuator authority limit. We require that kQk1 6 Qmax. This sets a maximum value for the size of
the closed-loop actuator signal in response to the reference signal. Because the plant is stable, this
constraint ensures that the closed-loop system is stable; see [14].

We can determine a reasonable value forQmax as follows. Any controller that has a finite objective
value (i.e., achieves perfect reference tracking at s D 0) satisfies T .0/ D I D P.0/Q.0/; this has
the simple interpretation that at s D 0, the controller inverts the plant. It follows that kQ.0/k >
1=�min.P.0//, from which we conclude that kQk1 > 1=�min.P.0//. Thus, we must have Qmax >
1=�min.P.0//. The right-hand side can be interpreted as the minimum actuator effort (measured
by kQk1) required to achieve static tracking. A reasonable value for Qmax is therefore a modest
multiple of 1=�min.P.0//, say, 3 to 10.
Design problem. Putting it all together, we obtain the problem

minimize k.P.0/KI/
�1k;

subject to kSk1 6 Smax;

kT k1 6 Tmax;

kQk1 6 Qmax:

(1)

The variables to be chosen are the coefficient matrices KP; KI; KD; the problem data are the plant
transfer function P , the controller derivative time constant � , and the design parameters Smax, Tmax,
andQmax. This problem is not convex because the cost function and constraints are not affine expres-
sions of the coefficient matrices. Note that the objective contains the implied constraint that P.0/KI

is invertible, which implies that perfect static tracking is achieved for constant reference inputs.

3.2. Sampling semi-infinite constraints

The constraints on the closed-loop transfer functions can be expressed as, for example,

kS.i!/k 6 Smax; 8! > 0:

This is a so-called semi-infinite constraint, because it consists of an infinite number of constraints,
one for each ! > 0. Semi-infinite constraints such as these (with one parameter, !) are readily
handled by choosing a reasonable finite (but large) set of frequency samples 0 < !1 < � � � < !K ,
and replacing the semi-infinite constraints with the finite set of constraints at each of the given
frequencies. For example, we replace the constraint kSk1 6 Smax with kS.i!k/k 6 Smax,
k D 1; : : : ; N . Our optimization method has a computational complexity that grows linearly with
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N , so we can choose a large enough value of N (say, several hundred or more) that this sam-
pling has no practical effect. By ‘reasonable’, we mean that the frequency sampling is fine enough
to catch any rapid changes in the closed-loop transfer function with frequency, and also cover an
appropriate range; in particular, we assume that at !1 and !N , the transfer functions are near their
asymptotic values,

S.0/ D 0; T .0/ D I; Q.0/ D KI.P.0/KI/
�1

and

S.1/ D I; T .1/ D 0; Q.1/ D KP C .1=�/KD;

respectively.
We will use subscripts to denote a transfer function evaluated at the frequency s D i!k . For

example, Pk D P.i!k/, which is a (given) complex matrix. Note that the quantity Ck D C.i!k/

is a complex matrix, and is an affine function of the design variables KP; KP; KD. (We will use this
observation to arrive at the LMI restriction in Section 5.)

The sampled problem is then

minimize k.P.0/KI/
�1k;

subject to kSkk 6 Smax;

kTkk 6 Tmax;

kQkk 6 Qmax;

k D 1; : : : ; N:

(2)

This problem has 3N constraints, each of which has the form of a matrix norm inequality. The
arguments of the matrix norm inequalities, however, are complex functions of the design variables
KP; KI; KD, given by the various formulas for the closed-loop transfer functions.

4. QUADRATIC MATRIX INEQUALITY FORM

In this section, we show how the (frequency sampled) design problem (2) can be casted in a simple
form in which every constraint has the same quadratic matrix inequality (QMI) form

Z�Z � Y �Y; (3)

where both Z and Y are affine functions of the variables.
We start with the objective. First, we note that we can just as well maximize �min.P.0/KI/ D

1=k.P.0/KI/
�1k. We introduce a new scalar variable t , which we maximize subject to

�min.P.0/KI/ > t . (This is the standard epigraph transformation; see [15, Section 4.2.4].) We then
observe that

�min.P.0/KI/ > t , .P.0/KI/
�.P.0/KI/ � t

2I;

which has the form (3) with Z D P.0/KI and Y D tI , both of which are affine functions of the
variables.

Now, consider the sensitivity peaking limit kSkk 6 Smax. As mentioned earlier, we have

kSkk 6 Smax , .I C PkCk/
��.I C PkCk/

�1 � S2maxI

, .I C PkCk/
�.I C PkCk/ � .1=S

2
max/I;

where in the second line, we have multiplied the left and right sides by .I C PkCk/� and by .I C
PkCk/, respectively. This has the QMI form (3) with Z D I C PkCk and Y D .1=Smax/I .

For the complementary sensitivity constraint kTkk 6 Tmax, we have

kTkk 6 Tmax , .I C P �k C
�
k /
�1C �k P

�
k PkC.I C PkCk/

�1 � T 2maxI

, .I C PkCk/
�.I C PkCk/ � .1=T

2
max/.PkCk/

�.PkCk/:

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1718–1731
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This has the QMI form (3) with Z D I C PkCk and Y D .1=Tmax/PkCk .
In a similar way, we have

kQkk 6 Qmax , .I C PkCk/
�.I C PkCk/ � .1=Q

2
max/C

�
k Ck;

which has the QMI form with Z D I C PkCk and Y D .1=Qmax/Ck .
We arrive at a problem with the form

maximize t
subject to Z�

k
Zk � Y

�
k
Yk; k D 1; : : : ;M; (4)

with variables t , KP; KI; KD. (Here, we have M D 3N C 1.) This is the PID controller design
problem in QMI form.

5. LINEAR MATRIX INEQUALITY RESTRICTION

We first show how to form an (convex) LMI restriction for the QMI Z�Z � Y �Y . (See [16] for
background on matrix inequalities.) The QMI is already convex in Y , so we can focus on Z. We
start with the simple matrix inequality

0 � .Z � QZ/�.Z � QZ/ D Z�Z �Z� QZ � QZ�Z C QZ� QZ;

valid for any matrices Z and QZ. Re-arranging, we obtain

Z�Z � Z� QZ C QZ�Z � QZ� QZ:

The left-hand side is a quadratic function of Z; the right-hand side is an affine function of Z. It
follows that the matrix inequality

Z� QZ C QZ�Z � QZ� QZ � Y �Y;

which is convex in .Z; Y /, implies Z�Z � Y �Y ; that is, it is a convex restriction of the QMI. We
can write this convex QMI as an LMI

�
Z� QZ C QZ�Z � QZ� QZ Y �

Y I

�
� 0: (5)

(Here, Z and Y are the variables; QZ is an arbitrary matrix.) For any matrix QZ, the LMI (5) implies
the QMI Z�Z � Y �Y . We call it the LMI restriction of the QMI, obtained at point QZ.

The LMI restriction of the QMI is illustrated in Figure 2, for the simple case of real scalar Z and
Y . In this case, the QMI is ´2 > y2, which gives the two lightly shaded cones in the figure, with
blue boundary. The LMI restriction at Q́ is given by 2 Q́´ � Q́2 > y2, shown as the shaded region
bounded by the parabola, with red boundary. The two boundaries touch at the point where ´ D Q́ .

Now, consider the QMI form PID controller design problem (4). Given any matrices QZ1; : : : ; QZM ,
we can form the LMI restricted problem

maximize t

subject to

�
Z�
k
QZk C QZ

�
k
Zk � QZ

�
k
QZk Y

�
k

Yk I

�
� 0; k D 1; : : : ;M: (6)

This problem has linear objective and LMI constraints, and so is an SDP [17]. It is readily solved
(globally). Note that any solution of the LMI restriction is feasible for the QMI problem. The LMI
restriction, however, need not be feasible; this depends on the choice of QZk .

Simplifications. In the inequalities associated with Sk , the matrix Yk does not depend on the
controller parameters (i.e., is constant). In this case, we can work directly with the smaller
(equivalent) LMIs

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1718–1731
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Z�k
QZk C QZ

�
kZk �

QZ�k
QZk � Y

�
k Yk;

which can give a modest computational advantage.

Another simplification is to maximize the variable w D t2; in this case, the single inequality
associated with the objective can be handled as the smaller LMI

Z�1
QZ1 C QZ

�
1Z1 �

QZ�1
QZ1 � wI;

where Z1 D P.0/KI. This simplification leads to slightly faster convergence, because t is only an
upper bound on k.P.0/KI/

�1k, whereas w�1=2 is actually equal to the objective, after optimization.

6. THE METHOD

6.1. Controller initialization

We first initialize the controller with

KP D 0; KI D �P.0/
�; KD D 0;

where � is small and positive, and P.0/� D P.0/T .P.0/P.0/T /�1 is the pseudo-inverse of the DC
gain. For small enough �, this controller is feasible. Indeed, as � ! 0, we have

S.s/!
s

� C s
I; T .s/!

�

� C s
I; Q.s/!

�

� C s
P.0/�;

from which it follows that the constraints kSk1 6 Smax, kT k1 6 Tmax, and kQk1 6 Qmax are
feasible for small enough � (assuming Smax > 1, Tmax > 1, and Qmax > 1=�min.P.0//). Note that
kQk1 finite implies closed-loop stability of this initial controller.

6.2. Iteration

We then repeat the following steps. We form the LMI restriction (6), using QZk D Zcurr
k

, where Zcurr
k

is the current value of Zk . This choice guarantees that the LMI restriction is feasible. We solve this
SDP to obtain the updated values of the design variables. These are feasible, because they were
constrained by the restrictions, and the objective t (which is an upper bound on the original objective
k.P.0/KI/

�1k) cannot decrease.

Figure 2. LMI restriction (shown in red) of QMI (shown in blue) for simple case when Z and Y are scalar
and real.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1718–1731
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6.3. Convergence

The iterates are all feasible (and we have closed-loop stability since kQk1 is finite), and the objective
is nonincreasing. Because it is non-negative, the objective converges. We can stop when not much
progress is being made, which is typically after 10 or fewer iterations. At convergence, the optimal
value of t , which is in general an upper bound on the original objective k.P.0/KI/

�1k, is actually
equal to this value. (When we optimize with the variable w, it is directly equal to the objective.)

6.4. Connections, interpretations, and prior work

Our method is similar to, but not the same as, the convex–concave method for the SISO case
described in [6]. In that paper, we linearize a scalar inequality of the form jZj > jY j, which is not
the same as linearizing (as we do here) the quadratic inequality jZj2 > jY j2. The idea of lineariz-
ing concave terms in an otherwise convex optimization problem, which gives a convex restriction,
is an old one that has been (re-)invented many times, for many applications; see, for example, the
references in [18] or [19]. The idea of linearizing a matrix inequality is given in [18].

The convex–concave procedure is in turn a special case of a very general method for finding a
local minimum of a nonconvex optimization problem. In each iteration, we replace the objective
function and each constraint function by a convex majorization that is tight at the given point, and
solve the resulting convex problem. This idea traces back at least to 1970 [20], and has been widely
used since then; see [18].

There is also a very close connection of our method to BMIs and methods for them, such as
alternating minimization over the two groups of variables. The connection is easiest to see and states
when Z and Y have the same dimensions (in general, the inequality Z�Z � Y �Y implies that they
have the same number of columns). Define

U D .1=2/.Z C Y /; V D .1=2/.Z � Y /;

so Z D U C V and Y D U � V . Then we have

Z�Z � Y �Y , .U C V /�.U C V / � .U � V /�.U � V /

, U �U C V �U C U �V C V �V � U �U � V �U � U �V C V �V

, V �U C U �V � 0;

which we recognize as a BMI in U and V . Thus, our QMI can be expressed as an equivalent BMI.
MIMO PID design via BMIs is discussed in [12].

The closest prior work is [13], which contains many of the ideas we use in the present paper. The
authors develop quadratic matrix inequalities similar to the ones we use here, and derive a method
for MIMO PID design that uses LMI restrictions, as we do. While the two methods are clearly
closely related, we are unable to derive our exact algorithm from theirs. We can identify several
differences in the approach. First, we consider separate closed-loop transfer functions (e.g., S , T ,
andQ), where they lump them together into one block closed-loop transfer function. One advantage
of considering these classical closed-loop transfer functions separately is that we can give simple
and universal choices for the upper bound (such as 1.4, for example, for S ). Second, we consider
stable plants, which allow us to give a simple low-gain PID initialization. Finally, we consider a
generic QMI, and develop a simple universal LMI restriction, which allows us to derive a simple
algorithm for design of MIMO PID controllers that minimize low-frequency sensitivity subject to
classical constraints on S , T , and Q.

7. EXTENSIONS AND VARIATIONS

In this section, we list various extensions and variations on the MIMO PID controller design prob-
lem, starting with simple ones and moving to more complex ones. While the basic iteration will
work in all of these variations, the design must start from a feasible initial controller, which may be
a challenge to find, depending on the variation. (We make more specific comments about this in the
succeeding text.)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:1718–1731
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Exchanging objectives and constraints. As always, we can exchange constraints and objective; for
example, we could impose a constraint on k.P.0/KI/

�1k, and instead minimize another objective,
such as kQk1. In this example, we would be minimizing actuator effort for a given fixed limit on
the low-frequency sensitivity.
Frequency-dependent bounds. The bounds Smax; Tmax;Qmax could be functions of frequency. This
could be used to shape the various closed-loop transfer functions in more sophisticated ways than
described here. This extension is also used in, for example, [13].
Other closed-loop transfer functions. The same approach works for other closed-loop transfer func-
tions. For example, consider R D �.I CPC/�1P , which is the closed-loop transfer function from
disturbance to error. A limit on R, say, kRk1 6 Rmax, can be expressed as a QMI as follows:

kRkk 6 Rmax , .I C PkCk/.I C PkCk/
� � .1=R2max/PkP

�
k ;

which has the QMI form with Z D .I C PkCk/
� and Y D .1=Rmax/P

�
k

. (Note the Hermitian
conjugates in this case.) (The method proposed in [13] can also accommodate constraints on these
other transfer functions.)
Low-frequency disturbance optimization. We can optimize low-frequency values ofR instead of S .
At low frequencies, we have

R.s/ D �S.s/P.s/ � �s.P.0/KI/
�1P.0/;

and we arrive at a very similar problem, which is also easily expressed in our QMI form.
High-frequency roll-off. Our method relies only on the fact that C.s/ is a linear function of the
design variables KP; KI; KD. This allows us to use many other variations on the PID controller. As
an example of simple variation that is very useful in practice, we can use the controller

C.s/ D

�
1

1C s� C .s�/2=2

��
KP C

1

s
KI C sKD

�
;

where � > 0 is a (fixed) time constant. Here, we have an ideal PID controller, with a second-order
high-frequency roll-off.
Unstable plants. The method can be extended to handle unstable plants, but in this case, the initial
controller must stabilize and also satisfy the constraints; see, for example, [6]. (To satisfy the con-
straints, they can initially be relaxed.) When initialized this way, all iterates (and the final controller
design) will be stabilizing. More sophisticated methods (say, with the addition of slack variables)
could handle the case when an initial stabilizing controller is not known; for example, the method
presented in [13] handles unstable plants.
More outputs than actuators. We can handle the case when p > m (more outputs than actuators),
so perfect static tracking cannot be achieved. In this case, we cannot have zero sensitivity at s D 0,
but we can optimize over the value of S.0/, for example, minimize or limit its norm.
Convex constraints on controller parameters. Any convex constraints on the controller parameters
can be imposed. For example, we can limit the values of any of the coefficients. A very interesting
option here is to limit the sparsity pattern of C by requiring some entries to be zero. This gives
structured MIMO PID controller design [21].

The simple initialization method described in Section 6.1 will generally not work when the
controller parameters are constrained, for example, when a specific sparsity pattern is imposed.
Convex cost terms. We can add any convex function of the controller parameters to the objective.
For example, we can add regularization to the objective, that is, a function that encourages the
controller parameters to be small. The classical example is the sum of squares term

�
X
ij

�
.KP/

2
ij C .KI/

2
ij C .KD/

2
ij

�
;
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where � > 0 is a parameter used to trade off low-frequency rejection and the size of the con-
troller parameters (measured by the sum of squares). This can be useful to reduce injection of
measurement noise into the control loop.

A very interesting regularization is one that encourages sparsity in the controller parameters,
such as

�
X
ij

max¹.KP/ij ; .KI/ij ; .KD/ij º:

This regularization will encourage sparsity in C.s/; for similar work; see, for example, [22] (for
sparse controller design) and [23] (for sparsity of blocks of regressors in statistics).
Closed-loop convex constraints. We can also add any constraint or objective term that is convex in
the closed-loop transfer functions; see the book in [14]. For example, we could include time-domain
constraints such as a maximum step response settling time. The very same method (with some added
terms to handle the added constraints) will work.
Robustness to plant variations. We can wrap robustness to plant variations into the method. A par-
ticularly simple (but very effective) method that gives robustness is to require that the constraints
hold not only for one plant but also for several or many plausible values of the plant transfer function.
This leads to a bigger problem to solve, but the same method works.
More general controllers. Finally, it should be clear that, just as in the method presented in [13],
our method works for any linearly parametrized controller, and not just the simple PID structure
that we have focused here. For more general structures, the design initialization can become a
challenge, however.

8. EXAMPLES

In this section, we describe numerical results for a classic MIMO plant, the two-input two-output
Wood–Berry binary distillation column described in [24]. The computations were carried out using
the Matlab-based convex modeling framework CVX [25, 26] using the SDPT3 software [27, 28] for
solving the SDP.

The plant transfer function is

P.s/ D

2
664
12:8e�s

16:7s C 1

�18:9e�3s

21:0s C 1

6:6e�7s

10:9s C 1

�19:4e�3s

14:2C 1

3
775 :

Each entry is a first-order system with a time delay. The dynamics are quite coupled, so finding a
good MIMO PID controller is not simple. Several design methods and actual designs for this plant
have been proposed in the literature, including [29–31]. Our method produced quite similar results,
with the same or better metrics judged by our objectives (naturally).

We used design parameters

Smax D 1:4; Tmax D 1:4; Qmax D 3=�min.P.0// D 0:738:

The derivative action time constant is chosen to be � D 0:3. The semi-infinite constraints are sam-
pled using N D 300 logarithmically spaced frequency samples in the interval

�
10�3; 103

	
. The

initial design uses the method described in Section 6.1 with � D 0:01.
The algorithm converges in seven iterations (which takes a 153 s to run in our simple

implementation on a standard desktop computer with an Intel Core I7 processor) to the values

KP D

�
0:1750 �0:0470
�0:0751 �0:0709

�
; KI D

�
0:0913 �0:0345
0:0402 �0:0328

�
; KD D

�
0:1601 �0:0051
0:0201 �0:1768

�
;

which achieve objective value k.P.0/KI/
�1k D 2:25. The resulting closed-loop transfer function

singular values are plotted versus frequency in Figure 3, along with the imposed limits.
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Figure 3. Closed-loop transfer function singular values versus frequency, with constraints shown in red.

Figure 4. Closed-loop transfer function singular values versus frequency, with constraints shown in red, for
diagonal PID design.

To demonstrate one simple extension, we also carry out MIMO PID design with the additional
constraint that the controller is diagonal, that is, consists of two SISO PID loops. We initialize the
algorithm with low-gain PI control from y1 to u1 and from y2 to u2, using the (diagonal) controller

KP D 10
�3

�
1 0

0 �1

�
; KI D 10

�3

�
1 0

0 �1

�
; KD D 0:
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Figure 5. Closed-loop step response from r to y for the MIMO PID controller (blue) and the diagonal PID
controller (red).

Figure 6. Closed-loop step response from r to u for the MIMO PID controller (blue) and the diagonal PID
controller (red).

(The minus sign in the 2,2 entry is due to the negative 2,2 value of the 2,2 entry of P.0/.) The
algorithm converges in eight iterations (taking a few minutes in our simple implementation) to
the controller

KP D

�
0:1535 0

0 �0:0692

�
; KI D

�
0:0210 0

0 �0:0136

�
; KD D

�
0:1714 0

0 �0:1725

�
;
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which achieves objective value k.P.0/KI/
�1k D 13:36, considerably worse than the objective value

obtained with a general MIMO PID controller. The resulting closed-loop transfer function singular
values are plotted in Figure 4. We can see that low-frequency sensitivity is considerably worse
than that achieved by the full MIMO controller, for example, by noting the value of kS.!/k2 for
! D 10�2.

The step responses of T , the transfer function from r to y, are plotted in Figure 5, for both the
full MIMO PID controller and the diagonal PID controller. Here, too, we can observe the worse
low-frequency rejection for the diagonal PID design, for example, in the larger off-diagonal entries
of the step response.

The step responses of Q, the transfer function from r to u, are plotted in Figure 6, for both the
full MIMO PID controller and the diagonal PID controller.

9. CONCLUSIONS

In this paper, we have described a simple method for effectively designing MIMO PID controllers
for stable plants given by transfer function (at an appropriate set of frequencies). The method relies
on solving a short sequence of SDPs (typically 10 or fewer), and although it cannot guarantee
finding the globally optimal design, it appears to find very good designs in practical problems. The
method is related to several other methods for MIMO PID design, and relies on ideas that have been
used in several other contexts in optimization, such as the convex–concave procedure, and iterative
convex restriction.
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