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Abstract 

We have investigated a method for data transmis- 
sion over sloivly time-varying MIMO channels. .4 low 
complexity method is introduced that, effectively di- 
agonalizes the MIMO channel. This enables the use 
of Discrete Multi-Tone (DTVIT) modulation over the 
MIMO channel t o  achieve information transmission 
rates close to  Shannon capacity. 

DMT requires knowledge of the channel stat,e infor- 
mation at  the transmitter which is not always possible 
in practice. In this case the channel can he on1:- made 
block diagonal and signal detection requires the solu- 
tion to  a least-squares problem with integer variables. 
This is a very challenging problem that is theoreti- 
cally difficult (NP-hard). In this paper, a practically 
efficient method is proposed to solve this least-squares 
problem. 

Introduction 

Multichannel modulation methods such as Multi- 
Tone, OFDM (Orthogonal Frequency Division Multi- 
plexing), and DMT (Discrete hIult,i-Tone) are in gen- 
eral one of the hest methods for data transmission 
channels with severe inter-symbol interference (ISI). 
The concept of DMT [l] has been analyzed exten- 
sively for single-input, single-out,put (SISO) channels. 
It has been shown that DMT is able to achieve data 
transmission rates close to  Shannon capacity, given 
the channel state information is provided at the trans- 
mitter. This motivates to investigate the application 
of DMT for multiple-input,multiple-output (MIMO) 
channels. Figure 1 shows a block diagram of such a 
system. The concept of DWIT lies behind two factors. 
One is (fast) diagonalization of the channel matrix 

'Research supported in part by AFOSR (under F49620-95- 
1-0318), NSF (under ECS-9222391 and EEC-9420565), MURI 
(under F4Y620-95-1-0525), Lucent Technologies and Stanford 
Center for Telecommunciations. 

and the other is using water-filling on the input data 
to maximize the information rate sent over the diag- 
onalized channel 3x5  Trans. H,wT I Receiver 

A T  AfR 

Figure 1: Block diagram of the IvIIMO system 

Here we will consider the case of block-time-invariant 
MIMO channels, where the channel is assumed to be 
time-invariant, during transmission of each block of 
data. One important aspect of such channels that 
has motivated us to study MIMO systems is the fact 
that the capacity of such channels depends linearly 
on the number of antennas utilized [2 ,  3, 41. Though 
the formulations won't suggest how to a,chieve this 
capacity hut it is a large gain compared to  the SISO 
case. Few number of studies have been done on the 
problem of transmission over MIMO time invariant 
channels in the literature [5:  6, 7, 8, 9, lo]. How- 
ever, less study has been done on time-varying MIMO 
channels. [ll] has approached the problerri by in- 
troducing a multi-layer transmission structure using 
multiple antennas, and has come up with capacity for- 
mulations for the proposed structure. In our opinion, 
the multi-carrier based approaches such as OFDM 
and DMT, are superior implementation-wise to  ap- 
proaches requiring multiple equalizers at the receiver. 
In this p a p r  we will consider the approach taken 
by [4]; where they- have analyzed the capacity of a 
slowly time-varying wireless MIMO channel, and have 
proposed an OFDM communication structure for the 
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H z j  = 

MIMO wireless channel. DMT requires knowledge 
of the channel state information at the transmitter. 
This is not always possible in practice. If the trans- 
mitter does not have the knowledge of the channel 
state information, the channel can be only made block 
diagonal, and in this case, (optimal) signal detec- 
tion at the receiver becomes very challenging. More 
specifically, signal detection requires the solution to 
a least-squares problem with integer variables which 
is theoretically very difficult (NP-hard). The solu- 
tion to such a least-squares problem is also required 
in GPS (Global Positioning System) signal process- 
ing and has been of significant research interest in 
the GPS field for some years now (cf. 112, 131 and 
references therein). We will show that although the 
solution to  this problem is theoretically difficult, it 
can he solved rather efficiently in practice using an 
algorithm from the theory of geometry of numbers 
due to Lenstra, Lenstra, and LovBsz [14, 151. 

In $1 we describe the channel model and discuss chan- 
nel block diagonalization, in 8'2 we will use the results 
obtained in $1 to completely diagonalize the channel, 
and will discuss the concept of MIMO DMT. Finally, 
in $3 we address the problem of signal detection. 

- h i j ( 0 )  0 . . .  I L , , ~ ( u )  ... hij(1) 

1% (2) : h i j ( 0 )  '. 0 ... 

hi j (u)  : 
: hi j (u)  ' .  

1 MIMO System Model 

The aim of this section is t o  present a matrix equa- 
tion for the MIMO system and to  show how this chan- 
nel matrix can he block diagonalized efficiently using 
FFT and IFFT algorithms by adding redundancy to  
the input vector. The diagonalization of the channel 
matrix leads to N independent channels, over which 
information can be sent independently. Using a gen- 
eralized water-filling solution the input vector can be 
optimized to  achieve channel capacity. 

We will assume a block time-invariant channel model, 
i.e., the channel remains unchanged during one block 
period. A block consists of N data symbols and U 
cyclic prefix symbols. We will also assume an addi- 
tive white Gaussian noise (AWGN) channel with MT 
transmitting and MR receiving antennas. 

Over one block of data  transmission, the channel in- 
put/output relationship is given by 
y3(k) = hij(k)*z,(k)+nj(k),  i = 1, ... , M T ,  j = 1,. .. , MR, 
g j ( k )  is the channel output (at the j t h  receiving an- 
tenna), ~ ( k )  is the channel input (at the i th  trans- 
mitting antenna), and hij is the channel impulse re- 
sponse from the ith transmitting antenna to the j t h  
receiving antenna. We assume all channel impulse re- 
sponses to  he of finite length U, i .e . ,  h;j(k) = 0 for 
IC < O  and k > U. 
At the transmitter, each data, block of length A' is 
concatenated with its first U data symbols (cyclic pre- 
fix). At the receiver, the first and last U symbols will 
be discarded, and the middle N symbols from each 
receiving antenna will he retained. Let H,j E C N x N  
be the matrix representation of this block transmis- 

Now defining 
XT = [XY . . . X M T T ] ,  yT = [yT . . . Y M R T ] ,  

"T = [rlT . . . nhnnT],  

and 

2;: ] , (2) 
Hi1 Hi2 . . .  
H x  Hzz . . .  

H =  [ 
"MRl .:: .:; HM.+I~ 

the matrix equation for the MIMO system becomes 
y = H x  i n. ( 3 )  

If the (block) SVD of H can be easily computed, the 
(generalized) water-filling solution can be readily ob- 
tained, which would enable us to  send data  close to 
Shannon capacity. Since by adding the cyclic prefix 
we made the Hij matrices circulant, the (block) SVD 
of H can he easily computed using FFT and IFFT 
algorithms. 

The SVD of Hij is given by Hij = &*Aij& where 
Q and Q' are the FFT and IFFT matrices ( Q k l  = & exp(-j2nkZ/N) for. IC, 1 = 1 , .  . . , N ) ,  and h;j 
is a diagonal matrix. Defining Q M ~  and Q M ~  re- 
spectively as block diagonal matrices with MT and 
M,  blocks of Q on their diagonals, and Aij = 
diag(Xij(O),Xij(l);..,Xw(N- 1)) we have 

A i l  A i 2  ,.. 
A,, A,, . - .  [ AMnl . . . . . . ::: 1 .  . .  QM,HQM,= : . .  . .  

A M R M ~  
Let A be the matrix on the right, then matrix el- 
ements hij of the A are each diagonal. Therefore, 
by multiplying A on the left and right by permu- 
tation matrices P,wR and PrvrT respectively, A can 
be transformed into a block diagonal matrix AD = 
diag(Al,. . ' , A N )  satisfying 

AD = P M ~ A P M ,  = P M ~ Q M , H Q M ~ P M ,  (4) 
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where for i = 1,. . . , N 

X A I , < * i , ( i )  j- I '  
The permutation matrix Phi, is an NMT x NI& 
matrix where all of the nonzero elements are unity 
and located at positions ( i : j )  satisfying 

i = + N k ,  k = U , . .  . ;.UT ~ 1; 2 = 1; ... , N .  M T .  

Similarly. Phi, is N h l ~  x NA48 with unity elements 
at positions ( i , j )  given by 

j = [k] + N k  where: k = 0 ,  .. . , MR-l, i = 1, .. . ,A4,.W. 

From the channel equation y = Hx + n we get 
Phi, Q , M ~ Y  = P.wR Q M ~  Hx + PlwR Q.wRn. 

and assuming 
x = Q L , P n i , X ,  Y = P M ~ Q . M , Y ,  N=P2w,Q,~fRn 

we get 
Y = ( P M ,  Qfii,HQklT P.wT )X + N = AuX + N 

Or 
Y = A D X + N  (5) 

Equation ( 5 )  represents the block diagonalized chan- 
nel matrix equation. In practice, blocks of data are 
concatenated to  form the vector X which is then 
permuted according to P,,fT and passed through the 
IFFT matrix Q>T. Then, consecutive length-M 
blocks of the resulting N-point IFFT are sent t o  the 
MT transmitting ant,ennas. Figure 2 shoas a block 
diagram of the above implementation. 

.4t the receiver: the output symbols from each of the 
receiving antennas are grouped in blocks of length 

AT and are then concatenated to form the vector y 
which is passed through the FFT matrix Qni,. The 
resulting N-point FFT vector is permuted according 
to P M ~  and would yield vector Y. 

Note that the effect of the permutation matrices, PM, 
and PM&, on the vect.ors X and FFT of y is just 
simple reordering. 

2 MIMODMT 

In this section we will discuss the issue of transmitter 
optimization and DMT for the MIMO channel (in 
terms of how much energy we should put in different 
frequency bins) to obtain the highest possible channel 
capacky. 

In the S E 0  case this is achieved by a water-filling 
solution: and the whole multicarrier system is named 
DMT, which is basically 0FDR.I with an optimized 
transmit data vector. A4 similar upproazh leads t.o 
the optimal transmit vector in the MIMO case, hence 
the name MIMO DMT. We would like to mention 
that Roy, Yang and Kumar [6] have solved a similar 

Figure 2: Detailed block diagram of the MIMO system 

problem for the continuous-time case: however here 
we will focus on the discrete-time case. 

-4ccording to [4] the channel capacity for a slowly 
t,ime-wrying, ergodic, AWGN MIMO channel, with 
channel matrix H is obtained from 

where AH, s for i = ll. . . , n are the singular values of 
the channel matrix H that are great,er than a certain 
threshold that, depends on the transmission energy. 
and F ~ S  are the energies assigned to each frequency 
bin of the transmitted vector X found from the water- 
filling solution (cf. [l] for details). Therefore, the key 
to  finding the energy allocations si that maximize the 
channel capacity is t o  compute the singular values of 
H. 

Since H is assumed t,o be known and can be block 
diagonalized efficiently to  AD = diag(A1,. . . AN) 
as in (4), the singular values of H can be computed 
easily by finding the singular values of the 11'1, x MT 
matrices A;. 

Suppose that, F:AiM; = [F] (F;; A t i  are orthogonal 
and C; is diagonal) follows from t,he SVD of the di- 
agonal block A; of A, (assuming hf~ 2 MT) .  Then 

where 
F*=diag(F; ;.., F,;), M=(M1, . . - ,Afvj ,  

C = diag ([%I :.. . , [%I)  
These relations lead to the following decomposition 
of H ,  

C = F'ADM = (F'P~,Qnr,jH(QX,,,P,~,,M) ( 7 )  

which is in fact an SVD. (Since Fe, Q ,  AT,, Pni, and 
PhfT are unitary, it  can be easily checked that so 
are F, Q M ~ ,  Qnr, ,  M, and as a result the products 
F*P&fRQ~fR and Q> Pnn,M.) Nonzero elements of 
I: are the singular vafues of H and can now be used 
to  compute the optimum energy allocations e; using 
the watcr-filling method. 

The channel equation can now be written as 
Y = (F*P*4RQn~R)H(Qk~TP,~~~MlX+ N 
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= F - A D M + N  
= C X + N .  

The above equation represents the complete diago- 
nalized channel. Now in comparison to the block di- 
agonalized case given in (5), the concatenated blocks 
of data forming vect,or X, are first passed through the 
matrix M before being permuted according to  P.vr 
and passed through the IFFT matrix Q M ~ .  

Similarly at the receiver, the received blocks of length 
N from the receiving antennas are concatenated to 
form vector y which is then passed through the FFT 
matrix Qbfx. The resulting vector is permuted ac- 
cording to Pbfa and passed through matrix F* which 
would finally yield vector Y. 

The input vector X is such that its energy in each 
frequency bin is optimal. The result would be the 
same as using a continuous time transmitting filter 
as proposed by [9]. 

The important fact t o  be noted is that the complexity 
of the above algorithm is much less than normal SVD 
algorithms. The complexity of performing a normal 
SVD on channel H is O(N3a3)  while the complexity 
here is O ( N 2 a 4  log(Na)), where 1v = min(MT, MR).  

3 MIMO DMT Symbol Detection 

The inputloutput relationship over one block of data 
for the hUMO .WGN channel is given by 

The goal of the symbol detection step is to estimate 
X given Y. The optimum (maximum likelihood) es- 
timate of X is given by the minimum least-squares 
formula 

Y = HX + N. 

argmin ( X -  (H*H)-'H*Y)*H*H 
= XECA'MT (x - (H*H)-~H*Y)  (9) 

where C; the symbol constellation, can be assumed to  
be a subset of the integer lattice 2 (if the symbols 
are complex then C can be assumed to be a subset of 
ZZ) . 

The fact is that solving (8) or (9) for general H is 
very difficult (NP-hard) due to  the discrete nature 
of X. A straightforward yet very inefficient method 
for finding X is throu h an exhaustive search which 
requires trying all IClJMT possibilities for X. 

The solution to  (8) or (9) is very easy in one spe- 
cial case. This is when H has orthogonal columns so 
that  H*H is diagonal and the minimum least-squares 
problem (9) decouples into NMT one-dimensional 
least-squares problems 
Xi = argmin ~ X , - ( ( H * H ) ~ ' H * Y ) ~ ~ I * ,  i =  I, ..., N M ~ ,  

and therefore X can be found by component- 
wise rounding of (the pseudo-inverse solution) 
(H*H)-'H*Y to the nearest element in C. 

X i E C  

Under the MIMO DMT structure of $2, the channel 
is completely decoupled and H = C is orthogonal (or 
equivalently H" is diagonal). Therefore, comput- 
ing the maximum likelihood symbol estimates is no 
big issue (in terms of complexity) and it can be eas- 
ily found by component-wise rounding of the pseudo- 
inverse solution, i . e . ,  X i  = r o u n d  ([CL' O]Yi) (here 
Xi and Y; are the i th MT x 1 blocks of X and Y 
respectively). 

Under the structure of $1 (in which the transmitter 
does not incorporate the matrices F and M in its 
structure1), the channel matrix H is no longer or- 
thogonal as in 52 so the minimum least-squares prob- 
lem is not completely decoupled. However, H = AD 
is block diagonal and therefore the minimum least- 
squares problem partially decouples into N minimum 
least-squares problem of smaller size 

(10) 
or equivalently, 

where G; = (Af4i)- '  and Y< = G&Yi for i = 
1 , .  . . , N .  In fact, we have reduced the problem of 
solving a least-squares problem of size NMT to an 
easier problem of solving Ai minimum least-squares 
problems of size MT.  However, for an MIMO channel 
with AT, > 1 it is still not straightforward to  solve 
these N least-squares problems. 

The set 

is a lattice and therefore (11) can be interpreted as 
finding the closest lattice point t o  Y ;  under the con- 
straint X i  E C"T. If Gi is orthogonal then Xi can be 
simply found by rounding each component of GT'Yi 
to the nearest element in C. Therefore, we would 
hope, that  if Gi is in some sense "almost orthogo- 
nal", rounding the components of GF'Yi would yield 
a solution that is "close" if not exactly the same as 
the optimum solution X c .  This is basically the idea 
behind an algorithm to  efficiently solve (10) or (11) 
which is the subject of the next subsections. 

3.1 Suboptimal algorithm for the least- 
squares problem 
In this subsection, we describe a suboptimal 
polynomial-time algorithm for solving (10) or (11). 
Suboptimal algorithms of this kind are important for 
a few reasons. First, suboptimal algorithms can be 
performed efficiently with a guaranteed low worst- 
case complexity. Second, they provide a relatively 
good initial guess for any global optimization algo- 
rithm, and finally, these suboptimal algorithms might 

'This could be the c s e  when the channel matrix H is un- 
known to the transmitter. Since the H is usually estimated at 
the receiver there should be some feedback from the receiver 
to the transmitter if we want to use the MIMO DMT Structure 
of $2, but this is not always practical. 

L(Gi) a { G;Xi I Xi E ZhfT} 
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find the global optimum as they often do in practice. 
If dmi,, the minimum length vector in L(Gj), or any 
lower bound d 5 d,j, on it is known, a sufficient con- 
dition for the suboptimal minimizer x i , s u b  to be the 
global minimizer Xi is simply given by 

d 
IlY, - G , k z , 8 1 , d  5 7 =+ X,,sub = %, (12) 

as there is only one lattice point in a ball centered at 
G;Xi,,,b and with radius d,,,in/2. 

Suppose that F, is a unimodular matrix, i .e . ,  
F,,F;' E ZA'TxA4T SO that it is an onto mapping 
from ZMT to  ZAtT. Therefore, in (11) we can change 
variables to  W; = F;'X; so t,he optimization in t,he 
new variable W+ t ZAIT becomes 

where C is the mapping of CbfT under F;'. If Fi 
can be chosen such that GiFi becomes orthogonal 
then X i  can be found by, component-wise rounding 
of (GiF j ) - 'Y;  t,o the closest integer, and multiply- 
ing the result by- F, to get a vector whose compo- 
nents should be mapped to the closest element in C. 
However, such an Fj usually does not exist,, and in 
practice, one can only hope to  find an F; that "al- 
most, orthogonalizes" GiF,. If such an Fi is found, it 
is reasonable to  believe that the change of variables 
to  Wi followed by rounding would give a "close" to 
optimal solution. 

There is an algorithm due to Lenstra., Lenstra, and 
Lovasz (LLL algorithm) that finds such an Fi. This 
algorithm is polynomial-time and practically efficient. 
For details of the LLL algorithm and its different vari- 
ations refer to  [14, 15, 16, 13, 17, 181 and references 
therein. The following suboptimal algorithm for solr- 
ing the least-squares problem (which makes use of the 
LLL algorithm) is based on the heuristic that round- 
ing would give a "close" to optimal solution if Gi is 
"almost" orthogonal. 

Suboptimal a lgor i thm for solving the least- 
squares problem. Suppose that Gi and Y i  are 
given. A suboptimal solution X i . s u b  to  (11) in the 
sense that  %,hen C = Z 

Components ofiji.sub are components ofXi,t,, 
mapped to the nearest element in C. 

Another heuristic to get, a suboptimal solution is to  do 
t,he component-wise rounding recursively. i .e . ,  round 
only one of the components of G i ' Y i  (e.g., t,he one 
closest to an integer) at a time; then fix that com- 
ponent in the least-squares problem and repeat. >-et 
another suboptimal polynomial-time algorithm is due 
to Babai [Is, 161. In this method. x ; . s u b  is found by 
recursively computing the closest point in sub-lattices 
of L to Y,.  The provable worst,-case bound we get is 
better than (13) a i th  the price of some additional 
computation. 

As reported in [19] and from our own experience, it 
should he noted that these suboptimal algorithms 
work much better in practice than the worst-case 
bounds suggest. In practice, optimality of X i , s u b  
can he checked using condition (12). This is very 
easv since a (relatively sharp) lower bound d on d,i, 
can be computed as the length of the shortest vec- 
tor resulting from performing the Gram-Schmidt or- 
thogonalization procedure on the columns of Gi (cf. 
[la, 131). 

Using the worst-case performance bounds of these 
suhoptimal algorithms (for example the one in (13)) 
it is possible to  find a lower bound on the probability 
that Xi,sub = X; given X i  = X i ,  i . e . ;  t,he probability 
that the suboptimal estimate of the symbol is correct 
given t.he optimal estimate of the symbol is correct. 
Suppose that the known worst-case sub-optimalit). 
factor of the suboptimal algorithm is a , ~ ,  > 1 so 

IIY, - GiXi,sublI 5 UM,IIY~ - G,XzII. 

We have 
llG*iX,,s,lb - % ) I 1  l l ( * *  - C,%) - ( Y z  -G*X*,sub)ll 

l l y i  - GiXil l + llY* - Gtki,sublI 5 
5 (1 +anr,)I!Yi -GiXi ! l .  

If x i . s u b  # xi then l lG; , (xi .sUb - 2 dmin so 
that I/Y, - GiXiJ 2 dmin/(l + ( Y M ~ ) .  But can 
be (lower) bounded by P, = Prob(Xi  # Xi) as 
&in 2 ZQ-' (Pe/2)  where Q-' is the inverse func- 
tion of the Q function (the probability of the tail of 

IIYi-G,X,,subll 5 (1 + ZMT [4.5)AJT'2) 

exists that  can he found as follows 1161: 

min 
Xi E Z"T 

l\Yi-GiX;ll, the Gaussiam PDF). Therefore if k i , s u b  # Xi we have 
I l Y i  - Giftill 2 ZQ-' (Pe /2 )  / ( I +  an;i,), or equiva- 

(13) lently, 
ZQ-'(P,/Z) - 

IIY, - GtXilI 5 + U ~ T  ==+ Xi,%"b = x, 
Perform the LLL algorithm on G,.  This re- if 2; xi then IIp, G i ~ i l l ~  is x~ with MT sults in a new matrix G; which is almost or- 
tbogonal and a uniniodular matrix Fi such that, 
G = G,Fi. 

degrees of freedom and ~ , e  

Prob ( X i , % " b  =Xi I X i  = Xz) Flz (4Q-' (pe/2)2 ;..> 

where F,z(.,MT) is the x2 CDF with &IT degrees 
of freedom. The interesting point about (14) is that  

get 

(1 + "*IT)l 

xi,tmp + Fi[Cj-'Yi] where [.I is the 0 4 )  
component-wise rounding operation to  the 
nearest integer. 
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as Pe gets smaller the bound on the probability gets 
larger, which means that the suboptimal algorithm 
is guaranteed to perform better. In communication 
systems, P, is designed to be very small and there- 
fore these suboptimal algorithms have a guarantee 
on their performance. Again, we must note that, in 
practice, the performance is much better than the 
worst-case bounds. 

3.2 Global opt imizat ion a lgor i thm for the 
least-squares problem 
Once we have efficiently computed a suboptimal solu- 
tion to the least-squares problem (for example using 
the method discussed in the previous subsection), we 
need to check whether any better solution exists or 
not. As noted in g3.1, it is easy to check the suffi- 
cient condition (12) for optimality. It turns out that ,  
specially for “low” P,, this condition is “most” of the 
times true and the optimality of the solution is guar- 
anteed. However, if this condition is not true we can- 
not say anything about the optimality of the solution. 

In this case, the problem of checking whether any 
better solution exists or not is equivalent to checking 
whether an ellipsoid contains any point with integer- 
valued coordinates. The global optimization algo- 
rithm basically consists of computing a “good” initial 
guess using the suboptimal algorithm of the previous 
subsection, and an exhaustive search for finding, if 
any, points with integral coordinates inside an ellip- 
soid. This exhaustive search can be performed rel- 
atively efficiently (cf. [la, 131 and references therein 
for details). In practice, our simulations show that for 
problem sizes of a few ten integer variables, the com- 
putation required for solving the least-squares prob- 
lem is in the order of a matrix inversion of the same 
size. An implementation of the global optimization 
algorithm in Matlab can be obtained by contacting 
the authors. 

4 Conclusions 

In this paper we discussed in detail the MIMO chan- 
nel model proposed by Raleigh and Cioffi [4]. It was 
shown that by using cyclic prefix in the transmit- 
ted block of data from each antenna, it is possible 
to effectively block diagonalize the channel matrix. 
However in order to optimize the input vector, the 
channel has to be decomposed and completely diag- 
onalized. A low complexity method was introduced 
that effectively diagonalizes the MIMO channel. This 

ulation over the MIMO channel that achieves infor- 
mation transmission rates close to Shannon capacity 
by using an optimized input vector. 

However, DMT requires knowledge of the channel 
state information at the transmitter, which is not al- 
ways possible in practice. In this case, the channel 
can be only made block diagonal and signal detec- 
tion becomes very challenging. A practically efficient 
method was proposed to solve the signal detection 

enables the U E ~  of Discrete Multi-Tone (DMT) mod- 

problem which is basically a least-squares problem 
with integer variables. 

Finally, we should note that we did not address the 
channel estimation problem that is crucial for any 
practical implementation of the DMT approacb. 
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