
Foundations and Trends® in Machine Learning

Minimum-Distortion Embedding

Suggested Citation: Akshay Agrawal, Alnur Ali and Stephen Boyd (2021), “Minimum-
Distortion Embedding”, Foundations and Trends® in Machine Learning: Vol. 14, No. 3,
pp 211–378. DOI: 10.1561/2200000090.

Akshay Agrawal
Stanford University

akshayka@cs.stanford.edu

Alnur Ali
Stanford University

alnurali@stanford.edu

Stephen Boyd
Stanford University
boyd@stanford.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft

Contents

1 Introduction 213
1.1 Contributions . 217
1.2 Outline . 217
1.3 Related work . 219

I Minimum-Distortion Embedding 224

2 Minimum-Distortion Embedding 225
2.1 Embedding . 225
2.2 Distortion . 226
2.3 Minimum-distortion embedding 231
2.4 Constraints . 235
2.5 Simple examples . 240
2.6 Validation . 242

3 Quadratic MDE Problems 247
3.1 Solution by eigenvector decomposition 248
3.2 Historical examples . 251

4 Distortion Functions 255
4.1 Functions involving weights 255

4.2 Functions involving original distances 261
4.3 Preprocessing . 265

II Algorithms 271

5 Stationarity Conditions 272
5.1 Centered MDE problems 275
5.2 Anchored MDE problems 276
5.3 Standardized MDE problems 277

6 Algorithms 280
6.1 A projected quasi-Newton algorithm 281
6.2 A stochastic proximal algorithm 287

7 Numerical Examples 291
7.1 Quadratic MDE problems 292
7.2 Other MDE problems . 295
7.3 A very large problem . 298
7.4 Implementation . 300

III Examples 307

8 Images 308
8.1 Data . 308
8.2 Preprocessing . 309
8.3 Embedding . 309

9 Networks 319
9.1 Data . 319
9.2 Preprocessing . 322
9.3 Embedding . 323

10 Counties 331
10.1 Data . 331
10.2 Preprocessing . 333
10.3 Embedding . 333

11 Population Genetics 340
11.1 Data . 343
11.2 Preprocessing . 343
11.3 Embedding . 344

12 Single-Cell Genomics 350
12.1 Data . 350
12.2 Preprocessing . 351
12.3 Embedding . 351

13 Conclusions 360

Acknowledgements 363

References 364

Minimum-Distortion Embedding
Akshay Agrawal1, Alnur Ali2 and Stephen Boyd3

1Stanford University; akshayka@cs.stanford.edu
2Stanford University; alnurali@stanford.edu
3Stanford University; boyd@stanford.edu

ABSTRACT
We consider the vector embedding problem. We are given a
finite set of items, with the goal of assigning a representative
vector to each one, possibly under some constraints (such as
the collection of vectors being standardized, i.e., having zero
mean and unit covariance). We are given data indicating
that some pairs of items are similar, and optionally, some
other pairs are dissimilar. For pairs of similar items, we want
the corresponding vectors to be near each other, and for
dissimilar pairs, we want the vectors to not be near each
other, measured in Euclidean distance. We formalize this by
introducing distortion functions, defined for some pairs of
items. Our goal is to choose an embedding that minimizes
the total distortion, subject to the constraints. We call this
the minimum-distortion embedding (MDE) problem.
The MDE framework is simple but general. It includes a
wide variety of specific embedding methods, such as spectral
embedding, principal component analysis, multidimensional
scaling, Euclidean distance problems, dimensionality reduc-
tion methods (like Isomap and UMAP), semi-supervised
learning, sphere packing, force-directed layout, and others.
It also includes new embeddings, and provides principled
ways of validating or sanity-checking historical and new
embeddings alike.

Akshay Agrawal, Alnur Ali and Stephen Boyd (2021), “Minimum-Distortion Embed-
ding”, Foundations and Trends® in Machine Learning: Vol. 14, No. 3, pp 211–378.
DOI: 10.1561/2200000090.

212

In a few special cases, MDE problems can be solved exactly.
For others, we develop a projected quasi-Newton method
that approximately minimizes the distortion and scales to
very large data sets, while placing few assumptions on the
distortion functions and constraints. This monograph is ac-
companied by an open-source Python package, PyMDE, for
approximately solving MDE problems. Users can select from
a library of distortion functions and constraints or specify
custom ones, making it easy to rapidly experiment with new
embeddings. Because our algorithm is scalable, and because
PyMDE can exploit GPUs, our software scales to problems
with millions of items and tens of millions of distortion func-
tions. Additionally, PyMDE is competitive in runtime with
specialized implementations of specific embedding methods.
To demonstrate our method, we compute embeddings for
several real-world data sets, including images, an academic
co-author network, US county demographic data, and single-
cell mRNA transcriptomes.

1
Introduction

An embedding of n items, labeled 1, . . . , n, is a function F mapping the
set of items into Rm. We refer to xi = F (i) as the embedding vector
associated with item i. In applications, embeddings provide concrete
numerical representations of otherwise abstract items, for use in down-
stream tasks. For example, a biologist might look for subfamilies of
related cells by clustering embedding vectors associated with individual
cells, while a machine learning practitioner might use vector representa-
tions of words as features for a classification task. Embeddings are also
used for visualizing collections of items, with embedding dimension m

equal to one, two, or three.
For an embedding to be useful, it should be faithful to the known

relationships between items in some way. There are many ways to
define faithfulness. A working definition of a faithful embedding is the
following: if items i and j are similar, their associated vectors xi and
xj should be near each other, as measured by the Euclidean distance
∥xi −xj∥2; if items i and j are dissimilar, xi and xj should be distant, or
at least not close, in Euclidean distance. (Whether two items are similar
or dissimilar depends on the application. For example two biological
cells might be considered similar if some distance between their mRNA

1

2 Introduction

transcriptomes is small.) Many well-known embedding methods like
principal component analysis (PCA), spectral embedding (Chung and
Graham, 1997; Belkin and Niyogi, 2002), and multidimensional scaling
(Torgerson, 1952; Kruskal, 1964a) use this basic notion of faithfulness,
differing in how they make it precise.

The literature on embeddings is both vast and old. PCA originated
over a century ago (Pearson, 1901), and it was further developed three
decades later in the field of psychology (Hotelling, 1933; Eckart and
Young, 1936). Multidimensional scaling, a family of methods for embed-
ding items given dissimilarity scores or distances between items, was
also developed in the field of psychology during the early-to-mid 20th
century (Richardson, 1938; Torgerson, 1952; Kruskal, 1964a). Methods
for embedding items that are vectors can be traced back to the early
1900s (Menger, 1928; Young and Householder, 1938), and more recently
developed methods use tools from convex optimization and convex anal-
ysis (Biswas and Ye, 2004; Hayden et al., 1991). In spectral clustering,
an embedding based on an eigenvector decomposition of the graph
Laplacian is used to cluster graph vertices (Pothen et al., 1990; von
Luxburg, 2007). During this century, dozens of embedding methods have
been developed for reducing the dimension of high-dimensional vector
data, including Laplacian eigenmaps (Belkin and Niyogi, 2002), Isomap
(Tenenbaum et al., 2000), locally-linear embedding (LLE) (Roweis and
Saul, 2000), stochastic neighborhood embedding (SNE) (Hinton and
Roweis, 2003), t-distributed stochastic neighbor embedding (t-SNE)
(Maaten and Hinton, 2008), LargeVis (Tang et al., 2016) and uniform
manifold approximation and projection (UMAP) (McInnes et al., 2018).
All these methods start with either weights describing the similarity of
a pair of items, or distances describing their dissimilarity.

In this monograph we present a general framework for faithful em-
bedding. The framework, which we call minimum-distortion embedding
(MDE), generalizes the common cases in which similarities between
items are described by weights or distances. It also includes most of
the embedding methods mentioned above as special cases. In our for-
mulation, for some pairs of items, we are given distortion functions
of the Euclidean distance between the associated embedding vectors.
Evaluating a distortion function at the Euclidean distance between

3

the vectors gives the distortion of the embedding for a pair of items.
The goal is to find an embedding that minimizes the total or average
distortion, possibly subject to some constraints on the embedding. We
focus on three specific constraints: a centering constraint, which requires
the embedding to have mean zero, an anchoring constraint, which fixes
the positions of a subset of the embedding vectors, and a standardiza-
tion constraint, which requires the embedding to be centered and have
identity covariance.

MDE problems are in general intractable, admitting efficiently com-
putable (global) solutions only in a few special cases like PCA and
spectral embedding. In most other cases, MDE problems can only be
approximately solved, using heuristic methods. We develop one such
heuristic, a projected quasi-Newton method. The method we describe
works well for a variety of MDE problems.

This monograph is accompanied by an open-source implementation
for specifying MDE problems and computing low-distortion embeddings.
Our software package, PyMDE, makes it easy for practitioners to
experiment with different embeddings via different choices of distortion
functions and constraint sets. Our implementation scales to very large
datasets and to embedding dimensions that are much larger than two
or three. This means that our package can be used for both visualizing
large amounts of data and generating features for downstream tasks.
PyMDE supports GPU acceleration and automatic differentiation of
distortion functions by using PyTorch (Paszke et al., 2019) as the
numerical backend.

A preview of our framework. Here we give a brief preview of the
MDE framework, along with a simple example of an MDE problem. We
discuss the MDE problem at length in Chapter 2.

An embedding can be represented concretely by a matrix X ∈ Rn×m,
whose rows xT

1 , . . . , xT
n ∈ Rm are the embedding vectors. We use E to

denote the set of pairs, and fij : R+ → R to denote the distortion
functions for (i, j) ∈ E . Our goal is to find an embedding that minimizes

4 Introduction

the average distortion

E(X) = 1
|E|

∑
(i,j)∈E

fij(dij),

where dij = ∥xi − xj∥2, subject to constraints on the embedding, ex-
pressed as X ∈ X , where X ⊆ Rn×m is the set of allowable embeddings.
Thus the MDE problem is

minimize E(X)
subject to X ∈ X .

We solve this problem, sometimes approximately, to find an embedding.
An important example is the quadratic MDE problem with stan-

dardization constraint. In this problem the distortion functions are
quadratic fij(dij) = wijd2

ij , where wij ∈ R is a weight conveying simi-
larity (when wij > 0) or dissimilarity (when wij < 0) of items i and j.
We constrain the embedding X to be standardized, i.e., it must satisfy
(1/n)XT X = I and XT 1 = 0, which forces the embedding vectors to
spread out. While most MDE problems are intractable, the quadratic
MDE problem is an exception: it admits an analytical solution via
eigenvectors of a certain matrix. Many well-known embedding methods,
including PCA, spectral embedding, and classical multidimensional
scaling, are instances of quadratic MDE problems, differing only in their
choice of pairs and weights. Quadratic MDE problems are discussed in
Chapter 3.

Why the Euclidean norm? A natural question is why we use the
Euclidean norm as our distance measure between embedding vectors.
First, when we are embedding into R2 or R3 for the purpose of vi-
sualization or discovery, the Euclidean distance corresponds to actual
physical distance, making it a natural choice. Second, it is traditional,
and follows a large number of known embedding methods like PCA
and spectral embedding that also use Euclidean distance. Third, the
standardization constraint we consider in this monograph has a natural
interpretation when we use the Euclidean distance, but would make
little sense if we used another metric. Finally, we mention that the
local optimization methods described in this monograph can be easily

1.1. Contributions 5

extended to the case where distances between embedding vectors are
measured with a non-Euclidean metric.

1.1 Contributions

The main contributions of this monograph are the following:

1. We present a simple framework, MDE, that unifies and generalizes
many different embedding methods, both classical and modern.
This framework makes it easier to interpret existing embedding
methods and to create new ones. It also provides principled ways
to validate, or at least sanity-check, embeddings.

2. We develop an algorithm for approximately solving MDE problems
(i.e., for computing embeddings) that places very few assumptions
on the distortion functions and constraints. This algorithm reliably
produces good embeddings in practice and scales to large problems.

3. We provide open-source software that makes it easy for users to
solve their own MDE problems and obtain custom embeddings.
Our implementation of our solution method is competitive in
runtime to specialized algorithms for specific embedding methods.

1.2 Outline

This monograph is divided into three parts, I Minimum-Distortion
Embedding, II Algorithms, and III Examples.

Part I: Minimum-distortion embedding. We begin Part I by describing
the MDE problem and some of its properties in Chapter 2. We introduce
the notion of anchored embeddings, in which some of the embedding
vectors are fixed, and standardized embeddings, in which the embedding
vectors are constrained to have zero mean and identity covariance.
Standardized embeddings are favorably scaled for many tasks, such as
for use as features for supervised learning.

In Chapter 3 we study MDE problems with quadratic distortion,
focusing on the problems with a standardization constraint. This class

6 Introduction

of problems has an analytical solution via an eigenvector decomposition
of a certain matrix. We show that many existing embedding methods,
including spectral embedding, PCA, Isomap, kernel PCA, and others,
reduce to solving instances of the quadratic MDE problem.

In Chapter 4 we describe examples of distortion functions, showing
how different notions of faithfulness of an embedding can be captured by
different distortion functions. Some choices of the distortion functions
(and constraints) lead to MDE problems solved by well-known methods,
while others yield MDE problems that, to the best of our knowledge,
have not appeared elsewhere in the literature.

Part II: Algorithms. In Part II, we describe algorithms for computing
embeddings. We begin by presenting stationarity conditions for the
MDE problem in Chapter 5, which are necessary but not sufficient for
an embedding to be optimal. The stationarity conditions have a simple
form: the gradient of the average distortion, projected onto the set of
tangents of the constraint set at the current point, is zero. This condition
guides our development of algorithms for computing embeddings.

In Chapter 6, we present a projected quasi-Newton algorithm for
approximately solving MDE problems. For very large problems, we addi-
tionally develop a stochastic proximal algorithm that uses the projected
quasi-Newton algorithm to solve a sequence of smaller regularized MDE
problems. Our algorithms can be applied to MDE problems with differ-
entiable average distortion, and any constraint set for which there exists
an efficient projection onto the set and an efficient projection onto the
set of tangents of the constraint set at the current point. This includes
MDE problems with centering, anchor, or standardization constraints.

In Chapter 7, we present numerical examples demonstrating the per-
formance of our algorithms. We also describe a software implementation
of these methods, and briefly describe our open-source implementation
PyMDE.

Part III: Examples. In Part III, we use PyMDE to approximately
solve many MDE problems involving real datasets, including images
(Chapter 8), co-authorship networks (Chapter 9), United States county

1.3. Related work 7

demographics (Chapter 10), population genetics (Chapter 11), and
single-cell mRNA transcriptomes (Chapter 12).

1.3 Related work

Dimensionality reduction. In many applications, the original items
are associated with high-dimensional vectors, and we can interpret the
embedding into the smaller dimensional space as dimensionality reduc-
tion. Dimensionality reduction can be used to reduce the computational
burden of numerical tasks, compared to carrying them out with the
original high-dimensional vectors. When the embedding dimension is
two or three, dimension reduction can also be used to visualize the orig-
inal high-dimensional data and facilitate exploratory data analysis. For
example, visualization is an important first step in studying single-cell
mRNA transcriptomes, a relatively new type of data in which each cell
is represented by a high-dimensional vector encoding gene expression
(Sandberg, 2014; Kobak and Berens, 2019).

Dozens of methods have been developed for dimensionality reduc-
tion. PCA, the Laplacian eigenmap (Belkin and Niyogi, 2002), Isomap
(Tenenbaum et al., 2000), LLE (Roweis and Saul, 2000), maximum vari-
ance unfolding (Weinberger and Saul, 2004), t-SNE (Maaten and Hinton,
2008), LargeVis (Tang et al., 2016), UMAP (McInnes et al., 2018), and
the latent variable model (LVM) from (Saul, 2020) are all dimensionality
reduction methods. With the exception of t-SNE and the LVM, these
methods can be interpreted as solving different MDE problems, as we
will see in Chapters 3 and 4. We exclude t-SNE because its objective func-
tion is not separable in the embedding distances; however, methods like
LargeVis and UMAP have been observed to produce embeddings that are
similar to t-SNE embeddings (Böhm et al., 2020). We exclude the LVM
because it fits some additional parameters, in addition to the embedding.

Dimensionality reduction is sometimes called manifold learning in
the machine learning community, since some of these methods can be
motivated by a hypothesis that the original data lie in a low-dimensional
manifold, which the dimensionality reduction method seeks to recover
(Ma and Fu, 2011; Cayton, 2005; Lin and Zha, 2008; Wilson et al., 2014;
Nickel and Kiela, 2017).

8 Introduction

Finally, we note that dimensionality reduction methods have been
studied under general frameworks other than MDE (Ham et al., 2004;
Yan et al., 2006; Kokiopoulou et al., 2011; Lawrence, 2011; Wang et al.,
2020).

Metric embedding. Another well-studied class of embeddings are
those that embed one finite metric space into another one. There are
many ways to define the distortion of such an embedding. One common
definition is the maximum fractional error between the embedding dis-
tances and original distances, across all pairs of items. (This can be done
by insisting that the embedding be non-contractive, i.e., the embedding
distances are at least the original distances, and then minimizing the
maximum ratio of embedding distance to original distance.)

An important result in metric embedding is the Johnson-Lindenstrauss
Lemma, which states that a linear map can be used to reduce the dimen-
sion of vector data, scaling distances by no more than (1 ± ϵ), when the
target dimension m is O(log n/ϵ2) (Johnson and Lindenstrauss, 1984).
Another important result is due to Bourgain, who showed that any finite
metric can be embedded in Euclidean space with at most a logarithmic
distortion (Bourgain, 1985). A constructive method via semidefinite
programming was later developed (Linial et al., 1995). Several other
results, including impossibility results, have been discovered (Indyk
et al., 2017), and some recent research has focused on embedding into
non-Euclidean spaces, such as hyperbolic space (Sala et al., 2018).

In this monograph, for some of the problems we consider, all that is
required is to place similar items near each other, and dissimilar items
not near each other; in such applications we may not even have origi-
nal distances to preserve. In other problems we do start with original
distances. In all cases we are interested in minimizing an average of dis-
tortion functions (not maximum), which is more relevant in applications,
especially since real-world data is noisy and may contain outliers.

Force-directed layout. Force-directed methods are algorithms for
drawing graphs in the plane in an aesthetically pleasing way. In a
force-directed layout problem, the vertices of the graph are considered

1.3. Related work 9

to be nodes connected by springs. Each spring exerts attractive or repul-
sive forces on the two nodes it connects, with the magnitude of the forces
depending on the Euclidean distance between the nodes. Force-directed
methods move the nodes until a static equilibrium is reached, with zero
net force on each node, yielding an embedding of the vertices into R2.
Force-directed methods, which are also called spring embedders, can be
considered as MDE problems in which the distortion functions give the
potential energy associated with the springs. Force-directed layout is
a decades-old subject (Tutte, 1963; Eades, 1984; Kamada and Kawai,
1989), with early applications in VLSI layout (Fisk et al., 1967; Quinn
and Breuer, 1979) and continuing modern interest (Kobourov, 2012).

Low-rank models. A low-rank model approximates a matrix by one
of lower rank, typically factored as the product of a tall and a wide
matrix. These factors can be interpreted as embeddings of the rows
and columns of the original matrix. Well-known examples of low-rank
models include PCA and non-negative matrix factorization (Lee and
Seung, 1999); there are many others (Udell et al., 2016, §3.2). PCA (and
its kernelized version) can be interpreted as solving an MDE problem,
as we show in §3.2.

X2vec. Embeddings are frequently used to produce features for down-
stream machine learning tasks. Embeddings for this purpose were popu-
larized with the publication of word2vec in 2013, an embedding method
in which the items are words (Mikolov et al., 2013). Since then, dozens
of embeddings for different types of items have been proposed, such
as doc2vec (Le and Mikolov, 2014), node2vec (Grover and Leskovec,
2016) and related methods (Perozzi et al., 2014; Tang et al., 2015),
graph2vec (Narayanan et al., 2017), role2vec (Ahmed et al., 2020),
(batter-pitcher)2vec (Alcorn, 2016), BioVec, ProtVec, and GeneVec (As-
gari and Mofrad, 2015), dna2vec (Ng, 2017), and many others. Some
of these methods resemble MDE problems, but most of them do not.
Nonetheless MDE problems generically can be used to produce such
X2vec-style embeddings, where X describes the type of items.

10 Introduction

Neural networks. Neural networks are commonly used to generate
embeddings for use in downstream machine learning tasks. One generic
neural network based embedding method is the auto-encoder, which
starts by representing items by (usually large dimensional) input vectors,
such as one-hot vectors. These vectors are fed into an encoder neural
network, whose output is fed into a decoder network. The output of the
encoder has low dimension, and will give our embedding. The decoder
attempts to reconstruct the original input from this low-dimensional
intermediate vector. The encoder and decoder are both trained so
the decoder can, at least approximately, reproduce the original input
(Goodfellow et al., 2016, §14).

More generally, a neural network may be trained to predict some
relevant quantity, and the trained network’s output (or an intermediate
activation) can be used as the input’s embedding. For example, neural
networks for embedding words (or sequences of words) are often trained
to predict masked words in a sentence; this is the basic principle under-
lying word2vec and BERT, two well-known word embedding methods
(Mikolov et al., 2013; Devlin et al., 2019). Similarly, intermediate ac-
tivations of convolutional neural networks like residual networks (He
et al., 2016), trained to classify images, are often used as embeddings of
images. Neural networks have also been used for embedding single-cell
mRNA transcriptomes (Szubert et al., 2019).

Software. There are several open-source software libraries for spe-
cific embedding methods. The widely used Python library sci-kit learn
(Pedregosa et al., 2011) includes implementations of PCA, spectral em-
bedding, Isomap, locally linear embedding, multi-dimensional scaling,
and t-SNE, among others. The umap-learn package implements UMAP
(McInnes, 2020b), the openTSNE package provides a more scalable vari-
ant of t-SNE (Poličar et al., 2019), and GraphVite (which can exploit
multiple CPUs and GPUs) implements a number of embedding methods
(Zhu et al., 2019). Embeddings for words and documents are available in
gensim (Řehůřek and Sojka, 2010), Embeddings.jl (White and Ellison,
2019), HuggingFace transformers (HuggingFace, 2020), and BERT (De-
vlin, 2020). Force-directed layout methods are implemented in graphviz
(Gansner and North, 2000), NetworkX (Hagberg et al., 2008), qgraph
(Epskamp et al., 2012), and NetworkLayout.jl (NetworkLayout.jl 2020).

1.3. Related work 11

There are also several software libraries for approximately solving
optimization problems with orthogonality constraints (which the MDE
problem with standardization constraint has). Some examples include
Manopt (and its related packages PyManopt and Manopt.jl) (Boumal
et al., 2014; Townsend et al., 2016; Bergmann, 2020), Geoopt (Kochurov
et al., 2020), and McTorch (Meghwanshi et al., 2018). More generally,
problems with differentiable objective and constraint functions can be
approximately solved using solvers for nonlinear programming, such
as SNOPT (Gill et al., 2002) (which is based on sequential quadratic
programming) and IPOPT (Wächter and Biegler, 2006) (which is based
on an interior-point method).

Part I

Minimum-Distortion
Embedding

2
Minimum-Distortion Embedding

In this chapter we introduce the minimum-distortion embedding problem
and explore some of its general properties.

2.1 Embedding

We start with a finite set of items V, which we label as 1, . . . , n, so
V = {1, . . . , n}. An embedding of the set of items V into Rm is a function
F : V → Rm. We denote the values of F by xi = F (i), i = 1, . . . , n, and
denote the embedding concretely by a matrix X ∈ Rn×m,

X =


xT

1
xT

2
...

xT
n

 .

The rows of X are the transposes of the vectors associated with the
items 1, . . . , n. The columns of X can be interpreted as m features or
attributes of the items, with Xij = (xi)j the value of jth feature or
attribute for item i; the jth column of X gives the values of the jth
feature assigned to the n items.

13

14 Minimum-Distortion Embedding

Throughout this monograph, the quality of an embedding X will
only depend on the embedding distances dij between items i and j,
defined as

dij = ∥xi − xj∥2, i, j = 1, . . . , n,

i.e., dij is the Euclidean distance between the vectors xi and xj . Embed-
ding distances are evidently not affected by translation of the embedded
points, i.e., replacing each xi by xi +a, where a ∈ Rm, or by orthogonal
transformation, i.e., replacing each xi by Qxi, where Q is an orthogonal
m × m matrix. If there are no constraints on the embedding vectors,
then without any loss of generality we can assume that the average of
the xi is zero, or equivalently, XT 1 = 0, where 1 is the vector with all
entries one. This means that each of the m features (columns of X) has
mean value zero across our n items.

2.2 Distortion

We express our desires about the embedding distances by distortion
functions associated with embedding distances. These have the form

fij : R+ → R

for (i, j) ∈ E , where E ⊆ V × V is the set of item pairs for which we
have an associated function. We will assume that E is nonempty, and
that i < j for every (i, j) ∈ E .

The value fij(dij) is the distortion for the pair (i, j) ∈ E : the smaller
fij(dij) is, the better the embedding captures the relationship between
items i and j. We can interpret these distortion functions as the weights
of a generalized graph (V, E), in which the edge weights are functions,
not scalars.

We will assume that the distortion functions fij are differentiable.
As in many other applications, however, we have observed that the
algorithm we propose, which assumes differentiability, works well in
practice even when the distortion functions are not differentiable.

2.2.1 Examples

The distortion functions fij we will encounter typically derive from
given weights (or similarities) associated with pairs of items, or from

2.2. Distortion 15

associated deviations (or distances or dissimilarities) between items,
or both. Distortion functions can be also derived from one or more
relations (or undirected graphs) on the items. Below, we give simple
examples of such distortion functions. We give many more examples in
Chapter 4.

Distortion functions derived from weights. We start with a set of
nonzero weights wij ∈ R, for (i, j) ∈ E . The larger wij , the more similar
items i and j are; negative weights indicate dissimilarity. We partition
the edges into those associated with positive weights (similar items)
and negative weights (dissimilar items), with

Esim = {(i, j) | wij > 0}, Edis = {(i, j) | wij < 0},

so E = Esim ∪ Edis and Esim ∩ Edis = ∅.
Distortion functions derived from weights have the form

fij(dij) =

wijps(dij), (i, j) ∈ Esim

wijpd(dij), (i, j) ∈ Edis

where ps and pd are penalty functions associated with positive weights
(similar items) and negative weights (dissimilar items), respectively.
The penalty functions are increasing, so fij is increasing when wij

is positive and decreasing when wij is negative. Roughly speaking,
the closer vectors associated with similar items are, and the farther
vectors associated with dissimilar items are, the lower the distortion.
The weights wij , which indicate the degree of similarity or dissimilarity,
scale the penalty functions.

Perhaps the simplest distortion function derived from weights is the
quadratic

fij(dij) = wijd2
ij ,

for which ps(dij) = pd(dij) = d2
ij . The quadratic distortion is plotted

in Figure 2.1, for weights wij = 1 and wij = −1. For wij = 1, which
means items i and j are similar, the distortion rises as the distance
between xi and xj increases; for wij = −1, which means items i and j

are dissimilar, the distortion is negative and becomes more negative as
the distance between xi and xj increases. We will study the quadratic
penalty in Chapter 3.

16 Minimum-Distortion Embedding

0 1 2 3

dij

−10

−5

0

5

10

p
(d
ij

)

wij = +1

wij = −1

Figure 2.1: Quadratic penalties, with wij = +1 or wij = −1 for (i, j) ∈ E .

Distortion functions derived from deviations. We start with nonneg-
ative numbers δij for (i, j) ∈ E that represent deviations or (original)
distance between items i and j, with small δij meaning the items are
similar and large δij meaning the items are dissimilar. The smaller δij ,
the more similar items i and j are. The original deviation data δij need
not be a metric.

Distortion functions derived from deviations or distances have the
general form

fij(dij) = ℓ(δij , dij),

where ℓ is a loss function, which is nonnegative, with ℓ(δij , δij) = 0,
decreasing in dij for dij < δij and increasing for dij > δij . We can
interpret the given deviation δij as a target or desired value for the
embedding distance dij ; the distortion ℓ(δij , dij) measures the difference
between the target distance and the embedding distance.

The simplest example uses a square loss,

fij(dij) = (δij − dij)2,

the square of the difference between the given deviation and the embed-
ding distance. Distortions derived from the square loss and deviations
are shown in Figure 2.2, for δij = 0.2 and δij = 1. For original deviation
δij = 1, the distortion has its minimum value at dij = 1, i.e., when

2.2. Distortion 17

0 1 2 3

dij

0.0

2.5

5.0

7.5

`(
d
ij
,δ
ij

)

δij = 1

δij = 0.2

Figure 2.2: Quadratic losses, with δij = 1 or δij = 0.2 for (i, j) ∈ E .

the distance between xi and xj is one. It rises as dij deviates from the
target δij = 1.

Distortion functions derived from a graph. In some applications we
start with an undirected graph or a relation on the items, i.e., a set of
pairs E . The associated distortion function is

fij(dij) = p(dij), (i, j) ∈ E ,

where p is a penalty function, which is increasing. Such distortion
functions can be interpreted as deriving from weights or deviations,
in the special case when there is only one value for the weights or
deviations. The simplest such distortion function is quadratic, with
p(dij) = d2

ij .

Distortion functions derived from multiple graphs. As a variation, we
can have multiple original graphs or relations on the items. For example
suppose we have Esim, a set of pairs of items that are similar, and also
Edis, a set of pairs of items that are dissimilar, with Esim ∩ Edis = ∅.
From these two graphs we can derive the distortion functions

fij(dij) =

ps(dij) (i, j) ∈ Esim

−pd(dij) (i, j) ∈ Edis,

18 Minimum-Distortion Embedding

with E = Esim ∪ Edis, where ps and pd are increasing penalty functions
for similar and dissimilar pairs, respectively. This is a special case of
distortion functions described by weights, when the weights take on
only two values, +1 (for similar items) and −1 (for dissimilar items).

Connections between weights, deviations, and graphs. The distinc-
tion between distortion functions derived from weights, deviations, or
graphs is not sharp. As a specific example, suppose we are given some
original deviations δij , and we take

fij(dij) =
{

d2
ij δij ≤ ϵ

0 otherwise,
(i, j) ∈ E ,

where ϵ is a given positive threshold. This natural distortion function
identifies an unweighted graph of neighbors (defined by small original
distance or deviation), and puts unit weight quadratic distortion on
those edges. (We could just as well have started with original similarities
or weights wij and constructed the neighbor graph as wij ≥ ϵ.) This
distortion evidently combines the ideas of distances, weights, and graphs.

2.2.2 Average distortion

We evaluate the quality of an embedding by its average distortion,
defined as

E(X) = 1
|E|

∑
(i,j)∈E

fij(dij).

The smaller the average distortion, the more faithful the embedding.
In Chapter 4, we will see that a wide variety of notions of faithfulness
of an embedding can be captured by different choices of the distortion
functions fij . (Our use of the symbol E to denote average distortion is
meant to vaguely hint at energy, from a mechanical interpretation we
will see later.)

The average distortion E(X) models our displeasure with the em-
bedding X. With distortion functions defined by weights, small E(X)
corresponds to an embedding with vectors associated with large (posi-
tive) weights (i.e., similar items) typically near each other, and vectors
associated with negative weights (i.e., dissimilar items) not near each

2.3. Minimum-distortion embedding 19

other. For distortion functions defined by deviations, small E(X) means
that the Euclidean distances between vectors are close to the original
given deviations.

Evidently, (i, j) ̸∈ E means that E(X) does not depend on dij . We
can interpret (i, j) ̸∈ E in several related ways. One interpretation is
that we are neutral about the distance dij , that is, we do not care if it
is small or large. Another interpretation is that the data required to
specify the distortion fij , such as a weight wij or an original distance
δij , is not available.

2.3 Minimum-distortion embedding

We propose choosing an embedding X ∈ Rn×m that minimizes the
average distortion, subject to X ∈ X , where X is the set of feasible or
allowable embeddings. This gives the optimization problem

minimize E(X)
subject to X ∈ X ,

(2.1)

with optimization variable X ∈ Rn×m. We refer to this problem as the
minimum-distortion embedding (MDE) problem, and we call a solution
to this problem a minimum-distortion embedding.

In this monograph we will focus on three specific constraint sets X :
the set of embeddings centered at the origin, the set of embeddings in
which some of the embedding vectors are anchored (fixed) to specific
values, and the set of standardized embeddings, which are centered
embeddings with unit covariance. These constraint sets are described
in §2.4.

MDE problems can be solved exactly only in a few special cases, one
of which is described in Chapter 3. In most other cases, solving an MDE
problem exactly is intractable, so in Chapter 6 we propose heuristic
methods to solve it approximately. In our experience, these methods
often find low-distortion embeddings and scale to large datasets (Chapter
7). With some abuse of language, we refer to an embedding that is an
approximate solution of the MDE problem as a minimum-distortion
embedding, even if it does not globally solve (2.1).

20 Minimum-Distortion Embedding

With our assumption that the distortion functions are differentiable,
the average distortion E is differentiable, provided the embedding
vectors are distinct, i.e., xi ̸= xj for (i, j) ∈ E , i ̸= j, which implies
dij > 0 for (i, j) ∈ E . It is differentiable even when dij = 0, provided
f ′

ij(0) = 0. For example, E is differentiable (indeed, quadratic) when
the distortion functions are quadratic.

The MDE problem (2.1) admits multiple interesting interpreta-
tions. Thinking of the problem data as a generalized weighted graph, a
minimum-distortion embedding can be interpreted as a representation
of the vertices by vectors that respects the geometry of the graph, con-
necting our problem to long lines of work on graph embeddings (Linial
et al., 1995; Yan et al., 2006; Chung and Graham, 1997; Hamilton et al.,
2017). The MDE problem can also be given a mechanical interpretation,
connecting it to force-directed layout (Eades, 1984).

Mechanical interpretation. In the mechanical interpretation, we con-
sider xi to be a point in Rm associated with item i. We imagine each
pair of points (i, j) ∈ E as connected by a spring with potential energy
function fij , i.e., fij(dij) is the elastic stored energy in the spring when
it is extended a distance dij . The spring associated with (i, j) ∈ E has a
tension force versus extension given by f ′

ij . A force with this magnitude
is applied to both points i and j, each in the direction of the other.
Thus the spring connecting xi and xj contributes the (vector) forces

f ′
ij(dij) xj − xi

∥xi − xj∥2
, −f ′

ij(dij) xj − xi

∥xi − xj∥2
,

on the points xi and xj , respectively. When f ′
ij is positive, the force is

attractive, i.e., it pulls the points xi and xj toward each other. When
f ′

ij is negative, the force is repulsive, i.e., it pushes the points xi and xj

away from each other.
Distortion function derived from weights are always attractive for

positive weights (pairs of similar items), and always repulsive for negative
weights (pairs of dissimilar items). Distortion functions derived from
deviations are attractive when dij > δij and repulsive when dij < δij .
For such distortion functions, we can think of δij as the natural length
of the spring, i.e., the distance at which it applies no forces on the

2.3. Minimum-distortion embedding 21

0 1 2 3

dij

0.0

2.5

5.0

7.5
fij(dij)

f ′ij(dij)

0 1 2 3

dij

−7.5

−5.0

−2.5

0.0

fij(dij)

f ′ij(dij)

Figure 2.3: Potential energy and force magnitude for quadratic distortion functions.
Left. An attractive distortion function. Right. A repulsive distortion function.

points it connects. Figure 2.3 shows the potential energy and force for
quadratic distortion functions, with weight +1 (left) and −1 (right).
Figure 2.4 shows the potential energy and force for a function associated
with a quadratic loss.

The MDE objective E(X) is the average elastic stored energy in all
the springs. The MDE problem is to find a minimum total potential
energy configuration of the points, subject to the constraints. When
the constraint is only XT 1 = 0, such a configuration corresponds to
one in which the net force on each point, from its neighbors, is zero.
(Such a point corresponds to a mechanical equilibrium, not necessarily
one of minimum energy.) When there are constraints beyond XT 1 = 0,
the mechanical interpretation is a bit more complicated, since the
constraints also contribute an additional force on each point, related to
an optimal dual variable for the constraint.

Single-index notation. To simplify the notation, we will sometimes
use a single index k instead of a tuple of indices (i, j) to represent a pair
of items. Specifically, we impose an ordering on the tuples (i, j) ∈ E ,
labeling them 1, . . . , p, where p = |E| is the number of pairs for which
distortion functions are given. For a pair k ∈ {1, . . . , p}, we write i(k)
to denote its first item and j(k) to denote the second item. We use dk

22 Minimum-Distortion Embedding

0 1 2 3

dij

−2

0

2

4
fij(dij)

f ′ij(dij)

Figure 2.4: Potential energy and force magnitude for a distortion function that is
attractive for dij > 1 and repulsive for dij < 1.

to denote the embedding distance for the kth pair,

dk = ∥xi(k) − xj(k)∥2, k = 1, . . . , p,

with d ∈ Rp the vector of embedding distances. Similarly, we define
the vector distortion function f : Rp → Rp, whose components are the
scalar distortion functions fk, k = 1, . . . , p. Using this notation, the
average distortion is

E(X) = 1
p

p∑
k=1

fk(dk) = 1T f(d)/p.

We note for future reference that p ≤ n(n − 1)/2, with equality
when the graph is full. For a connected graph, we have p ≥ n − 1, with
equality occurring when the graph is a chain. In many applications the
typical degree is small, in which case p is a small multiple of n.

Incidence matrix. Since the problem data can be interpreted as a
graph, we can associate with it an incidence matrix A ∈ Rn×p (Boyd
and Vandenberghe, 2018, §7.3), defined as

Aij =


1 (i, j) ∈ E
−1 (j, i) ∈ E
0 otherwise.

(2.2)

2.4. Constraints 23

(Recall that we assume i < j for each (i, j) ∈ E .) The kth column of
A, which we denote ak, is associated with the kth pair or edge. Each
column has exactly two non-zero entries, with values ±1, that give the
items connected by the edge. We can express ak as ak = ei(k) − ej(k),
where el is the lth unit vector in Rn.

We can express the embedding distances compactly using the inci-
dence matrix. Using single-index notation, the kth distance dk can be
written as

dk = ∥XT ak∥2,

or equivalently
dk =

√
(AT XXT A)kk.

We mention briefly that the MDE problem can be alternatively parame-
trized via the Gram matrix G = XXT , since dk =

√
aT

k Gak. For some
constraint sets X , the resulting rank-constrained optimization problem
can be approximately solved by methods that manipulate the square
root of G, using techniques introduced in Burer and Monteiro (2003)
and Burer and Monteiro (2005). We will not use this parametrization
in the sequel.

2.4 Constraints

2.4.1 Centered embeddings

We say that an MDE problem is centered or unconstrained when the
constraint set is X = C, where

C = {X | XT 1 = 0} (2.3)

is the set of centered embeddings. (Recall that the constraint XT 1 = 0
is without loss of generality.) An unconstrained MDE problem can fail
to be well-posed, i.e., it might not have a solution or might admit trivial
solutions.

When an unconstrained MDE problem does have a solution, it
is never unique, since both the constraint set C and the objective E

are invariant under rotations. If X⋆ is any optimal embedding, then
X = X⋆Q is also optimal, for any orthogonal m × m matrix Q.

24 Minimum-Distortion Embedding

2.4.2 Anchored embeddings

In an anchored MDE problem, some of the vectors xi are known and
fixed, with

xi = xgiven
i , i ∈ K, (2.4)

where K ⊆ V is the set of indices of vectors that are fixed (or anchored),
and xgiven

i ∈ Rm are the given values for those vectors. We call (2.4) an
anchor constraint; the items with vertices in K are anchored, and the
remaining are free.

We will use A to represent a set of anchored embeddings, i.e.

A = {X | xi = xgiven
i , i ∈ K}.

(The constraint set A depends on K and xgiven
i , but we suppress this de-

pendence in our notation to keep it simple.) Unlike centered embeddings,
the constraint set A is not closed under orthogonal transformations. In
particular, MDE problems with this constraint are neither translation
nor rotation invariant.

An anchor constraint has a natural mechanical interpretation: the
anchored vertices are physically fixed to given positions (as if by nails).
We will later describe the force that the nails exert on their associated
anchored points. Not surprisingly, in an optimal anchored embedding,
the net force on each point (due to its neighbors and its nail, if it is
anchored) is zero.

Incremental embedding. Anchor constraints can be used to build
an embedding incrementally. In an incremental embedding, we start
with an embedding of X ∈ Rn×m of a set of items V = {1, . . . , n}.
We later obtain a few additional items V ′ = {n + 1, . . . , n + n′} (with
n′ ≪ n), along with a set of pairs E ′ ⊆ (V ∪ V ′) × (V ∪ V ′) and their
associated distortion functions relating old items to new items (and
possibly relating the new items to each other), i.e., (i, j) ∈ E ′ implies
i ∈ V and j ∈ V ′, or i, j ∈ V ′ (and i < j). We seek a new embedding
X ′ ∈ Rn+n′×m in which the first n embedding vectors match the original
embedding, and the last n + 1 embedding vectors correspond to the
new items. Such an embedding is readily found by anchoring the first
n embedding vectors to their original values, leaving only the last

2.4. Constraints 25

n + 1 embedding vectors free, and minimizing the average distortion.
There are two approaches to handling centering or standardization
constraints in incremental embedding. The simplest is to simply ignore
these constraints, which is justified when n′ ≪ n, so the new embedding
X ′ likely will not violate the constraints by much. It is also possible
to require that the new embedding X ′ satisfy the constraints. This
approach requires care; for example, suppose we are to add just one
new item, i.e., n′ = 1, and we insist that the new embedding X ′ be
centered, like the original one X. In this case, the only possible choice
for the vector associated with the new item is xn+1 = 0.

Incremental embedding can be used to develop a feature map for
new (unseen) items, given some distortion functions relating the new
item to the original ones (say, the training items). In this case we have
n′ = 1; we embed the new item n + 1 so as to minimize its average
distortion with respect to the original items.

Placement problems. While MDE problems are usually nonconvex,
anchored MDE problems with nondecreasing convex distortion functions
are an exception. This means that some anchored MDE problems can be
efficiently and globally solved. These MDE problems can be interpreted
as (convex) placement problems, which are described in Boyd and
Vandenberghe (2004, §8.7) and have applications to VLSI circuit design
(Sherwani, 2012).

Semi-supervised learning. Anchored embeddings also arise in graph-
based semi-supervised learning problems. We interpret the vectors xi,
i ∈ K, as the known labels; our job is to assign labels for i ̸∈ K, using
a prior graph with positive weights that indicate similarity. In graph-
based semi-supervised learning (Xu, 2010; El Alaoui et al., 2016), this
is done by solving an anchored MDE problem with quadratic distortion
functions fij(dij) = wijd2

ij , which as mentioned above is convex and
readily solved.

26 Minimum-Distortion Embedding

2.4.3 Standardized embeddings

The set of standardized embeddings is

S = {X | (1/n)XT X = I, XT 1 = 0}. (2.5)

The standardization constraint X ∈ S requires that the collection of
vectors x1, . . . , xn has zero mean and unit covariance. We can express
this in terms of the m feature columns of the embedding X ∈ S: they
have zero mean, are uncorrelated, and have root-mean-square (RMS)
value one; these properties are often desirable when the embedding
is used in downstream machine learning tasks. We refer to the MDE
problem as standardized when X = S.

Because S is a compact set, the standardized MDE problem has at
least one solution. Since S is invariant under rotations, the standardized
MDE problem has a family of solutions: if X⋆ is an optimal embedding,
so is X = X⋆Q, for any m × m orthogonal matrix Q.

Natural length in a standardized embedding. We note that for X ∈ S,
the sum of the squared embedding distances is constant,∑

1≤i<j≤n

d2
ij = n2m. (2.6)

(Note that this is the sum over all pairs (i, j) with i < j, not just the
pairs in E .) To see this, we observe that

n∑
i,j=1

d2
ij = 2n

n∑
i=1

∥xi∥2
2 − 2

n∑
i,j=1

xT
i xj .

The first term on the right-hand side equals 2n2m, since
n∑

i=1
∥xi∥2

2 = tr(XXT) = tr(XT X) = nm,

while the second term equals 0, since XT 1 = 0. (Here tr denotes the
trace of a matrix, i.e., the sum of its diagonal entries.)

From (2.6), we can calculate the RMS value of all n(n − 1)/2 em-
bedding distances. We will refer to this value as the natural length dnat

2.4. Constraints 27

of the embedding, with

dnat =
√

2nm

n − 1 . (2.7)

For X ∈ S, dnat can be interpreted as the typical value of embedding
distances. We will see later that this number is useful in choosing
appropriate distortion functions.

2.4.4 Attraction, repulsion, and spreading

When all distortion functions are nondecreasing, we say the objective
is attractive. In the mechanical interpretation, this means that there
is a positive (attractive) tension between all pairs of points (i, j) ∈ E .
Roughly speaking, the distortion functions only encode similarity be-
tween items, and not dissimilarity; the objective encourages neighboring
embedded points to be near each other. When the only constraint is that
the embedding is centered, i.e., X = C, a globally optimal embedding is
X = 0, which is not useful. Roughly speaking, all forces between points
are attractive, so the points collapse to a single point, which must be 0
to achieve centering.

When the objective is attractive, we need a constraint to enforce
spreading the points. Anchored and standardized constraints both serve
this purpose, and enforce spreading of the points when the objective is
attractive. When some distortion functions can be repulsive, i.e., f ′

ij(dij)
can be negative, we can encounter the opposite problem, which is that
some points might spread without bound (i.e., the MDE problem does
not have a solution). In such situations, an anchoring or standardized
constraint can serve the role of keeping some points from spreading
without bound.

The standardization constraint keeps both pathologies from happen-
ing. The points are required to be spread, and also bounded. Since S is
compact, there is always a solution of the standardized MDE problem.

2.4.5 Comparing embeddings

In some cases we want to compare or evaluate a distance between two
embeddings of the same set of items, X and X̃. When the embeddings

28 Minimum-Distortion Embedding

are anchored, a reasonable measure of how different they are is the
mean-square distance between the two embeddings,

1
n

∥X − X̃∥2
F = 1

n

n∑
i=1

∥xi − x̃i∥2
2.

When the embeddings are centered or standardized, the comparison
is more subtle, since in these cases any embedding can be transformed
by an orthogonal matrix with no effect on the constraints or objective.
As mentioned above, X̃ and X̃Q, where QT Q = I, are equivalent for
the MDE problem. A reasonable measure of how different the two
embeddings are is then

∆ = inf{∥X − X̃Q∥2
F /n | QT Q = I},

the minimum mean-square distance over all orthogonal transformations
of the second one (which is same as the minimum over transforming X,
or both X and X̃).

We can work out the distance ∆ analytically, and also find an
optimal Q, i.e., one that achieves the minimum. This is useful for
visualization, if we are plotting X or X̃ (presumably in the case with
m two or three): we plot both X and X̃Q, the latter being the second
embedding, optimally orthogonally transformed with respect to the first
embedding. We refer to this as aligning the embedding X̃ to another
target embedding X.

Finding the optimal Q is an instance of the orthogonal Procrustes
problem (Schönemann, 1966). We first form the m×m matrix Z = XT X̃,
and find its (full) singular value decomposition (SVD) Z = UΣV T . The
optimal orthogonal matrix is Q = V UT , which gives

∆ = 1
n

(
∥X∥2

F + ∥X̃∥2
F − 2 tr Σ

)
.

For standardized embeddings we have ∥X∥2
F = ∥X̃∥2

F = mn, so ∆ =
m − 2

n tr Σ.

2.5 Simple examples

We present some simple examples of synthetic MDE problems to illus-
trate some of the ideas discussed thus far. In each example, the original

2.5. Simple examples 29

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Figure 2.5: Embeddings derived from a graph on 20 vertices, with 40 edges. Left.
Unconstrained. Right. Anchored (orange points are anchors).

data is a graph on n = 20 vertices, and we embed into m = 2 dimensions.
We will see more interesting examples, using real data, in Part III of
this monograph.

An unconstrained embedding. In our first example, the original graph
has p = 40 edges, which were randomly selected. In constructing the
MDE problem data, we take E to be all n(n − 1)/2 pairs of the n

vertices, and assign deviations δij between vertices i and j using the
graph distance (i.e., the length of the shortest path between i and
j). We use quadratic distortion functions fk(dk) = (dk − δk)2, and
require X ∈ C. The left plot in Figure 2.5 shows a minimum-distortion
embedding for this problem.

An anchored embedding. We embed the same original graph as the
previous example, but in this example we impose an anchor constraint
X ∈ A. Seven of the vertices are anchors, and the rest are free. The
anchors and their positions were selected randomly. The right plot in
Figure 2.5 shows a minimum-distortion embedding for this problem.
The anchors are colored orange.

30 Minimum-Distortion Embedding

−2 0 2

−2

0

2

−1 0 1

−1

0

1

Figure 2.6: Standardized embeddings derived from a complete graph on 20 vertices.
Left. Quadratic penalty. Right Cubic penalty.

A standardized embedding. In the third example we produce stan-
dardized embeddings X ∈ S of a complete graph on 20 vertices. We
compute two embeddings: the first is obtained by solving a standardized
MDE problem with quadratic distortion functions fk(dk) = d2

k, and
the second uses cubic distortion functions fk(dk) = d3

k. (These MDE
problems can be interpreted as deriving from graphs, or from weights
with wij = 1 for all (i, j) ∈ E).

The embeddings are plotted in Figure 2.6. The embedding produced
using quadratic distortion functions is known as a spectral layout, an
old and widely used method for drawing graphs (Hall, 1970; Koren,
2003). With cubic penalty, we obtain the embedding on the right, with
the 20 points arranged uniformly spaced on a circle. This very simple
example shows that the choice of distortion functions is important.
With a quadratic distortion, most embedding distances are small but
some are large; with a cubic distortion, which heavily penalizes large
distances, no single embedding distance is very large.

2.6 Validation

The quality of an embedding ultimately depends on whether it is useful
for the downstream application of interest. Nonetheless, there are simple

2.6. Validation 31

methods that can be used to sanity check an embedding, independent
of the downstream task. We describe some of these methods below. (We
will use some of these methods to sanity check embeddings involving
real data in Part III.)

Using held-out attributes. In the original data, some or all of the
items may be tagged with attributes. For example, if the items are
images of handwritten digits, some of the images may be tagged with
the depicted digit; if the items are single-cell mRNA transcriptomes
collected from several donors, the transcriptomes may be tagged with
their donors of origin; or if the items are researchers, they may be tagged
with their field of study.

If an attribute is held-out, i.e., if the MDE problem does not depend
on it, it can be used to check whether the embedding makes sense. In
particular, we can check whether items with the same attribute value
are near each other in the embedding. When the embedding dimension
is 1, 2 or 3, this can be done visually by arranging the embedding vectors
in a scatter plot, and coloring each point by its attribute value. When
the dimension is greater than 3, we can check if a model can be trained
to predict the attribute, given the embedding vectors. If items tagged
with the same or similar values appear near each other in the embedding,
we can take this a weak endorsement of the embedding. Of course this
requires that the held-out attributes are related to whatever attributes
were used to create the MDE problem.

Examining high-distortion pairs. Thus far we have only been con-
cerned with the average distortion of an embedding. It can also be
instructive to examine the distribution of distortions associated with
an embedding.

Suppose most pairs (i, j) ∈ E have low distortion, but some have
much higher distortion. This suggests that the high-distortion pairs may
contain anomalous items, or that the pairing itself may be anomalous
(e.g., dissimilar items may have been designated as similar). If we suspect
that these outlier pairs have an outsize effect on the embedding (e.g., if
their sum of distortions is a sizable fraction of the total distortion), we

32 Minimum-Distortion Embedding

might modify the distortion functions to be more robust, i.e., to not
grow as rapidly for large distances, or simply throw out these outliers
and re-embed.

Checking for redundancy. A third method is based on the vague idea
that a good embedding should not be too sensitive to the construction of
the MDE problem. In particular, it should not require all the distortion
functions.

We can check whether there is some redundancy among the distortion
functions by holding out a subset of them, constructing an embedding
without these functions, and then evaluating the average distortion on
the held-out functions. We partition E into training and held-out sets,

Etrain ⊆ E , Eval = E \ Etrain,

and find an embedding X using only the pairs in the training set Etrain.
We then compare the average distortions on the training set and the
validation set,

ftrain = 1
|Etrain|

∑
(i,j)∈Etrain

fij(dij), fval = 1
|Eval|

∑
(i,j)∈Eval

fij(dij).

While we would expect that fval ≥ ftrain, if fval is much larger than
ftrain, it might suggest that we do not have enough edges (and that we
should obtain more).

Checking for bias. In many applications, it is important to ensure
various groups of items are treated (in some sense) fairly and equitably
by the embedding (see, e.g., Dwork et al. (2012), Bolukbasi et al. (2016),
Barocas et al. (2019), Corbett-Davies and Goel (2018), Garg et al.
(2018), and Holstein et al. (2019)). For example, consider the task
of embedding English words. It has been shown that some popular
embedding methods reinforce harmful stereotypes related to gender,
race, and mental health; e.g., in the BERT language model (Devlin et al.,
2019), words related to disabilities have been found to be associated
with negative sentiment words (Hutchinson et al., 2020). Moreover, for
embedding methods (like BERT) that are trained to model an extremely

2.6. Validation 33

large corpus of natural language documents, it is usually difficult to
correct these biases, even if they have been identified in the embedding;
Bender et al. (2021) call this the problem of unfathomable training
data.

The MDE framework provides a principled way of detecting and
mitigating harmful bias in an embedding. In our framework, there are
at least two ways in which harmful biases may manifest: the distortion
functions may encode harmful biases, or the embedding may have lower
distortion on the edges associated with one group than another. Along
these lines, we propose the following three-step procedure to mitigate
bias. We continue with our running example of embedding English
words, but the procedure applies more broadly.

1. Identify groups of interest. The first step is to identify groups
of interest. This might correspond to identifying sets of words
related to gender, sex, race, disabilities, and other demographic
categories. (These sets need not be disjoint.)

2. Audit the distortion functions. The second step is to audit to
distortion functions in which at least one item is a member of
an identified group, and modifying them if they encode harmful
biases.
For example, say the distortion functions are derived from weights,
and the modeler is interested in words related to the female sex.
The modeler should audit the functions fij for which i or j is
related to the female sex. In particular, the modeler may want
to ensure that the weights associating these words to certain
professions and adjectives are small, zero, or negative. The modeler
can also add or modify distortion functions between words in
different groups, to articulate whether, e.g., the vectors for “man”
and “woman” should be close or not close in the embedding.
This step is extremely important, since the embedding is designed
to be faithful to the relationships articulated by the distortion
functions. It is also difficult, because it requires that the modeler
be conscious of the many kinds of harmful biases that may arise
in the embedding.

34 Minimum-Distortion Embedding

3. Compare distortions. The third step is to compute the embedding,
and check whether it is more faithful to the stated relationships
involving one group than another. This can be done by comparing
the distortions for different groups.
For example, say we have two groups of interest: G1 ⊆ V and
G2 ⊆ V . Let E1 be the set of pairs (i, j) in which i ∈ G1 or j ∈ G1,
and let E2 be the same for G2. We can compute the average
distortion of the embedding restricted to these two sets:

E1(X) = 1
|E1|

∑
(i,j)∈E1

fij(dij), E2(X) = 1
|E2|

∑
(i,j)∈E2

fij(dij).

Suppose E1(X) ≈ E2(X). This means that on average, the em-
bedding is as faithful to the stated relationships involving group
G1 as it is to the relationships involving group G2. (Importantly,
E1(X) ≈ E2(X) does not mean that the embedding is free of
harmful bias, since the distortion functions themselves may en-
code harmful bias if the modeler did a poor job in step 2.)
Otherwise, if E1(X) < E2(X), the embedding is on average more
faithful to the first group than the second, revealing a type of
bias. The modeler can return to step 2 and modify the distortion
functions so that E2 contributes more to the total distortion (e.g.,
by increasing some of the the weights associated with E2, or
decreasing some of the weights associated with E1).

We emphasize that ensuring an embedding is fair and free of harmful
bias is very difficult, since it requires the modelers to be aware of the
relevant groups and biases. All the MDE framework does is provide
modelers a procedure that can help identify and mitigate harmful biases,
provided they are aware of them.

3
Quadratic MDE Problems

In this chapter we consider MDE problems with quadratic distortion
functions,

fij(dij) = wijd2
ij , (i, j) ∈ E ,

where wij is a weight encoding similarities between items. Large positive
wij means items i and j are very similar, small or zero wij means they
are neither similar nor dissimilar, and large negative wij means the two
items are very dissimilar. In many cases the weights are all nonnegative,
in which case the objective is attractive. We refer to an MDE problem
with quadratic distortion functions as a quadratic MDE problem.

Centered embeddings. Centered (unconstrained) quadratic MDE
problems are not interesting. In all cases, either X = 0 is a global
solution, or the problem is unbounded below, so there is no solution.

Anchored embeddings. Anchored quadratic MDE problems with pos-
itive weights are readily solved exactly by least squares. This problem
is sometimes called the quadratic placement problem (Sigl et al., 1991),
and has applications in circuit design. When there are negative weights,

35

36 Quadratic MDE Problems

the anchored quadratic MDE problem can be unbounded below, i.e.,
not have a solution.

Standardized embeddings. For the remainder of this chapter we focus
on the standardized quadratic MDE problem,

minimize (1/p)∑(i,j)∈E wijd2
ij

subject to X ∈ S.
(3.1)

These problems are also sometimes referred to as quadratic placement
problems, e.g., as in Hall (1970).

Standardized quadratic MDE problems are special for several reasons.
First, they are tractable: we can solve (3.1) globally, via eigenvector
decomposition, as we will see in §3.1. Second, many well-known historical
embeddings can be obtained by solving instances of the quadratic MDE
problem, differing only in their choice of weights, as shown in §3.2.

3.1 Solution by eigenvector decomposition

We can re-formulate the problem (3.1) as an eigenproblem. Note that

E(X) = 1/p
∑

(i,j)∈E
wijd2

ij = 1/p tr(XT LX), (3.2)

where the symmetric matrix L ∈ Sn has upper triangular entries (i.e.,
i < j) given by

Lij =

−wij (i, j) ∈ E
0 otherwise,

and diagonal entries
Lii = −

∑
j ̸=i

Lij .

(The lower triangular entries are found from Lij = Lji.) We note that
L satisfies L1 = 0. If the weights are all nonnegative, the matrix L is a
Laplacian matrix. But we do not assume here that all the weights are
nonnegative.

3.1. Solution by eigenvector decomposition 37

The equality (3.2) follows from the calculation

1/p
∑

(i,j)∈E
wijd2

ij = 1/p
∑

(i,j)∈E
wij∥xi − xj∥2

2

= 1/p
∑

(i,j)∈E
wij(∥xi∥2

2 + ∥xj∥2
2 − 2xT

i xj)

= 1/p

 n∑
i=1

Lii∥xi∥2
2 + 2

∑
(i,j)∈E

LijxT
i xj


= 1/p tr(XT LX).

The MDE problem (3.1) is therefore equivalent to the problem
minimize tr(XT LX)
subject to X ∈ S,

(3.3)

a solution to which can be obtained from eigenvectors of L. To see this,
we first take an eigenvector decomposition of L, letting v1, v2, . . . , vn be
orthonormal eigenvectors,

Lvi = λivi, i = 1, . . . , n, λ1 ≤ · · · ≤ λn.

Let x̃1, x̃2, . . . , x̃m ∈ Rn be the columns of X (which we recall satisfies
XT X = nI). Then

(1/p) tr(XT LX) = (1/p)
n∑

i=1
λi((vT

i x̃1)2 + (vT
i x̃2)2 + · · · + (vT

i x̃m)2)

≥ (n/p)
m∑

i=1
λi,

where the inequality follows from

(vT
i x̃1)2 + (vT

i x̃2)2 + · · · + (vT
i x̃m)2 ≤ n

for i = 1, . . . , n, and
n∑

i=1

m∑
j=1

(vT
i x̃j)2 = nm.

Let vj be the eigenvector that is a multiple of 1. If j > m, a minimum-
distortion embedding is given by x̃i =

√
nvi, i.e., by concatenating the

bottom m eigenvectors,

X =
√

n[v1 · · · vm].

38 Quadratic MDE Problems

If j ≤ m, a solution is obtained by removing vj from the above and
appending vm+1,

X =
√

n[v1 · · · vj−1 vj+1 · · · vm+1].

The optimal value of the MDE problem is
n

p
(λ1 + · · · + λm),

for j > m, or
n

p
(λ1 + · · · + λm+1),

for j ≤ m.

Computing a solution. To compute X, we need to compute the bottom
m + 1 eigenvectors of L. For n not too big (say, no more than 10,000),
it is possible to carry out a full eigenvector decomposition of L, which
requires O(n2) storage and O(n3) flops. This naïve method is evidently
inefficient, since we will only use m + 1 of the n eigenvectors, and
while storing X requires only O(nm) storage, this method requires
O(n2). For n larger than around 10,000, the cubic complexity becomes
prohibitively expensive. Nonetheless, when L is dense, which happens
when p is on the order of n2, we cannot do much better than computing
a full eigenvector decomposition.

For sparse L (p ≪ n2) we can use iterative methods that only re-
quire multiplication by L, taking O(p) flops per iteration; these methods
compute just the bottom m eigenvectors that we seek. One such method
is the Lanczos iteration (Lanczos, 1951), an algorithm for finding eigen-
vectors corresponding to extremal eigenvalues of symmetric matrices.
Depending on the spectrum of L, the Lanczos method typically reaches
a suitable solution within O(n) or sometimes even O(1) iterations (Tre-
fethen and Bau, 1997, §32). Another popular iterative method is the
locally optimal preconditioned conjugate gradient method (LOBPCG),
which also applies to symmetric matrices (Knyazev, 2001). Lanczos iter-
ation and LOBPCG belong to a family of methods involving projections
onto Krylov subspaces; for details, see (Trefethen and Bau, 1997, §32,
§36) and (Golub and Van Loan, 2013, §10).

3.2. Historical examples 39

3.2 Historical examples

In this section we show that many existing embedding methods reduce
to solving a quadratic MDE problem (3.1), with different methods using
different weights.

Laplacian embedding. When the weights are all nonnegative, the
matrix L is a Laplacian matrix for the graph (V, E) (with edge weights
wij). The bottom eigenvector v1 of L is a multiple of 1, so a solution
is X = [v2 · · · vm+1]; an embedding obtained in this way is known as a
Laplacian embedding or spectral embedding. Laplacian embedding is
the key computation in spectral clustering, a technique for clustering the
nodes of a graph (Pothen et al., 1990; von Luxburg, 2007). (We mention
that spectral clustering can be extended to graphs with negative weights
(Kunegis et al., 2010; Knyazev, 2017; Knyazev, 2018).) In machine
learning, Laplacian embedding is a popular tool for dimensionality
reduction, known as the Laplacian eigenmap (Belkin and Niyogi, 2002).

A variant of the Laplacian embedding uses the bottom eigenvectors
of the normalized Laplacian matrix, Lnorm = D−1/2LD−1/2, where
D ∈ Rn×n is a diagonal matrix with entries Dii = Lii. This variant can
be expressed as a quadratic MDE problem via the change of variables
Y = D−1/2X.

Principal component analysis. PCA starts with data y1, . . . , yn ∈ Rq,
assumed to be centered (and with q ≥ m). The data are assembled into
a matrix Y ∈ Rn×q with rows yT

i . The choice of weights

wij = yT
i yj

for (i, j) ∈ E = {(i, j) | 1 ≤ i < j ≤ n} yields an MDE problem that is
equivalent to PCA, in the following sense. The matrix L corresponding
to this choice of weights has entries

Lij =

−yT
i yj i ̸= j∑

j:i ̸=j yT
i yj i = j.

40 Quadratic MDE Problems

Because the data is centered,∑
j:i ̸=j

yT
i yj = −yT

i yi, i = 1, . . . , n,

so the diagonal of L has entries −yT
1 y1, . . . , −yT

n yn. In particular, L =
−Y Y T . Hence, the low-dimensional embedding of Y obtained by PCA,
which takes X to be the m top eigenvectors of Y Y T (Udell et al., 2016,
§2), is also a solution of the MDE problem.

The MDE formulation of PCA has a natural interpretation, based
on the angles between the data vectors. When the angle between yi and
yj is acute, the weight wij is positive, so items i and j are considered
similar. When the angle is obtuse, the weight wij is negative, so items i

and j are considered dissimilar. When the data vectors are orthogonal,
wij is zero, so the embedding is neutral on the pair i, j. If the data
vectors each have zero mean, there is an additional interpretation: in this
case, PCA seeks to place vectors associated with positively correlated
pairs near each other, anti-correlated pairs far from each other, and is
neutral on uncorrelated pairs.

Kernel PCA. Like PCA, kernel PCA starts with vectors y1, . . . , yn, but
it replaces these vectors by nonlinear transformations ϕ(y1), . . . , ϕ(yn).
We define the kernel matrix K ∈ Sn of ϕ(y1), . . . , ϕ(yn) as

Kij = ϕ(yi)T ϕ(yj).

Kernel PCA applies PCA to the matrix K1/2(I − 11T /n), i.e., it com-
putes the bottom eigenvectors of the matrix

L = −(I − 11T /n)K(I − 11T /n).

By construction, L is symmetric, and its rows sum to 0 (i.e., L1 = 0);
therefore, the choice of weights

wij = −Lij , 1 ≤ i < j ≤ n,

yields an MDE problem equivalent to kernel PCA.

3.2. Historical examples 41

Locally linear embedding. Locally linear embedding (LLE) seeks
an embedding so that each item is approximately reconstructed by a
linear combination of the embedding vectors associated with its nearest
neighbors (Roweis and Saul, 2000; Saul and Roweis, 2001). As in PCA,
the data is a list of vectors y1, . . . , yn. A linearly-constrained least
squares problem is solved to find a matrix W ∈ Sn that minimizes the
reconstruction error

n∑
i=1

∥∥∥∥∥∥yi −
n∑

j=1
Wijyj

∥∥∥∥∥∥
2

2

,

subject to the constraints that the rows of W sum to 1 and Wij =
0 if yj is not among the k-nearest neighbors of yi, judged by the
Euclidean distance (k is a parameter). LLE then obtains an embedding
by computing the bottom eigenvectors of

L = (I − W)T (I − W).

Once again, L is symmetric with rows summing to 0, so taking wij =
−Lij results in an equivalent MDE problem.

Classical multidimensional scaling. Classical multidimensional scaling
(MDS) is an algorithm for embedding items, given original distances or
deviations δij between all n(n − 1)/2 item pairs (Torgerson, 1952). The
original distances δij are arranged into a matrix D ∈ Sn, with

Dij = δ2
ij .

Classical MDS produces an embedding by computing the bottom eigen-
vectors of

L = (I − 11T /n)D(I − 11T /n)/2.

This matrix is symmetric, and its rows sum to 0. Therefore, choosing

wij = −Lij , 1 ≤ i < j ≤ n,

results in an MDE equivalent to classical MDS.
When the original distances are Euclidean, the weights wij are the

inner products between the (centered) points that generated the original

42 Quadratic MDE Problems

distances; if these points were in fact vectors in Rm, then classical MDS
will recover them up to rotation. But when the original distances are
not Euclidean, it is not clear what wij represents, or how the optimal
embedding distances relate to the original distances. In §4.2, we show
how distortion functions can be chosen to preserve original distances
directly.

Isomap. Isomap is a well-known dimensionality reduction method
that reduces to classical MDS (Tenenbaum et al., 2000; Bernstein et al.,
2000) and therefore is also an MDE of the form (3.1). Like classical
MDS, Isomap starts with original distances δij for all pairs of items.
Isomap then constructs a shortest path metric on the items, and runs
classical MDS on that metric. Specifically, it constructs a graph with n

nodes, in which an edge exists between i and j if δij < ϵ, where ϵ > 0
is a parameter. If an edge between i and j exists it is weighted by δij ,
and the shortest path metric is constructed from the weighted graph in
the obvious way.

Maximum variance unfolding. Maximum variance unfolding is another
dimensionality reduction method that starts with an original data
matrix and reduces to PCA (Weinberger and Saul, 2004). For each item
i, maximum variance unfolding computes its k-nearest neighbors under
the Euclidean distance, where k is a parameter, obtaining nk original
distances δij . Next, the method computes a (centered) Gram matrix
G of maximum variance that is consistent with the δij , i.e., such that
Gii − 2Gij + Gjj = δ2

ij for each δij ; this matrix can be found by solving
a semidefinite program (Weinberger and Saul, 2004, §3.2). Finally,
like PCA, maximum variance unfolding takes the m top eigenvectors
of G (or the m bottom eigenvectors of L = −G) as the embedding.
(When solving the semidefinite program is difficult, maximum variance
unfolding can be approximated by a method called maximum variance
correction (Chen et al., 2013).)

4
Distortion Functions

In this chapter we give examples of distortion functions. We organize
these into those that derive from given weights, and those that derive
from given original distances or deviations between items, although the
distinction is not sharp.

4.1 Functions involving weights

In many MDE problems, the similarities between items are described
by nonzero weights wij for (i, j) ∈ E , with positive weights indicating
similar items and negative weights indicating dissimilar items. In this
setting, the edges are partitioned into two sets: Esim (positive weights,
i.e., similar items) and Edis (negative weights, dissimilar items).

We mention some special cases. In the simplest case, all weights are
equal to one. This means that the original data simply tells us which
pairs of items are similar. Another common situation is when all weights
are positive, which specifies varying levels of similarity among the items,
but does not specify dissimilarity. Another common case is when the
weights have only two values, +1 and −1. In this case we are specifying
a set of pairs of similar items, and a (different) set of pairs of dissimilar
items. In the most general case, the weights can be positive or negative,

43

44 Distortion Functions

indicating similar and dissimilar pairs of items, and different degrees of
similarity and dissimilarity.

The weights are given as, or derive from, the raw data of an applica-
tion. As an example consider a social network, with (i, j) ∈ E meaning
individuals i and j are acquainted. A reasonable choice for the weight
wij might be one plus the number of acquaintances individuals i and
j have in common. (This provides an example of preprocessing, i.e.,
deriving weights from the original data, which in this example is the
unweighted acquaintance graph. We describe several other preprocessing
methods in §8.2.)

Distortion functions. For problems involving weights, distortion func-
tions have the form

fij(dij) =

wijps(dij) (i, j) ∈ Esim

wijpd(dij) (i, j) ∈ Edis
, (i, j) ∈ E , (4.1)

where ps : R+ → R and pd : R+ → R are increasing penalty functions.
Thus for (i, j) ∈ Esim (wij ≥ 0), the distortion function fij is attractive
(increasing). For (i, j) ∈ Edis (wij < 0), fij is repulsive (decreasing).
When Edis is empty, the weights are all positive and the objective E

is attractive. In this case the unconstrained problem has the trivial
solution X = 0; we can use an anchor or standardization constraint to
enforce spreading and avoid this pathology.

We have found that the choice of a penalty function matters much
more than the choice of weights (in many applications, using +1 and
−1 weights suffices). While there are many possible penalty functions,
in practice they can be characterized by how they treat small distances,
and how they treat large distances. These two vague qualities largely
determine the characteristics of the embedding. For this reason, it suffices
to use just a few simple penalty functions (out of the many possible
choices). In the next two subsections, we describe some attractive and
repulsive penalty functions that we have found to be useful.

4.1. Functions involving weights 45

4.1.1 Attractive distortion functions

Here we give a few examples of functions that work well as attractive
penalties. We start with powers, the simplest family of penalty functions.
This family is parametrized by the exponent, which determines the
relative contributions of small and large distances to the distortion.
Then we describe three penalties that have gentle slopes for small
distances, and larger (but not large) slopes for large distances; these
typically result in embeddings in which different “classes” of items are
well-separated, but items within a single class are not too close.

Powers. The simplest family of penalty functions is the power penalty,
ps(d) = dα,

where α > 0 is a parameter. The larger α is, the more heavily large
distances are penalized, and the less heavily small distances are penalized.
This is illustrated in Figure 4.1, which plots linear (α = 1), quadratic
(α = 2), and cubic (α = 3) penalties. For x > 1, the cubic penalty is
larger than than the quadratic, which is in turn larger than the linear
penalty. For x < 1, the opposite is true.

Decreasing α increases the penalty for small distances and decreases
the slope for large distances. So smaller values of α causes similar items
to more closely cluster together in the embedding, while allowing for
some embedding distances to be large. In contrast when α is large, the
slope of the penalty for small distances is small and the slope for large
distances is large; this results in embeddings in which the points are
“spread out” so that no one embedding distance is too large.

Huber penalty. The Huber penalty is

ps(d) =

d2 d < τ

τ(2d − τ) d ≥ τ,
(4.2)

where τ (the threshold) is a positive parameter. This penalty function
is quadratic for d < τ and affine for d > τ . Because the penalty is
quadratic for small distances, the embedding vectors do not cluster too
closely together; because it is linear for large distances, some embedding
distances may be large, though most will be small.

46 Distortion Functions

0.0 0.5 1.0 1.5 2.0
d

0

2

4

6

8

p s
(d

)

linear

quadratic

cubic

Figure 4.1: Powers. A linear, quadratic, and cubic penalty.

0 1 2 3 4
d

0

2

4

6

8

p s
(d

)

Huber

logistic

log-one-plus

Figure 4.2: More penalties. A Huber, logistic, and log-one-plus penalty.

4.1. Functions involving weights 47

Logistic penalty. The logistic penalty has the form

ps(d) = log(1 + eα(d−τ)),

where α > 0 and τ > 0 are parameters. The logistic penalty encourages
similar items to be smaller than the threshold τ , while charging a
roughly linear cost to distances larger than τ .

Log-one-plus penalty. The log-one-plus penalty is

ps(d) = log(1 + dα), (4.3)

where α > 0 is a parameter. For small d, the log-one-plus penalty is close
to dα, a power penalty with exponent α, but for large d, log(1 + dα) ≈
α log d, which is much smaller than dα.

The dimensionality reduction methods t-SNE (Maaten and Hinton,
2008), LargeVis (Tang et al., 2016), and UMAP (McInnes et al., 2018)
use this function (or a simple variant of it) as an attractive penalty.

4.1.2 Repulsive distortion functions

Repulsive distortion functions are used to discourage vectors associated
with dissimilar items from being close. Useful repulsive penalties are
barrier functions, with pd(d) converging to −∞ as d → 0, and converging
to 0 as d → ∞. This means that the distortion, which has the form
wijpd(dij) with wij < 0, grows to ∞ as the distance dij approaches zero,
and converges to zero as dij becomes large.

We give two examples of such penalties below, and plot them in
Figure 4.3.

Inverse power penalty. The inverse power penalty is

pd(d) = −1/dα,

where α > 0 is a parameter. When used in unconstrained MDE problems,
this penalty sometimes results in a few embedding vectors being very
far from the others. This pathology can be avoided by imposing a
standardization constraint.

48 Distortion Functions

0 1 2 3 4
d

0

2

4

6

8

10

−
p d

(d
)

1/d

1/d2

logarithmic

Figure 4.3: Repulsive penalties. Inverse power and logarithmic penalties.

Logarithmic penalty. The logarithmic penalty is

pd(d) = log(1 − exp(−dα)), (4.4)

where α > 0 is a parameter. We have found that the logarithmic penalty
is effective with or without the standardization constraint. We will see
some examples of embeddings produced using logarithmic penalties in
Part III of this monograph.

Many other repulsive penalties can and have been used, including
for example the barrier

pd(d) = log
(

dα

1 + dα

)
,

with α > 0, used by LargeVis (Tang et al., 2016) and UMAP (McInnes
et al., 2018, appendix C). In fact, LargeVis and UMAP are equivalent
to unconstrained MDE problems based on the log-one-plus attractive
penalty and this repulsive penalty. The dimensionality reduction method
t-SNE is almost equivalent to solving an MDE problem, except its
objective encourages spreading via a non-separable function of the
embedding distances. In practice, however, these three methods produce
similar embeddings when their hyper-parameters are suitably adjusted
(Böhm et al., 2020). While there are many choices for repulsive (and
attractive) penalties, in our experience, just a few simple functions, such
as the ones described above, suffice.

4.2. Functions involving original distances 49

Finally, we remark that it is possible to design distortion functions
derived from weights that combine attractive and repulsive penalties.
For example, the function

fij(dij) = wijdij − log(dij − ρij),

where wij > 0 and ρij > 0, combines a linear penalty that attracts items
i and j with a logarithmic barrier that repulses them. MDE problems
using distortion functions like this one can be used to solve Euclidean
placement and sphere-packing problems (Boyd and Vandenberghe, 2004,
§8.7).

4.2 Functions involving original distances

In another class of MDE problems, for each item pair (i, j) ∈ E , we are
given a nonnegative number δij representing the distance, deviation, or
dissimilarity between items i and j. A large value of δij means i and j

are very dissimilar, while δij = 0 means items i and j are the same, or
at least, very similar. We can think of δij as the target distance for our
embedding.

If the items can be represented by vectors (e.g., images, time-series
data, bitstrings, and many other types of items), the original distances
might be generated by a standard distance function, such as the Eu-
clidean, Hamming, or earth-mover’s distance. But the data δij need not
be metric; for example, they can fail to satisfy the triangle inequality
δij ≤ δik + δkj , for i < k < j, (i, j), (i, k), (k, j) ∈ E . This often happens
when the δij are scored by human experts.

Distortion functions. For problems involving distances, we consider
distortion functions of the form

fij(dij) = ℓ(δij , dij), (i, j) ∈ E ,

where ℓ : R+ × R+ → R is a loss function. The loss function is
nonnegative, zero for d = δ, decreasing for d < δ, and increasing for
d > δ. The embedding objective E(X) is a measure of how closely the
embedding distances match the original deviations. Perfect embedding
corresponds to E(X) = 0, which means dij = δij , i.e., the embedding

50 Distortion Functions

exactly preserves the original distances. This is generally impossible
to achieve, for example when the original deviations are not a metric,
and also in many cases even when it is. (For example, it is impossible
to isometrically embed a four-point star graph with the shortest path
metric into Rm, for any m.) Instead, as in all MDE problems, we seek
embeddings with low average distortion.

In these problems, we do not require the standardization constraint
to encourage the embedding to spread out, though we may choose to
enforce it anyway, for example to obtain uncorrelated features. When
the standardization constraint is imposed, it is important to scale the
original distances δij so that their RMS value is not too far from the
RMS value dnat (2.7) of the embedding distances dij .

When the original deviations δij are Euclidean distances, it is some-
times possible to compute a perfect embedding (see Boyd and Van-
denberghe (2004, §8.3.3) and Liberti et al. (2014) and Dokmanic et al.
(2015)). In general, however, MDE problems involving original distances
are intractable. Nonetheless, the methods described in Chapter 6 often
produce satisfactory embeddings.

4.2.1 Examples

Quadratic loss. Perhaps the most obvious choice of loss function is
the squared loss,

ℓ(δ, d) = (δ − d)2.

The squared loss places more emphasis on preserving the distance
between pairs with large original distances than small ones. In particular,
when E contains all pairs and the feasible set is S, a simple calculation
shows that the least-squares MDE is equivalent to the problem

minimize (1/p)∑(i,j)∈E −δijdij

subject to X ∈ S,

which we recognize as a linear distortion function, with coefficient
the negative of the original distance. The objective of this problem
gives outsized rewards to matching large original distances with large
embedding distances.

4.2. Functions involving original distances 51

The problem of finding an embedding that minimizes the least
squares distortion (or simple variants of it) has been discussed exten-
sively in the literature. A whole family of methods called multidimen-
sional scaling is almost entirely concerned with (approximately) solving
it (Kruskal, 1964a; Kruskal, 1964b; Groenen et al., 1996; Cox and Cox,
2000; Borg and Groenen, 2003).

Weighted quadratic loss. A weighted quadratic loss is

ℓ(δ, d) = κ(δ)(δ − d)2,

where κ is a real function. If κ is decreasing, the weighted quadratic loss
places less emphasis on large distances δ, compared to the quadratic
loss. The choice κ(δ) = 1/δ and X = Rn×m yields a method known
as Sammon’s mapping (Sammon, 1969), while κ(δ) = 1/δ2 gives the
objective function for the Kamada-Kawai algorithm for drawing graphs
(Kamada and Kawai, 1989).

Huber loss. The Huber loss is

ℓ(δ, d) =

(δ − d)2 |δ − d| ≤ τ

τ(2|δ − d| − τ) |δ − d| > τ,

where τ ∈ R is a parameter (Boyd and Vandenberghe, 2004, §6.1.2).
This loss can be thought of as a robust version of the quadratic loss, in
that it is less sensitive to large residuals. This is illustrated in Figure 4.4.

Absolute loss. The absolute loss is

ℓ(δ, d) = |δ − d|. (4.5)

MDE problems with this loss function have been referred to as robust
MDS and robust EDM in the literature (Cayton and Dasgupta, 2006;
Zhou et al., 2019).

Logistic loss. Composing the logistic function with the absolute dis-
tortion gives a soft version of the absolute distortion,

ℓ(δ, d) = log
(1 + exp |δ − d|

2

)
.

52 Distortion Functions

0 1 2 3 4
d

0

1

2

3

4

`(
δ,
d
)

quadratic

weighted quadratic

Huber

absolute

Figure 4.4: Basic losses involving distances. A quadratic loss, weighted quadratic
(with κ(δ) = 1/δ2), and a Huber loss (with threshold τ = 1), evaluated at δ = 2.

(Dividing the argument of the log by two has no effect on the MDE
problem, but ensures that ℓ(δ, δ) = 0.)

Fractional loss. The fractional loss is defined as

ℓ(δ, d) = max{δ/d, d/δ} − 1.

It is a barrier function: it approaches +∞ as d → 0, naturally encour-
aging the embedding vectors to spread out.

Soft fractional loss. A differentiable approximation of the fractional
loss can be obtained by replacing the max function with the so-called
softmax function,

ℓ(δ, d) = 1
γ

log
(exp(γδ/d) + exp(γd/δ)

2 exp γ

)
,

where γ > 0 is a parameter. For large γ, this distortion function is
close to the fractional distortion; for small γ it is close to δ/d + d/δ − 2.
The soft fractional distortion is compared to the fraction distortion in
Figure 4.5.

4.3. Preprocessing 53

0 1 2 3 4
d

0

1

2

3

4

`(
δ,
d
)

fractional

soft fractional (γ = 10)

soft fractional (γ = 1)

Figure 4.5: Fractional loss. The fractional and soft fractional losses, with δ = 2.

4.3 Preprocessing

In this section we discuss methods that can be used to create distortion
functions, given some raw similarity or dissimilarity data on pairs of
items. These preprocessing methods are analogous to feature engineer-
ing in machine learning, where raw features are converted to feature
vectors and possibly transformed before further processing. As in feature
engineering, preprocessing the raw data about items can have a strong
effect on the final result, i.e., the embedding found.

Below, we discuss two preprocessing methods. The first method,
based on neighborhoods, can be used to create distortion functions
based on weights (and to choose which pairs to include in the sets
Esim and Edis). The second method, based on graph distances, is useful
in creating distortion functions based on original deviations. These
methods can also be combined, as explained later.

4.3.1 Neighborhoods

In some applications we have an original deviation δij or weight wij for
every pair (i, j), but we care mostly about identifying pairs that are
very similar. These correspond to pairs where the deviation is small, or
the weight is large. For raw data given as deviations, the neighborhood
of an item i is

N (i; δthres
i) = {j | δij ≤ δthres

i },

54 Distortion Functions

and for raw data given as weights, the neighborhood is

N (i; wthres
i) = {j | wij ≥ wthres

i },

where δthres
i and wthres

i are threshold values.
If item j is in the neighborhood of item i (and j ̸= i), we say that j

is a neighbor of i. Note that this definition is not symmetric: j ∈ N (i)
does not imply i ∈ N (j). The graph whose edges connect neighbors is
called a neighborhood graph, with edges

Esim = {(i, j) | 1 ≤ i < j ≤ n, j ∈ N (i) or i ∈ N (j)}.

Building the neighborhood graph. The neighborhood graph depends
on the threshold values δthres

i and wthres
i . A simple option is to use the

same threshold δthres or wthres for all items, but we can also use different
thresholds for different items. An effective way to do this is based on
the nearest neighbors of each item. For original data given as deviations,
we choose

δthres
i = sup{δ | |N (i; δ)| ≤ k},

and analogously for weights; that is, we choose the thresholds so that
each item has k neighbors, where k is a parameter that is much smaller
than n. More sophisticated methods of building neighborhood graphs
are possible, such as the one proposed by Carreira-Perpinán and Zemel
(2005), but this simple choice often works very well in practice.

Computing the k-nearest neighbors of each item is expensive. In
almost all applications, however, it suffices to carry out this computa-
tion approximately. Approximate nearest neighbors can be computed
cheaply using algorithms such as the one introduced by Dong et al.
(2011), which has a reported empirical complexity of O(n1.14), or the
methods surveyed by Andoni et al. (2018). Python libraries such as
pynndescent (McInnes, 2020a) and annoy (Bernhardsson, 2020) make
these computations straightforward in practice.

Choosing dissimilar items. A natural choice for the set of dissimilar
items is

Edis = {(i, j) | (i, j) /∈ Esim},

4.3. Preprocessing 55

i.e., all pairs of non-neighbors. This says that all items that are not
similar are dissimilar. If n is large, this choice is untenable because
Esim ∪ Edis will include all n(n − 1)/2 pairs. A practical alternative is to
randomly select a subset of non-neighbors, and include only these edges
in Edis. The size of Edis affects how spread out the embedding is; in our
experience, an effective choice is to sample |Esim| non-neighbors uni-
formly at random. (If a standardization constraint or anchor constraint
is imposed, we can also take Edis = ∅.) Several well-known embedding
methods, such as word2vec, LargeVis, and UMAP, choose dissimilar
pairs via random sampling (these methods call this “negative sampling”)
(Mikolov et al., 2013; Tang et al., 2016; McInnes et al., 2018; Böhm
et al., 2020).

Other choices are possible. Instead of including all pairs not in Esim,
we can take Edis to only include pairs of items with a large original
distance (or small original weight). This can yield embeddings in which
similar items are tightly clustered together, and are far away from
dissimilar items.

Choosing weights. After constructing Esim and Edis, we assign dis-
tortion functions to edges. We have already discussed how to choose
penalty functions, in §4.1. Here we discuss the choice of weights wij in
the distortion functions.

The simplest choice of weights is wij = +1 for (i, j) ∈ Esim and
wij = −1 for (i, j) ∈ Edis. Though exceedingly simple, this weighting
often works very well in practice. Another effective choice takes wij = +2
if i ∈ N (j) and j ∈ N (i), wij = +1 if i ∈ N (j) but j ̸∈ N (i) (or vice
versa), and wij = −1 if (i, j) ∈ Edis.

The weights can also depend on the raw weights or deviations, as in

wij = exp(−δ2
ij/σ2),

where σ is a positive parameter. In this preprocessing step, the thresholds
and parameters such as σ are chosen, usually by experimentation, to
get good results.

Sparsity. Preprocessing methods based on neighborhoods focus on the
local structure in the raw data. Roughly speaking, we trust the original

56 Distortion Functions

data to indicate pairs of items that are similar, but less so which items
are dissimilar. These preprocessing steps typically yield a sparse graph,
with many fewer than n(n − 1)/2 edges. In many cases the average
degree of the vertices in the graph is modest, say, on the order of 10,
in which case number of edges p is a modest multiple of the number of
items n. This makes problems with n large, say 106, tractable; it would
not be practical to handle all 1012 edges in a full graph, but handling
107 edges is quite tractable.

4.3.2 Graph distance

The previous preprocessing step focuses on the local structure of the
raw data, and generally yields a sparse graph; we can also use sparse
original data to create a full graph. We consider the case with original
deviations δij , for some or possibly all pairs (i, j). We replace these
with the graph distance δ̃ij between vertices i and j, defined as the
minimum sum of deviations δij over all paths between i and j. (If the
original graph is complete and the original deviations satisfy the triangle
inequality, then this step does nothing, and we have δ̃ij = δij .)

We mention that the graph distances can be computed efficiently,
using standard algorithms for computing shortest paths (such as Dijk-
stra’s algorithm, or breadth-first search for unweighted graphs): simply
run the shortest-path algorithm for each node in the graph. While
the time complexity of computing all n(n − 1)/2 graph distances is
Õ(n2 +np), the computation is embarrassingly parallel across the nodes,
so in practice this step does not take too long. (For example, on a
standard machine with 8 cores, 300 million graph distances can be
computed in roughly one minute.)

Sparsity. This operation yields a complete graph with n(n − 1)/2
edges (assuming the original graph is connected). When n is large, the
complete graph might be too large to fit in memory. To obtain sparser
graphs, as a variation, we can randomly sample a small fraction of the
n(n−1)/2 graph distances, and use only the edges associated with these
sampled graph distances. This variation can be computed efficiently,
without storing all n(n − 1)/2 graph distances in memory, by iteratively
sampling the graph distances for each node.

4.3. Preprocessing 57

Another sparsifying variation is to limit the length of paths used
to determine the new deviations. For example, we can define δ̃ij as the
minimum sum of original deviations over all paths between i and j of
length up to L. The parameter L would be chosen experimentally.

Example. As a simple example, we use this preprocessing step to
create MDE problems for visualizing graphs (similar to the examples
in §2.5). Figure 4.6 plots standardized embeddings of a chain graph, a
cycle graph, a star graph, and a binary tree on n = 20 vertices, obtained
by solving MDE problems with the weighted quadratic loss and original
distances δij given by the graph distance.

4.3.3 Other methods

Preprocessing based on shortest path distances and neighborhoods are
readily combined. As an example, we might first sparsify the original
data, forming a neighborhood graph. Then we define distortion functions
as fij(dij) = d2

ij if (i, j) is a pair of neighbors, and fij = (1/2)d2
ij if (i, j)

have distance two on the neighborhood graph.
Another natural preprocessing step is based on preference data. Here,

we are given a set of comparisons between items. This kind of data is
often readily available (e.g., surveys), though we mention the literature
on preference elicitation (Schouten et al., 2013) and aggregation (Arrow,
1950; Bradley and Terry, 1952; Plackett, 1975; Luce, 2012; Fligner and
Verducci, 1986) is rich and goes back centuries (Easley and Kleinberg,
2010), with a number of advances continuing today (Joachims, 2002;
Dwork et al., 2001; Von Ahn and Dabbish, 2008). As a simple example,
imagine we have a set of rankings, expressing whether item i is preferred
to item j. In this case, it can make sense to set the deviations δij to any
increasing function of the average distance between the ranks of items i

and j. As another example, we might have a set of survey responses, and
some of these responses might indicate items i and j are more similar
to each other than they are to item k. There are many ways to create
weights from these kinds of comparisons. A simple one is to set the
weights wij to the number of times items i and j are indicated as the
most similar pair, minus the number of times they are not. Thus, Esim
contains all pairs with wij ≥ 0, while Edis contains those with wij < 0.

58 Distortion Functions

−1 0 1

−2

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Figure 4.6: Graph layout with weighted quadratic loss. Standardized embeddings of
a chain graph, a cycle graph, a star graph, and a binary tree, using the weighted
quadratic loss derived from graph distances, with κ(δ) = 1/δ2.

Evidently there are many reasonable preprocessing steps that can
be used. As in feature engineering for machine learning, there is some
art in the choice of preprocessing. But also as in feature engineering, a
few simple preprocessing steps, such as the ones described above, often
work very well.

Part II

Algorithms

5
Stationarity Conditions

In this chapter we give conditions for an embedding X ∈ X ⊆ Rn×m to
be stationary for MDE problems with differentiable average distortion;
these conditions are necessary, but not sufficient, for an embedding to
be optimal. The stationarity conditions presented here will guide our de-
velopment of algorithms for computing minimum-distortion embeddings,
as we will see in the next chapter.

The stationarity conditions can be expressed as a certain matrix
G ∈ Rn×m being zero. This matrix G is the projection of the gradient
∇E(X) onto the (negative) tangent cone of X at X, and it will play a
crucial rule in the algorithms presented in Chapter 6. We give explicit
expressions for G for the constraint sets C (2.3), A (2.4), and S (2.5),
in §5.1, §5.2. §5.3.

Below, we develop and explain this simple stationarity condition,
interpreting −G as the steepest feasible descent direction for E at X

for the constraint X ∈ X . We start by giving an expression for the
gradient of E.

60

61

Gradient. The gradient of the average distortion is

∇E(X) = (1/p)ACAT X, C = diag(f ′
1(d1)/d1, . . . , f ′

p(dp)/dp),
(5.1)

when dk > 0 for all k, i.e., xi ̸= xj for (i, j) ∈ E ; here, A ∈ Rn×p is
the incidence matrix (2.2). The average distortion is differentiable for
all embeddings if f ′

k(0) = 0 for k = 1, . . . , p. In this case we replace
f ′

k(dk)/dk with f ′′
k (0) in our expression for C when dk = 0. In the sequel

we will ignore these points of nondifferentiability, which do not arise in
practice with reasonable choices of distortion functions.

We observe that if the distortion functions are nondecreasing, i.e.,
the objective is attractive, the matrix C has nonnegative entries, and
the matrix ACAT is a Laplacian matrix for a graph (V, E) with edge
weights given by the diagonal of C.

Tangents. A matrix V ∈ Rn×m is tangent to X at X ∈ X if for small
h,

dist(X + hV, X) = o(h),

where dist is the Euclidean distance of its first argument to its second.
We write TX(X) to denote the set of tangents to X at X. For smooth
constraint sets, such as C, A, and S, this set is a subspace; more generally,
it is a cone. In the context of optimization algorithms, a direction
V ∈ TX(X) is called a feasible direction at X, for the constraint X ∈ X .

Feasible descent directions. The first-order Taylor approximation of
E(X + V) at X is

Ê(X + V ; X) = E(X) + tr(∇E(X)T V),

where the term tr(∇E(X)T V) is the directional derivative of E at X

in the direction V . The directional derivative gives the approximate
change in E for a small step V ; the direction V is a descent direction if
tr(∇E(X)T V) < 0, in which case Ê(X + V ; X) < E(X) for small V

(Boyd and Vandenberghe, 2004, §9.4). A direction V is called a feasible
descent direction if it is a feasible direction and a descent direction, i.e.,

V ∈ TX(X), tr(∇E(X)T V) < 0.

62 Stationarity Conditions

This defines a cone of feasible descent directions. It is empty if X ∈ X is
a stationary point for the MDE problem. (We mention that the negative
gradient is evidently a descent direction for E, but it is not necessarily
feasible for the constraint.)

Steepest feasible descent direction. The steepest feasible descent
direction (with respect to the Frobenius norm) is defined as the (unique)
solution of the problem

minimize tr(∇E(X)T V) + 1
2∥V ∥2

F

subject to V ∈ TX(X) (5.2)

(see Hiriart-Urruty and Lemaréchal (1993, chapter VIII, §2.3)). When
the solution is 0, the cone of feasible descent directions is empty, i.e., X

is a stationary point of the MDE problem. We will denote the steepest
feasible descent direction as −G. (We use the symbol G since when
X = Rn×m, it coincides with the gradient ∇E(X).)

Projected gradient. We can express the (negative) steepest feasible
descent direction as

G = ΠTX
(∇E(X)),

the Euclidean projection of the gradient ∇E(X) onto the (negative)
tangent cone of X at X. That is, G is the solution of

minimize 1
2∥∇E(X) − V ∥2

F

subject to V ∈ −TX(X),

We will refer to G as the projected gradient of E at X ∈ X . When the
set of tangents to X at X is a subspace, the constraint can be written
more simply as V ∈ TX(X).

Stationarity condition. The stationarity condition for a constrained
MDE problem is simply

G = 0. (5.3)
This condition is equivalent to the well-known requirement that the
negative gradient of the objective lie in the normal cone of the constraint
set at X (Nocedal and Wright, 2006, §12.7).

5.1. Centered MDE problems 63

Stopping criterion. The stationarity condition (5.3) leads to a natural
stopping criterion for iterative optimization algorithms for the MDE
problem. We can interpret G as a residual for the optimality condition;
algorithms should seek to make the Frobenius norm of the residual very
small, if not exactly 0. This suggests the termination condition

∥G∥F ≤ ϵ, (5.4)

where ϵ is a given threshold or tolerance. The threshold ϵ can be a small
constant, such as 10−5, or it may depend on problem parameters such
as n, m, or p.

We use the stopping criterion (5.4) for the algorithm we present in
Chapter 6. Of course, a stationary embedding need not be a global or
even local minimum, but we find that using this stopping criterion (along
with our algorithm) consistently yields good embeddings in practice, as
long as the MDE problem is well-posed.

In the following sections we derive explicit expressions for the tangent
space TX(X), and the projected gradient G, at a point X, for our three
specific constraint sets C, A, and S. We also derive expressions for the
optimal dual variables, though we will not use these results in the sequel.
We start each section by recalling the definition of the constraint set
(the definitions were given in §2.4).

5.1 Centered MDE problems

The set of centered embeddings is

C = {X | XT 1 = 0}.

The tangent space of C is the set of centered directions,

TX(C) = {V | V T 1 = 0}.

From the expression (5.1) for the gradient, it can be seen that ∇E(X) ∈
TX(C) for X ∈ C. Therefore, the projection onto the tangent space is
the identity mapping, i.e.,

ΠTX
(∇E(X)) = ∇E(X), (5.5)

64 Stationarity Conditions

yielding the familiar stationarity condition

G = ∇E(X) = 0. (5.6)

In the mechanical interpretation, the rows of the gradient ∇E(X) =
1/p(ACAT X) are the net force on the points due to the springs, and
the stationarity condition (5.6) says that the points are at equilibrium.
To see this, note that the matrix CAT X gives the forces between items
incident to the same edge. The p rows of CAT X are

f ′
k(dk)

xi(k) − xj(k)
dk

, k = 1, . . . , p

i.e., xi(k) experiences a force of magnitude |f ′
k(dk)| in the direction

sign(f ′
k(dk))(xi(k) − xj(k))/dk, due to its connection to xj(k).

5.2 Anchored MDE problems

The set of anchored embeddings is

A = {X | xi = xgiven
i , i ∈ K},

where K ⊆ V is the index set of anchored vertices. The tangent space
of an anchor constraint set A at a point X ∈ A is the set of directions
that preserve the values of the anchors, i.e.,

TX(A) = {V | vi = 0, i ∈ K},

where vT
1 , vT

2 , . . . , vT
n are the rows of V . The projection onto the tangent

space zeros out the rows corresponding to the anchors:

ΠTX
(∇E(X)) = P∇E(X), P =


pT

1
pT

2
...

pT
n

 , pi =

ei i ̸∈ K
0 otherwise,

(5.7)
where P ∈ Rn×n is a masking matrix and ei ∈ Rn is the ith standard
basis vector. Therefore, the stationarity condition

G = P∇E(X) = 0 (5.8)

says that the rows of the gradient corresponding to the free vertices
must be zero.

5.3. Standardized MDE problems 65

5.2.1 Dual variables

The stationarity condition (5.8) can also be seen via Lagrange multipliers.
A simple calculation shows that for a stationary embedding X ∈ A,
the optimal dual variables λi ∈ Rm (associated with the constraints
xi = xgiven

i) must satisfy

λi = −∇E(X)i.

In the mechanical interpretation of an MDE problem, the dual variables
λi are the forces on the anchored vertices due to the constraint X ∈ A.

5.3 Standardized MDE problems

The set of standardized embeddings is

S = {X | (1/n)XT X = I, XT 1 = 0}.

The tangent space to S at X ∈ S is the subspace

TX(S) = {V | V T 1 = 0, XT V + V T X = 0},

as can be seen by differentiating the constraint (1/n)XT X = I. The
projected gradient G of E at X ∈ S is therefore the solution to the
linearly constrained least squares problem

minimize 1
2∥∇E(X) − V ∥2

F

subject to V T 1 = 0, V T X + XT V = 0,
(5.9)

with variable V ∈ Rn×m. This problem has the simple solution

ΠTX
(∇E(X)) = ∇E(X) − (1/n)X∇E(X)T X. (5.10)

This means that X ∈ S is stationary for a standardized MDE problem
if

G = ∇E(X) − (1/n)X∇E(X)T X = 0. (5.11)
The solution (5.10) is readily derived with Lagrange multipliers. The

Lagrangian of (5.9) is

L(V, Λ) = 1
2(∥∇E(X)∥2

F − 2 tr(∇E(X)T V) + ∥V ∥2
F)

+ tr(ΛT (V T X + XT V)),

66 Stationarity Conditions

where Λ ∈ Rm×m is the multiplier (we do not need a multiplier for the
centering constraint XT 1 = 0, since it can be imposed without loss of
generality). The optimal V and Λ must satisfy

∇V L(V, Λ) = −∇E(X) + V + X(ΛT + Λ) = 0.

Using V T X + XT V = 0 and (1/n)XT X = I, we obtain ΛT + Λ =
(1/n)∇E(X)T X, from which (5.10) follows. From the expression of the
gradient (5.1) and the fact that XT 1 = 0, it is easy to check that G

satisfies GT 1 = 0.

5.3.1 Dual variables

We can directly derive the stationarity condition (5.11) using Lagrange
multipliers, without appealing to the projected gradient. The Lagrangian
of the MDE problem with standardization constraint is

L(X, Λ) = E(X) + (1/n) tr(ΛT (I − XT X)),

where Λ = ΛT ∈ Rm×m is the Lagrange multiplier associated with
the constraint I − (1/n)XT X = 0 (again, we omit a multiplier for the
centering constraint). The optimal multiplier Λ must satisfy

∇XL(X, Λ) = ∇E(X) − (2/n)XΛ = 0. (5.12)

Multiplying by XT on the left and using (1/n)XT X = I yields

Λ = 1
2∇E(X)T X = 1

2p
XT ACAT X. (5.13)

Substituting this expression for Λ into (5.12), we obtain the stationarity
condition (5.11).

We can interpret the rows of −(2/n)XΛ as the forces put on the
points by the constraint X ∈ S. The stationarity condition (5.11) is
again that the total force on each point is zero, including both the
spring forces from other points, and the force due to the constraint
X ∈ S.

Finally, we observe that the multiplier Λ satisfies the interesting
property

tr(Λ) = 1
p

tr(XT ACAT X)/2 = 1
p

p∑
k=1

f ′
k(dk)dk/2.

5.3. Standardized MDE problems 67

In other words, tr(Λ) equals the average distortion of an MDE problem
with distortion functions f̃k(dk) = f ′

k(dk)dk/2 (and the same items
and pairs as the original problem). When the distortion functions are
weighted quadratics, this MDE problem coincides with the original one,
i.e., tr(Λ) = E(X).

Quadratic problems. For quadratic MDE problems, which were stud-
ied in Chapter 3, the matrix (1/2)ACAT is the matrix L, so from (5.13)
the optimal dual variable satisfies

LX = (p/n)XΛ.

Substituting the optimal value of X into this equation, we see that the
optimal dual variable is diagonal, and its entries are eigenvalues of L.
In particular,

Λ = (n/p) diag(λ1, . . . , λm)

for j > m, or

Λ = (n/p) diag(λ1, . . . , λj−1, λj+1, . . . , λm+1).

for j ≤ m. Notice that in both cases, tr(Λ) = E(X).

6
Algorithms

MDE problems are generally intractable: there are no efficient algorithms
for finding exact solutions, except in special cases such as when the
distortion functions are quadratic, as described in Chapter 3, or when the
distortion functions are convex and nondecreasing and the embedding
is anchored. In this chapter we describe two heuristic algorithms for
approximately solving MDE problems. The first algorithm is a projected
quasi-Newton algorithm, suitable for problems that fit in the memory
of a single machine. The second algorithm is a stochastic method that
builds on the first to scale to much larger problems. While we cannot
guarantee that these algorithms find minimum-distortion embeddings,
in practice we observe that they reliably find embeddings that are good
enough for various applications.

We make a few assumptions on the MDE problem being solved. We
assume that the average distortion is differentiable, which we have seen
occurs when the embedding vectors are distinct. In practice, this is
almost always the case. We have also found that the methods described
in this chapter work well when this assumption does not hold, even
in the case when the distortion functions themselves are nondifferen-
tiable.

68

6.1. A projected quasi-Newton algorithm 69

Our access to E is mediated by a first-order oracle: we assume that
we can efficiently evaluate the average distortion E(X) and its gradient
∇E(X) at any X ∈ X . Additionally, we also assume that projections
onto the tangent cone and constraint set exist, and that the associated
projection operators ΠTX

(Z) and ΠX (Z) can be efficiently evaluated
for Z ∈ Rn×m. Our algorithms can be applied to any MDE problem
for which these four operations, evaluating E, ∇E, ΠTX

, and ΠX , can
be efficiently carried out. We make no other assumptions.

We describe the projected quasi-Newton algorithm in §6.1. The
algorithm is an iterative feasible descent method, meaning that it
produces a sequence of iterates Xk ∈ X , k = 0, 1, . . ., with E(Xk)
decreasing. In §6.2 we describe a stochastic proximal method suitable
for very large MDE problems, with billions of items and edges. This
method uses the projected quasi-Newton algorithm to approximately
solve a sequence of smaller, regularized MDE subproblems, constructed
by sampling a subset of the edges. Unlike traditional stochastic methods,
we use very large batch sizes, large enough to fill the memory of the
hardware used to solve the subproblems. We will study the performance
of our algorithms when applied to a variety of MDE problems, using a
custom software implementation, in the following chapter.

6.1 A projected quasi-Newton algorithm

In this section we describe a projected quasi-Newton method for ap-
proximately solving the MDE problem

minimize E(X)
subject to X ∈ X ,

with matrix variable X ∈ Rn×m.
Each iteration involves computing the gradient ∇E(Xk) and its

projection Gk = ΠTX
(∇E(Xk)) onto the tangent space (or cone) of the

constraint set at the current iterate. A small history of the projected
gradients is stored, which is used to generate a quasi-Newton search
direction Vk. After choosing a suitable step length tk via a line search,
the algorithm steps along the search direction, projecting Xk + tkVk

onto X to obtain the next iterate. We use the stopping criterion (5.4),

70 Algorithms

terminating the algorithm when the residual norm ∥Gk∥F is sufficiently
small (or when the iteration number k exceeds a maximum iteration
limit). We emphasize that this algorithm can be applied to any MDE
problem for which we can efficiently evaluate the average distortion, its
gradient, and the operators ΠTX

and ΠX .
Below, we explain the various steps of our algorithm. Recall that

we have already described the computation of the gradient ∇E(X),
in (5.1); likewise, the projected gradients for these constraint sets are
given in (5.5), (5.7), and (5.10). We first describe the computation
of the quasi-Newton search direction Vk and step length tk in each
iteration. Next we describe the projections onto the constraint sets C,
A, and S. In all three cases the overhead of computing the projections
is negligible compared to the cost of computing the average distortion
and its gradient. Finally we summarize the algorithm and discuss its
convergence.

6.1.1 Search direction

In each iteration, the quasi-Newton search direction Vk is computed
using a procedure that is very similar to the one used in the limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (No-
cedal, 1980), except we use projected gradients instead of gradients. For
completeness, we briefly describe the algorithm here; a more detailed
discussion (in terms of gradients) can be found in Nocedal and Wright
(2006, §7.2). In what follows, for a matrix X ∈ Rn×m, we write vec X

to denote its representation as a vector in Rnm containing the entries
of X in some fixed order.

In iteration k, the search direction Vk is computed as

vec Vk = −B−1
k vec Gk, (6.1)

where Bk ∈ Snm
++ is a positive definite matrix. In particular, B−1

k is
given by the recursion

B−1
j+1 =

(
I −

sjyT
j

yT
j s

)
B−1

j

(
I −

yjsT
j

yT
j sj

)
+

sjsT
j

yT
j sj

, j = k − 1, . . . , k − M,

(6.2)

6.1. A projected quasi-Newton algorithm 71

using Bk−M = γkI; the positive integer M is the memory size, and

sj = vec(Xj+1 − Xj), yj = vec(Gj+1 − Gj), γk =
yT

k−1sk−1

yT
k−1yk−1

.

When M ≥ k and X = Rn×m, the matrix Bk is the BFGS approxima-
tion to the Hessian of E (viewed as a function from Rnm to R), which
satisfies the secant condition Bksk−1 = yk−1 (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970). More generally, Bk approximates
the curvature of the restriction of E to X . In practice the matrices B−1

k

are not formed explicitly, since the matrix-vector product B−1
k vec Gk

can be computed in O(nmM) + O(M3) time (Nocedal and Wright,
2006, §7.2). (The memory M is typically small, on the order of 10, so
the second term is usually negligible.)

After computing the search direction, we form the intermediate
iterate

Xk+1/2 = Xk + tkVk,

where tk > 0 is a step length. The next iterate is obtained by projecting
the intermediate iterate onto X , i.e.,

Xk+1 = ΠX (Xk+1/2).

We mention for future reference that the intermediate iterates satisfy

Xk+1/2 ∈ Xk + span{Gk, Gk−1, . . . , Gk−m, sk−1, . . . , sk−m}. (6.3)

(see Jensen and Diehl (2017, §A2)). Note in particular that if G1, G2, . . . ,

Gk and X1, X2, . . . , Xk are all centered, then Xk+1/2 is also centered
(i.e., XT

k+1/21 = 0).
We choose the step length tk via a line search, to satisfy the modified

strong Wolfe conditions

E(ΠX (Xk+1/2)) ≤ E(Xk) + c1tk tr(GT
k Vk),

| tr(GT
k+1Vk))| ≤ c2| tr(GT

k Vk)|,
(6.4)

where 0 < c1 < c2 < 1 are constants (typical values are c1 = 10−4 and
c2 = 0.9) (Nocedal and Wright, 2006, chapter 3). Since B−1

k is positive
definite, tr(GT

k Vk) = tr(GT
k B−1

k Gk) < 0; this guarantees the descent
condition, i.e., E(Xk+1) < E(Xk). There are many possible ways to

72 Algorithms

find a direction satisfying these conditions; for example, the line search
described by Nocedal and Wright (2006, §3.5) may be used. Typically,
the step length tk = 1 is tried first. After a few iterations, tk = 1 is
usually accepted, which makes the line search inexpensive in practice.

Finally, we note that unlike Gk, the search direction Vk is not
necessarily a tangent to X at Xk. While algorithms similar to ours
require the search directions to be tangents (e.g., Huang et al. (2017)
and Hosseini et al. (2018)), we find that this is unnecessary in practice.

6.1.2 Projection onto constraints

The next iterate Xk+1 is obtained by projecting Xk+1/2 = Xk + tkVk

onto the constraint set X , i.e.,

Xk+1 = ΠX (Xk+1/2).

We will see below that the projections onto C and A are unnecessary,
since Xk+1/2 ∈ X when X = C or X = A. We will then describe how to
efficiently compute the projection ΠS .

Centered embeddings. As long as the first iterate X0 satisfies XT
0 1 =

0, then the intermediate iterates Xk+1/2 also satisfy XT
k+1/21 = 0. To

see this, first note that if XT 1 = 0, then ∇E(X)T 1 = 0; this can be
seen from the expression (5.1) for the gradient. Since G = ∇E(X) for
unconstrained embeddings, if Xk is centered, from (6.3) it follows that
Xk+1/2 ∈ C. For this reason, for the constraint X ∈ C, we can simply
take

Xk+1 = Xk+1/2.

Anchored embeddings. As was the case for centered embeddings, pro-
vided that Xk ∈ A, Xk+1/2 ∈ A as well, so the projection is unnecessary.
This is immediate from the expression (5.7) for the projected gradient
G, which is simply the gradient with rows corresponding to the anchors
replaced with zero.

Standardized embeddings. A projection of Z ∈ Rn×m onto S is any
X ∈ S that minimizes ∥X − Z∥2

F . (Since S is nonconvex, the projection

6.1. A projected quasi-Newton algorithm 73

can be non-unique; a simple example is Z = 0, where any X ∈ S is a
projection.) In the sequel, we will only need to compute a projection for
Z satisfying ZT 1 = 0 and rank Z = m. For such Z, the projection onto
S is unique and can be computed from the singular value decomposition
(SVD), as follows.

Let Z = UΣV T denote the SVD of Z, with U ∈ Rn×m, UT U = I,
Σ ∈ Rm×m diagonal with nonnegative entries, and V ∈ Rm×m, V T V =
I. The projection is given by

ΠS(Z) =
√

nUV T . (6.5)

To see this, we first observe that the matrix ΠS(Z) is the projection of
Z onto the set {X ∈ Rn×m | (1/n)XT X = I}; this fact is well known
(see e.g., (Fan and Hoffman, 1955), (Higham, 1989, §4) or (Absil and
Malick, 2012, §3)), and it is related to the orthogonal Procrustes problem
(Schönemann, 1966). To show that ΠS(Z) is in fact the projection onto
S, it suffices to show that ΠS(Z)T 1 = 0. From ZT 1 = 0, it follows that
the vector 1 is orthogonal to the range of Z. Because rank Z = m, the
m columns of U form a basis for the range of Z. This means UT 1 = 0
and in particular ΠS(Z)T 1 =

√
nV UT 1 = 0. It is worth noting that the

projection (6.5) is inexpensive to compute, costing only O(nm2) time;
in most applications, m ≪ n.

We now explain why just considering centered and full rank Z is
sufficient. Note from (5.10) that GT

k 1 = 0, for k = 1, 2, . . .; therefore,
from (6.3), we see that Xk+1/2 is centered as long as the initial iterate
is centered. Since the rank of a linear transformation is preserved under
small perturbations and rank X = m for any X ∈ S, the intermediate
iterate Xk+1/2 will be full rank provided that the step size tk is not too
large.

From (6.5), it follows that Frobenius distance of Z to S is given by

dist(Z, S) = ∥Z − Π(Z)∥F =
(

m∑
i=1

(σi −
√

n)2
)1/2

,

where σi are the diagonal entries of Σ, i.e., the singular values of Z.

6.1.3 Algorithm summary

Algorithm 1 below summarizes our projected L-BFGS method.

74 Algorithms

Algorithm 1 Projected L-BFGS method
given an initial point X0 ∈ X , maximum iterations K, memory size M ,
tolerance ϵ > 0.
for k = 0, . . . , K

1. Projected gradient. Compute projected gradient Gk =
ΠTXk

(∇E(Xk)).
2. Stopping criterion. Quit if ∥Gk∥F ≤ ϵ.
3. Search direction. Compute the quasi-Newton search direction Vk, as

in (6.1).
4. Line search. Find step length tk satisfying the modified Wolfe condi-

tions (6.4).
5. Update. Xk+1 := ΠX (Xk + tkVk).

Our method is nearly parameter-free, except for the memory size
M , which parametrizes the computation of Vk in step 3, and possibly
some parameters in the particular line search algorithm used. We have
empirically found that a small M , specifically M = 10, works well across
a wide variety of problems, and that the line search parameters have
very little effect. Additionally, the algorithm appears to be fairly robust
to the choice of the initial iterate X0, which may be chosen randomly
or by a heuristic, such as initializing at a spectral embedding (projected
onto X).

Practical experience with our algorithm suggests that the use of
projected gradients Gk, instead of the gradients ∇E(Xk), is important.
In our experiments, our algorithm substantially decreases the time (and
iterations) to convergence compared to standard gradient and L-BFGS
implementations equipped with only ΠX (but not ΠTX

). We show an
example of this in §7.1, Figure 7.2.

Convergence. The MDE problem is in general nonconvex, so we
cannot guarantee that Algorithm 1 will converge to a global solution.
Nonetheless, we have found that it reliably finds good embeddings in
practice when applied to the constraint sets C, A, and S. When we have

6.2. A stochastic proximal algorithm 75

applied the method to quadratic MDE problems, it has always found a
global solution.

There is a large body of work studying optimization with orthog-
onality constraints (e.g., over the Stiefel manifold), which are closely
related to the standardization constraint. See, for example, Edelman
et al. (1998), Manton (2002), Absil et al. (2009), Absil and Malick
(2012), Jiang and Dai (2015), Huang et al. (2015), Huang et al. (2018),
Hu et al. (2019), and Chen et al. (2020). In particular, methods similar
to Algorithm 1 have been shown to converge to stationary points of
nonconvex functions, when certain regularity conditions are satisfied (Ji,
2007; Ring and Wirth, 2012; Huang et al., 2015; Huang et al., 2018).

Computational complexity. Each iteration of Algorithm 1 takes O(mp+
nmM)+O(M3) work, plus any additional work required to compute the
projected gradient and the projection onto X . Computing the average
distortion and its gradient contributes O(mp) work, and computing
the search direction contributes O(nmM) + O(M3). The overhead due
to the projections is typically negligible; indeed, the overhead is zero
for centered and anchored embeddings, and O(nm2) for standardized
embeddings.

In most applications, the embedding dimension m is much smaller
than n and p. Indeed, when an MDE problem is solved to produce a
visualization, m is just 2 or 3; when it is used to compute features,
it is usually on the order of 100. In these common cases, the cost
of each iteration is dominated by the cost of computing the average
distortion and its gradient, which scales linearly in the number of pairs
p. Suppressing the dependence on m and M (which we can treat as
the constant 10), the cost per iteration is just O(p). For some special
distortion functions, this cost can be made as small as O(n log n) or O(n),
even when p = n(n − 1)/2, using fast multipole methods (Greengard
and Rokhlin, 1987; Beatson and Greengard, 1997).

6.2 A stochastic proximal algorithm

Building on the projected L-BFGS method described in the previous
section, here we describe a simple scheme to approximately solve MDE

76 Algorithms

problems with a number of distortion functions p too large to handle
all at once. It can be considered an instance of the stochastic proximal
iteration method (see, e.g., (Ryu and Boyd, 2014; Asi and Duchi, 2019)),
which uses much larger batch sizes than are typically used in stochastic
optimization methods. (Stochastic proximal iteration is itself simply a
stochastic version of the classical proximal point algorithm (Martinet,
1970; Rockafellar, 1976).) In each iteration, or round, we randomly
choose a subset of pbatch of the original p distortion functions and (after
the first round) approximately solve a slightly modified MDE problem.

In the first round, we approximately solve the MDE problem corre-
sponding to the sampled distortion functions using Algorithm 1, and we
denote the resulting embedding as X0. (We used superscripts here to
denote rounds, to distinguish them from Xk, which are iterates in the
methods described above.) In round k, k = 1, 2, . . ., we randomly choose
a set of pbatch distortion functions, which gives us average distortion Ek,
and approximately solve the MDE problem with an additional proximal
term added to the objective, i.e.

Ek(X) + ck

2 ∥X − Xk−1∥2
F , (6.6)

where c is a hyper-parameter (we discuss its selection below). We denote
the new embedding as Xk. The second term in the objective, referred
to as a proximal term (Parikh and Boyd, 2014), encourages the next
embedding to be close to the one found in the previous round. In
computing Xk in round k, we can warm-start the iterative methods
described above by initializing X as Xk−1. This can result in fewer
iterations required to compute Xk.

When the objective and constraints are convex and satisfy some
additional conditions, this algorithm can be proved to converge to a
solution of the original problem. However, in an MDE problem, the
objective is generally not convex, and for the standardized problem, nor
is the constraint. Nevertheless we have found this method to reliably
find good embeddings for problems with more edges than can be directly
handled in one solve. The algorithm is outlined below.

6.2. A stochastic proximal algorithm 77

Algorithm 2 Stochastic method for MDE problems with large p.

given a batch size pbatch < p, iterations K.
for k = 0, . . . , K

1. Select a batch of edges. Randomly select a batch of pbatch distortion
functions, which defines average distortion Ek.

2. First iteration. If k = 0, solve the MDE problem with objective Ek

to get embedding X0.
3. Subsequent iterations. If k > 0, solve the MDE problem using the

batch, with additional objective term as in (6.6), to get Xk.

Hyper-parameter selection. The empirical convergence rate of the
algorithm is sensitive to the choice of hyper-parameter c. If c is too
big, we place too much trust in the iterate X0 obtained by the first
round, and the algorithm can make slow progress. If c is too small, the
algorithm oscillates between minimum-distortion embeddings for each
batch, without converging to a suitable embedding for all p distortion
functions. For this reason, the selection of c is crucial.

The hyper-parameter can be chosen in many ways, including manual
experimentation. Here we describe a specific method for automatically
choosing a value of c, based on properties of the MDE problem being
solved. We find this method works well in practice. The method chooses

c = tr(∇2E0(X0))
λnm

where λ ∈ R is a parameter (we find that the choice λ = 10 works well).
This choice of c can be interpreted as using a diagonal approximation
of the Hessian of E0 at X0, i.e.,

∇2E0(X0) ≈ cI.

In our implementation, instead of computing the exact Hessian ∇2E0(X0),
which can be intractable depending on the size of n and m, we approxi-
mate it using randomized linear algebra and Hessian-vector products.
We specifically use the Hutch++ algorithm (Meyer et al., 2020), a recent

78 Algorithms

method based on the classical Hutchinson estimator (Hutchinson, 1989).
This algorithm requires a small number q of Hessian-vector products,
and additionally O(mq2) time to compute a QR decomposition of an
m × q/3 matrix. Using modern systems for automatic differentiation,
these Hessian-vector products can be computed efficiently, without stor-
ing the Hessian matrix in memory. For our application, q = 10 suffices,
making the cost of computing c negligible.

7
Numerical Examples

In this chapter we present numerical results for several MDE problems.
The examples are synthetic, meant only to illustrate the performance
and scaling of our algorithms. The numerical results in this chapter were
produced using a custom implementation of our solution algorithms.
We first present the numerical examples; the implementation, which
we have packaged inside a high-level Python library for specifying and
solving MDE problems, is presented in §7.4.

In the first set of examples we apply the projected quasi-Newton
algorithm (Algorithm 1) to quadratic MDE problems. Using a specialized
solver for eigenproblems, which can solve quadratic MDE problems
globally, we verify that our method finds a global solution in each
example. We also compare our algorithm to standard methods for
smooth constrained optimization, which appear to be much less effective.
The problems in this section are of small to medium size, with no more
than one million items and ten million edges.

Next, in §7.2, we apply Algorithm 1 to small and medium-size (non-
quadratic) MDE problems derived from weights, with constraint sets
C, A, and S. We will see that the overhead incurred in handling these
constraints is negligible.

79

80 Numerical Examples

In §7.3 we apply the stochastic proximal method (Algorithm 2)
to two MDE problems, one small and one very large. We verify that
the method finds nearly optimal embeddings for the small problem,
makes progress on the very large one, and is robust across different
initializations for both.

Experiment setup. All examples were solved with the default param-
eters of our implementation. In particular, we used a memory size of
10, and terminated the projected quasi-Newton algorithm when the
residual norm fell below 10−5. Experiments were run on a computer
with an Intel i7-6700K CPU (which has 8 MB of cache and four physical
cores, eight virtual, clocked at 4 GHz), an NVIDIA GeForce GTX 1070
GPU (which has 8 GB of memory and 1920 cores at 1.5 GHz), and 64
GB of RAM.

7.1 Quadratic MDE problems

In this first numerical example we solve quadratic MDE problems with
weights wij = 1 for (i, j) ∈ E . (Recall that a quadratic MDE problem,
studied in Chapter 3, has distortion functions fij(dij) = wijd2

ij , and
the constraint X ∈ S.) The edges are chosen uniformly at random by
sampling p = |E| unique pairs of integers between 1 and n(n − 1)/2,
and converting each integer to a pair (i, j) (1 ≤ i < j ≤ n) via a simple
bijection. We solve two problem instances, a medium size one with
dimensions

n = 105, p = 106, m = 2

and a large one with dimensions

n = 106, p = 107, m = 2.

The medium size problem is solved on a CPU, and the large one is
solved on a GPU.

Figure 7.1 plots the residual norm ∥Gk∥F of the projected L-BFGS
method (Algorithm 1) when applied to these problems, against both
elapsed seconds and iterations. On a CPU, it takes 55 iterations and
3 seconds to reach a residual norm of 10−5 on the first problem, over

7.1. Quadratic MDE problems 81

which the average distortion is decreased from an initial value of 4.00 to
0.931. On a GPU, it takes 33 iterations and 4 seconds to reach the same
tolerance on the second problem, over which the average distortion is
decreased from 4.00 to 0.470.

0.5 1.0 1.5 2.0 2.5 3.0
seconds

10−2

10−3

10−4

10−5

re
si

d
u

al
n

or
m
‖G
‖ F

n = 105, p = 106, m = 2 (CPU)

0 10 20 30 40 50
iteration

1.0 1.5 2.0 2.5 3.0 3.5 4.0
seconds

10−2

10−3

10−4

10−5

re
si

d
u

al
n

or
m
‖G
‖ F

n = 106, p = 107, m = 2 (GPU)

0 10 20 30
iteration

Figure 7.1: Residual norm versus iterations (top horizontal axis) and time (bottom
horizontal axis) for the projected L-BFGS algorithm. Top. Medium size problem
instance. Bottom. Large problem instance.

These quadratic MDE problems can be solved globally as eigenvalue
problems, as described in Chapter 3. We solve the two problem instances
using LOBPCG, a specialized algorithm for large-scale eigenproblems
(Knyazev, 2001). We specifically used scipy.sparse.linalg.lobpcg,

82 Numerical Examples

initialized with a randomly selected standardized matrix, restricted to
search in the orthogonal complement of the ones vector, and limited to a
maximum iteration count of 40. For the medium size problem, LOBPCG
obtained a solution with average distortion 0.932 in 2 seconds; for the
large problem, it gives a solution with average distortion of 0.469 in
17 seconds. We conclude that our algorithm found global solutions for
both problem instances. (We have not encountered a quadratic MDE
problem for which our method does not find a global solution.) We also
note that the compute time of our method is comparable to, or better
than, more specialized methods based on eigendecomposition.

7.1.1 Comparison to other methods

The projected L-BFGS tends to converge to approximate solutions much
faster than simpler gradient-based methods, such as standard gradient
descent, which performs the update Xk+1 = ΠX (Xk − tk∇E(Xk)),
and projected gradient descent, which performs the update Xk+1 =
ΠX (Xk − tkGk). Similarly, our method is much more effective than a
standard L-BFGS method that only projects iterates onto the constraint
set (but does not project the gradients).

To compare these methods, we solved the medium size quadratic
problem instance on a CPU using each method, logging the residual
norm versus elapsed seconds. (We used a standard backtracking-Armijo
linesearch for the gradient methods.) Figure 7.2 shows the results. The
gradient method fails to decrease the residual norm below roughly
3 × 10−4, getting stuck after 66 iterations. The projected gradient
method decreases the residual norm to just below 10−4 after about 8
seconds, but makes very slow progress thereafter. The standard L-BFGS
method performs the worst, taking nearly 30 seconds to reach a residual
norm of 10−3. The projected L-BFGS method finds a global solution,
with 10−5 residual norm, in 3 seconds.

7.1.2 Scaling

To get some idea of how our implementation scales, we solved instances
with a variety of dimensions n, m, and p. We terminated the algorithm
after K = 40 iterations for each solve, noted the solve time, and

7.2. Other MDE problems 83

0 5 10 15 20 25 30 35 40
seconds

10−2

10−3

10−4

10−5

re
si

d
u

al
n

or
m
‖G
‖ F

n = 105, p = 106, m = 2

gradient

L-BFGS

projected gradient

projected L-BFGS

Figure 7.2: Residual norm versus seconds for our algorithm (projected-LBFGS)
and other algorithms, on a medium size quadratic problem instance solved on CPU.

compared the average distortion E(XK) with the average distortion of
a global solution X⋆ obtained using LOBPCG. The results are listed in
Table 7.1. We can see that the scaling of our method is roughly O(mp),
which agrees with our previous discussion on computational complexity
in §6.1. Additionally, for sufficiently large problems, GPU-accelerated
solves are over 10 times faster than solving on CPU. After just 40
iterations, our method is nearly optimal for each problem instance, with
optimality gaps of 0.4 percent or less.

7.2 Other MDE problems

As a second example, we solve MDE problems involving both positive
and negative weights. The edges are chosen in the same way as the
previous example. We randomly partition E into Esim and Edis, and
choose weights wij = +1 for (i, j) ∈ Esim and wij = −1 for (i, j) ∈ Edis.

We use distortion functions based on penalties, of the form (4.1).
We choose the log-one-plus penalty (4.3) for the attractive penalty, and
the logarithmic penalty (4.4) for the repulsive penalty.

84 Numerical Examples

Table 7.1: Embedding time and objective values when solving quadratic problem
instances via Algorithm 1, for K = 40 iterations.

Problem instance dimensions Embedding time (s) Objective values

n p m CPU GPU E(XK) E(X⋆)

103 104 2 0.1 0.4 1.432 1.432
103 104 10 0.2 0.4 7.797 7.795
103 104 100 0.8 1.5 104.5 104.5
104 105 2 0.4 0.4 1.007 1.007
104 105 10 0.7 0.4 6.066 6.065
104 105 100 20.8 2.9 81.12 81.08
105 106 2 2.5 0.6 0.935 0.931
105 106 10 10.5 1.2 5.152 5.137
105 106 100 334.7 15.8 63.61 63.51

As before, we solve problems of two sizes, a medium size one with

n = 105, p = 106, m = 2

and a large one with

n = 106, p = 107, m = 2.

We solve three medium problems and three large problems, with con-
straints X ∈ C, X ∈ A, and X ∈ S. For the anchor constraints, a tenth
of the items are made anchors, with associated values sampled from a
standard normal distribution. The medium size problems are solved on
a CPU, and the large problems are solved on a GPU.

Figure 7.3 plots the residual norm of the L-BFGS methods when
applied to these problems, against both seconds elapsed and iterations;
all problems are solved to a residual norm of 10−5. Note the embedding
times for centered and anchored embeddings are comparable, and the
per-iteration overhead of computing the projections associated with the
standardization constraint is small.

7.2. Other MDE problems 85

0 10 20
seconds

10−2

10−3

10−4

10−5re
si

d
u

al
n

or
m
‖G
‖ F

0 5 10 15
seconds

10−3

10−4

10−5re
si

d
u

al
n

or
m
‖G
‖ F

0 100 200 300
iteration

0 50 100
iteration

0 10 20
seconds

10−2

10−3

10−4

10−5re
si

d
u

al
n

or
m
‖G
‖ F

0 5 10
seconds

10−3

10−4

10−5re
si

d
u

al
n

or
m
‖G
‖ F

0 100 200 300
iteration

0 50 100
iteration

0 10 20 30
seconds

10−2

10−3

10−4

10−5re
si

d
u

al
n

or
m
‖G
‖ F

0 10 20
seconds

10−3

10−4

10−5re
si

d
u

al
n

or
m
‖G
‖ F

0 100 200 300
iteration

0 40 80 120
iteration

Figure 7.3: Residual norm versus iterations (top horizontal axis) and time (bottom
horizontal axis) for the projected L-BFGS algorithm, applied to MDE problems
derived from weights. Top. Centered. Middle. Anchored. Bottom. Standardized. Left.
Medium problem instances (CPU). Right. Large problem instances (GPU).

86 Numerical Examples

7.3 A very large problem

In this third set of examples we use the stochastic proximal method
(Algorithm 2) to approximately solve some quadratic MDE problems.
To show that our method is at least reasonable, we first apply our
method to a small quadratic MDE problem; we solve this MDE problem
exactly, and compare the quality of the approximate solution, obtained
by the stochastic method, to the global solution. Next we apply the
stochastic method to a problem so large that we cannot compute a
global solution, though we can evaluate its average distortion, which
the stochastic method is able to steadily decrease.

In our experiments, we set the hyper-parameter c as

c ≈ tr(∇2E0(X0))
10nm

,

using a randomized method to approximate the Hessian trace, as de-
scribed in §6.2.

A small problem. We apply our stochastic proximal method to a small
quadratic MDE problem of size

n = 103, p = 104, m = 10,

generated in the same fashion as the other quadratic problems. We ap-
proximately solve the same instance 100 times, using a different random
initialization for each run. For these experiments, we use pbatch = p/10,
sample the batches by cycling through the edges in a fixed order, and
run the method for 300 rounds. This means that we passed through the
full set of edges 30 times.

Figure 7.4 shows the average distortion and residual norms versus
rounds (the solid lines are the medians across all 100 runs, and the cone
represents maximum and minimum values). The mean distortion of the
final embedding was 7.89, the standard deviation was 0.03, the max was
7.97, and the min was 7.84; a global solution has an average distortion
of 7.80.

7.3. A very large problem 87

8

10

12

14

16

18

20

av
er

ag
e

d
is

to
rt

io
n
E

(X
)

n = 103, p = 104,m = 100

0 50 100 150 200 250 300
round

10−2

10−1

re
si

d
u

al
n

or
m
‖G
‖ F

Figure 7.4: The stochastic method (Algorithm 2) applied to a small quadratic MDE
problem, with 100 different initializations. Top. Median average distortion versus
rounds, optimal value plotted as a dashed horizontal line. Bottom. Median residual
norm versus rounds.

A very large problem. We approximately solve a very large quadratic
MDE problem, with

n = 105, p = 107, m = 100.

This problem is too large to solve using off-the-shelf specialized solvers
for eigenproblems such as scipy.sparse.linalg.lobpcg. It is also too
large to fit on the GPU we use in our experiments, since storing the

88 Numerical Examples

p × m matrix of differences alone takes roughly 4 GB of memory (and
forming it can take up to 8 GB of memory). While this problem does fit
in our workstation’s 64 GB of RAM, evaluating the average distortion
and its gradient takes 12 seconds, which makes running the full-batch
projected quasi-Newton algorithm on CPU impractical.

We solved a specific problem instance, generated in the same way
as the other quadratic MDE problems. We used pbatch = p/10, sampled
the batches by cycling through the edges in a fixed order, and ran
the stochastic proximal iteration for 40 rounds. We ran 10 trials, each
initialized at a randomly selected iterate. Figure 7.5 shows the median
average distortion and residual norm at each round, across all p pairs. On
our GPU, the 40 rounds took about 10 minutes to complete. The mean
average distortion after 40 rounds was 157.94, the standard deviation
was 0.14, the maximum was 158.21, and the min was 157.71.

7.4 Implementation

We have implemented our solution methods in PyMDE, an object-
oriented Python package for specifying and approximately solving
MDE problems. In addition, PyMDE provides higher-level interfaces
for preprocessing data, visualizing embeddings, and other common
tasks. PyMDE is designed to be simple to use, easily extensible, and
performant.

Our software is open-source, and available at

https://github.com/cvxgrp/pymde.

7.4.1 Design

In this section we briefly describe the design of PyMDE.

Embedding. In our package, users instantiate an MDE object by speci-
fying the number of items n, the embedding dimension m, the list of
edges E , the vector distortion function f , and the constraint set (C, A,
or S). Calling the embed method on this object runs the appropriate
solution method and returns an embedding, represented as a dense
matrix.

https://github.com/cvxgrp/pymde

7.4. Implementation 89

160

170

180

190

200

av
er

ag
e

d
is

to
rt

io
n
E

(X
)

n = 105, p = 107,m = 100

0 5 10 15 20 25 30 35 40
round

10−2

6× 10−3

re
si

d
u

al
n

or
m
‖G
‖ F

Figure 7.5: The stochastic method applied to a very large quadratic MDE problem,
with 10 different initializations.

The distortion function may be selected from a library of functions,
including the functions listed in Chapter 4, but it can also be specified by
the user. We use automatic differentiation (via PyTorch (Paszke et al.,
2019)) to cheaply differentiate through distortion functions. For perfor-
mance, we manually implement the gradient of the average distortion,
using an efficient implementation of the analytical expression (5.1).

90 Numerical Examples

Extensibility. PyMDE can be easily extended, at no performance cost.
Users can simply write custom distortion functions in PyTorch, without
modifying the internals of our package. Likewise, users can implement
custom constraint sets X by subclassing the Constraint class and
implementing (in Python) the projection operators ΠTX

and ΠX .

Performance. On modern CPUs, PyMDE can compute embeddings
for hundreds of thousands of items and millions of edges in just a few
seconds (if the embedding dimension is not too large). On a modest
GPU, in the same amount of time, PyMDE can compute embeddings
with millions of items and tens of millions of edges, as we have seen in
the previous sections.

The most expensive operation in an iteration of Algorithm 1 is
evaluating the average distortion, specifically computing the differences
xi − xj for (i, j) ∈ E . On a CPU, this can become a bottleneck if p

is greater than, say, 106. A GPU can greatly accelerate this computa-
tion. For cases when p is very large and a GPU is unavailable (or has
insufficient memory), we provide an implementation of the stochastic
proximal Algorithm 2.

By default we use single-precision floating point numbers, since we
typically do not need many significant figures in the fractional part of our
embedding. To minimize numerical drift, for centered and standardized
embeddings, we de-mean the iterate at the end of each iteration of
Algorithm 1.

7.4.2 Examples

Here we demonstrate PyMDE with basic code examples.

Hello, world. The below code block shows how to construct and solve
a very simple MDE problem, using distortion functions derived from
weights. This specific example embeds a complete graph on three vertices
using quadratic distortion functions, similar to the simple graph layout
examples from §2.5.

7.4. Implementation 91

import pymde
import torch

n, m = 3, 2
edges = torch.tensor([[0, 1], [0, 2], [1, 2]])
f = pymde.penalties.Quadratic(torch.tensor([1., 2., 3.]))
constraint = pymde.Standardized()

mde = pymde.MDE(
n_items=n,
embedding_dim=m,
edges=edges,
distortion_function=f,
constraint=constraint)

mde.embed()

In this code block, after importing the necessary packages, we
specify the number of items n and the embedding dimension m. Then
we construct the list edges of item pairs; in this case, there are just three
edges, (0, 1), (0, 2), and (1, 2). Next we construct the vector distortion
function f, a quadratic penalty with weight w1 = 1 across the edge
(0, 1), w2 = 2 across (0, 2), and w3 = 3 across (1, 2). Then we create
a standardization constraint. In the last two lines, the MDE problem
is constructed and a minimum-distortion embedding is computed via
the embed method. This method populates the attribute X on the MDE
object with the final embedding. It also writes the distortion and the
residual norm to the attributes value and residual_norm:

print('embedding matrix:\n', mde.X)
print(f'distortion: {mde.value:.4f}')
print(f'residual norm: {mde.residual_norm:.4g}')

92 Numerical Examples

embedding matrix:
tensor([[1.4112, 0.0921],

[-0.6259, -1.2682],
[-0.7853, 1.1761]])

optimal value: 12.0000
residual norm: 1.583e-06

The MDE class has several other methods, such as average_distor-
tion, which computes the average distortion of a candidate embedding,
plot, which plots the embedding when the dimension is one, two, or
three, and play, which generates a movie showing the intermediate
iterates formed by the solution method. Additionally, the embed method
takes a few optional arguments, through which (e.g.) an initial iterate,
the memory size, iteration limit, and solver tolerance can be specified.

Distortion functions. PyMDE’s library of distortion functions includes
all the functions listed in §4.1 and §4.2, among others. Users simply
construct a vector distortion function by passing weights or original
deviations to the appropriate constructor. Every parameter appearing
in a distortion function has a sensible default value (which the user can
optionally override). PyMDE uses single-index notation for distortion
functions, meaning the kth component of the embedding distances
corresponds to the kth row of the list of edges supplied to the MDE
constructor. For example, a quadratic penalty with fk(dk) = wkd2

k can
be constructed with pymde.penalties.Quadratic(weights), while
a quadratic loss with fk(dk) = (dk − δk)2 can be constructed with
pymde.losses.Quadratic(deviations).

For functions derived from both positive and negative weights, we
provide a generic distortion function based on attractive and repulsive
penalties, of the form (4.1). As an example, a distortion function with
a log-one-plus attractive penalty and a logarithmic repulsive penalty
can be constructed as

7.4. Implementation 93

f = pymde.penalties.PushAndPull(weights,
attractive_penalty=pymde.penalties.Log1p,
repulsive_penalty=pymde.penalties.Log)

Users can implement their own distortion functions. These simply
need be Python callables mapping the vector of embedding distances
to the vector of distortions via PyTorch operations. For example, a
quadratic penalty can be implemented as

def f(distances):
return weights * distances**2

and a quadratic loss can be implemented as

def f(distances):
return (deviations - distances)**2

(note the weights and deviations are captured by lexical closure). More
generally, the distortion function may be any callable Python object,
such as a torch.nn.Module.

Constraints. Each MDE object is parametrized by a constraint. PyMDE
currently implements three constraint sets, which can be constructed
using

• pymde.Centered(),

• pymde.Anchored(anchors, values), and

• pymde.Standardized(),

where anchors is a torch.Tensor enumerating the anchors and values
enumerates their values. Custom constraints can be implemented by
subclassing the Constraint class.

Preprocessors. We have implemented all the preprocessors described
in §8.2, in the module pymde.preprocess. These preprocessors can be
used to transform original data and eventually obtain an MDE problem.

94 Numerical Examples

Several of these preprocessors take as input either a data matrix
Y with n rows, with each row a (possibly high dimensional) vector
representation of an item, or a sparse adjacency matrix A ∈ Rn×n

of a graph (wrapped in a pymde.Graph object), with Aij equal to an
original deviation δij between items i and j. For example, the below
code constructs a k-nearest neighborhood graph from a data matrix Y .

graph = pymde.preprocess.k_nearest_neighbors(Y, k=15)

The same function can be used for a graph object, with adjacency
matrix A.

graph = pymde.preprocess.k_nearest_neighbors(
pymde.Graph(A), k=15)

The associated edges and weights are attributes of the returned object.

edges, weights = graph.edges, graph.weights

We have additionally implemented a preprocessor for computing
some or all of the graph distances (i.e., shortest-path lengths), given
a graph. Our (custom) implementation is efficient and can exploit
multiple CPU cores: the algorithm is implemented in C, and we use
multi-processing for parallelism. As an example, computing roughly 1
billion graph distances takes just 30 seconds using 6 CPUs.

Other features. PyMDE includes several other features, including a
stochastic solve method, high-level interfaces for constructing MDE
problems for preserving neighborhoods or distances, visualization tools
and more. The full set of features, along with code examples, is presented
in our online documentation at

https://pymde.org.

https://pymde.org

Part III

Examples

8
Images

In this chapter we embed the well-known MNIST collection of images
(LeCun et al., 1998), given by their grayscale vectors, into R2 or R3.
Embeddings of images in general, into three or fewer dimensions, provide
a natural user interface for browsing a large number of images; e.g.,
an interactive application might display the underlying image when
the cursor is placed over an embedding vector. All embeddings in this
chapter (and the subsequent ones) are computed using the experiment
setup detailed in Chapter 7.

8.1 Data

The MNIST dataset consists of n = 70, 000, 28-by-28 grayscale images
of handwritten digits, represented as vectors in R784, with components
between 0 and 255. Each image is tagged with the digit it depicts.
The digit is a held-out attribute, i.e., we do not use the digit in our
embeddings, which are constructed using only the raw pixel data. We
use the digit attribute to check whether the embeddings are sensible,
as described in §2.6.

96

8.2. Preprocessing 97

8.2 Preprocessing

We use distortion functions derived from weights. The set of similar
pairs Esim holds the edges of a k-nearest neighbor graph, using k = 15;
in determining neighbors, we use the Euclidean distance between image
vectors. (The Euclidean distance is in general a poor global metric on
images, but an adequate local one. Two images with large Euclidean
distance might be similar e.g., if one is a translation or rotation of the
other, but two images with small Euclidean distance are surely similar.)

To compute the nearest neighbors efficiently, we use the approximate
nearest neighbor algorithm from Dong et al. (2011), implemented in
the Python library pynndescent (McInnes, 2020a). Computing the
neighbors takes roughly 30 seconds. The resulting neighborhood graph
is connected and has 774,746 edges. We sample uniformly at random
an additional |Esim| pairs not in Esim to obtain the set Edis of dissimilar
image pairs. We assign wij = +2 if i and j are both neighbors of each
other; wij = +1 if i is a neighbor of j but j is not a neighbor of i (or
vice versa); and wij = −1 for (i, j) ∈ Edis.

8.3 Embedding

We consider two types of MDE problems: (quadratic) MDE problems
based on the neighborhood graph Esim (which has 774,746 edges), and
MDE problems based on the graph Esim ∪ Edis (which has 1,549,492
edges).

8.3.1 Quadratic MDE problems

We solve two quadratic MDE problems on the graph Esim (i.e., MDE
problems with quadratic penalties and a standardization constraint;
the resulting embeddings can be interpreted as Laplacian embeddings,
since the weights are nonnegative). The first problem has embedding
dimension m = 2 and the second has dimension m = 3.

We solve these MDE problems using Algorithm 1. Using PyMDE,
embedding into R2 takes 1.8 seconds on our GPU and 3.8 seconds
on our CPU; embedding into R3 takes 2.6 seconds on GPU and 7.5

98 Images

seconds on CPU. The solution method terminates after 98 iterations
when m = 2 and after 179 iterations when m = 3.

The embeddings are plotted in Figures 8.1 and 8.2, with the em-
bedding vectors colored by digit. In both cases, the same digits are
clustered near each other in the embeddings.

Figure 8.1: Embedding based on Esim (m = 2). An embedding of MNIST, obtained
by solving a quadratic MDE problem derived from a neighborhood graph.

Outliers. The embeddings obtained by solving the quadratic MDE
problem have low average distortion, but some pairs (i, j) have much
larger distortion fij(dij) than others. The cumulative distribution func-
tions (CDFs) of distortions are shown in Figure 8.3. Figure 8.4 plots the

8.3. Embedding 99

Figure 8.2: Embedding based on Esim (m = 3). An embedding of MNIST, obtained
by solving a quadratic MDE problem derived from a neighborhood graph.

images associated with the five pairs in Esim that incurred the highest
distortion, for the embedding into R2. Each column shows a pair of
images. Some of these pairs do not appear to be very similar, e.g., a 1
is paired with a 4. Other pairs include images that are nearly illegible.

100 Images

10−4 10−3 10−2 10−1 100 101

distortion

0.0

0.5

1.0

m = 2

m = 3

Figure 8.3: Distortions. CDF of distortions for the quadratic MDE problem.

Figure 8.4: Outliers. Five pairs of images associated with item pairs with large
distortion.

8.3.2 Other embeddings

Next we solve MDE problems with distortion functions derived from
both positive and negative weights. In each MDE problem, the distor-
tion functions are based on two penalty functions, as in (4.1): ps, which
measures the distortion for pairs in Esim, and pd, which measures the
distortion for pairs in Edis. All the MDE problems take pd to be the log-
arithmic penalty (4.4), with hyper-parameter α = 1. For each problem,
we initialize the solution method at the solution to the quadratic MDE
problem from the previous section.

All embeddings plotted in the remainder of this chapter were aligned
to the embedding in Figure 8.1, via orthogonal transformations, as
described in §2.4.5.

8.3. Embedding 101

Standardized embeddings. The first problem is derived from the
graph E = Esim ∪ Edis (with |Esim| = |Edis| = 774, 776). We impose a
standardization constraint and use the log-one-plus penalty (4.3) for ps,
with hyperparameter α = 1.5.

The solution method ran for 177 iterations, taking 6 seconds on
a GPU and 31 seconds on a CPU. Figure 8.5 shows an embedding
obtained by solving this MDE problem. Notice that this embedding is
somewhat similar to the quadratic one from Figure 8.1, but with more
separation between different classes of digits.

Varying the number of dissimilar pairs. We solve five additional MDE
problems, using the same penalties and constraints as the previous one
but varying the number of dissimilar pairs, to show how the embedding
depends on the ratio |Esim|/|Edis|. The results are plotted in Figure 8.6.
When |Edis| is small, items belonging to similar digits are more tightly
clustered together; as |Edis| grows larger, the embedding becomes more
spread out.

Varying the weights for dissimilar pairs. Finally, we solve another
five MDE problems of the same form, this time varying the magnitude
of the weights wij for (i, j) ∈ Edis but keeping |Edis| = |Esim| fixed. The
embeddings are plotted in Figure 8.7. Varying the weights (keeping
|Edis| fixed) has a similar effect to varying |Edis| (keeping the weights
fixed).

Centered embeddings. We solve two centered MDE problems and
compare their solutions. The first MDE problem has a log-one-plus
attractive penalty (4.3) (α = 1.5), and the second has a Huber attractive
penalty (4.2) (τ = 0.5). These problems were solved in about 4 seconds
on a GPU and 32 seconds on a CPU. The first problem was solved in
170 iterations, and the second was solved in 144 iterations.

The embeddings, shown in Figure 8.8, are very similar. This suggests
that the preprocessing (here, the choice of Esim and Edis) has a strong
effect on the embedding. The embedding produced using the Huber
penalty has more points in the negative space between classes of digits.

102 Images

Figure 8.5: Embedding based on Esim ∪ Edis. A standardized embedding of MNIST,
based on the union of a neighborhood graph and a dissimilarity graph, with log-one-
plus attractive penalty and logarithmic repulsive penalty.

This makes sense, since for large d, the Huber penalty more heavily
discourages large embedding distances (for similar points) than does the
log-one-plus penalty. Moreover, the neighborhood graph is connected,
so some points must be similar to multiple classes of digits.

8.3. Embedding 103

Figure 8.6: Varying |Edis|. Standardized embeddings of MNIST, varying |Edis|.

104 Images

Figure 8.7: Varying negative weights. Standardized embeddings of MNIST, varying
negative weights.

8.3. Embedding 105

8.3.3 Comparison to other methods

For comparison, we embed MNIST with UMAP (McInnes et al., 2018)
and t-SNE (Hinton and Roweis, 2003), two popular embedding methods,
using the umap-learn and openTSNE (Poličar et al., 2019) implemen-
tations. Both methods start with neighborhood graphs on the original
data, based on the Euclidean distance; umap-learn uses the nearest 15
neighbors of each image, and openTSNE uses the nearest 90 neighbors
of each image. The UMAP optimization routine takes 20 seconds on
our CPU, and the openTSNE optimization routine takes roughly one
minute. (Neither implementation supports GPU acceleration.) On sim-
ilar problems (the centered embeddings from §8.3.2), PyMDE takes
roughly 30 seconds on CPU.

Figure 8.9 shows the embeddings. Note that the UMAP embed-
ding bears a striking resemblance to the previously shown centered
embeddings (Figure 8.8). This is not surprising, since UMAP solves an
unconstrained optimization problem derived from a similar graph and
with similar distortion functions.

106 Images

Figure 8.8: More embeddings. Centered embeddings of MNIST with log-one-plus
(left) and Huber (right) attractive penalties, and logarithmic repulsive penalties.

Figure 8.9: UMAP (left) and t-SNE (right) embeddings of MNIST.

9
Networks

The MDE problems we formulate in this chapter are derived from net-
works. We start with an undirected (possibly weighted) network on n

nodes, in which the length of the shortest path between nodes i and j

encodes an original distance between them. Such networks frequently
arise in practice: examples include social networks, collaboration net-
works, road networks, web graphs, and internet networks. Our goal is
to find an embedding of the nodes that preserves the network’s global
structure.

The specific network under consideration in this chapter is a co-
authorship network: each node corresponds to a unique author, and two
nodes are adjacent if the corresponding authors have co-authored at
least one publication.

9.1 Data

We compiled a co-authorship network by crawling Google Scholar
(Google, n.d.), an online bibliography cataloging research papers from
many different fields. Each cataloged author has a profile page, and
each page contains metadata describing the author’s body of work. We
crawled these pages to create our network. Our network contains 590,028

107

108 Networks

authors and 3,812,943 links. We additionally collected each author’s
unique identifier, affiliation, self-reported interests (such as machine
learning, renewable energy, or high energy physics), h-index (Hirsch,
2005), and cumulative number of citations. Our dataset is publicly
available, at https://pymde.org.

We will compute two embeddings in this chapter: an embedding on
the full network, and an embedding on a network containing only high-
impact authors, which we define as authors with h-indices 50 or higher.
The subgraph induced by high-impact authors has 44,682 vertices and
210,681 edges.

When constructing the embeddings, we use only the graph distances
between nodes. Later in this section we describe how we categorize
authors into academic disciplines using their interests. An author’s
academic discipline is the held-out attribute we use to check if the
embedding makes sense.

Crawling. The data was collected in November 2020 by exploring
Google Scholar with a breadth-first search, terminating the search
after one week. The links were obtained by crawling authors’ listed
collaborators. Google Scholar requires authors to manually add their
coauthors (though the platform automatically recommends co-authors);
as a result, if two authors collaborated on a paper, but neither listed
the other as a co-author, they will not be adjacent in our network.
As a point of comparison, a co-authorship network of Google Scholar
from 2015 that determined co-authorship by analyzing publication lists
contains 409,392 authors and 1,234,019 links (Chen et al., 2017).

While our co-authorship network faithfully represents Google Scholar,
it deviates from reality in some instances. For example we have found
that a small number of young researchers have listed long-deceased
researchers such as Albert Einstein, John von Neumann, Isaac Newton,
and Charles Darwin as co-authors. Compared to the size of the network,
the number of such anomalies is small; e.g., there are only thirty authors
who are adjacent to Einstein but not among his true co-authors. As such
we have made no attempt to remove erroneous links or duplicated pages
(Einstein has two). For a more careful study of academic collaboration,
see Chen et al. (2017).

https://pymde.org

9.1. Data 109

Some basic properties. The diameter of the full network (the length
of the longest shortest path) is 10. The diameter of the network induced
by high-impact authors is 13.

Figure 9.1 shows the CDFs of h-indices and citation counts. The
median h-index is 14, the 95th percentile is 58, and the maximum is 303;
the median citation count is 891, the 95th percentile is 1616, and the
maximum is 1,107,085. The maximum h-index and maximum citation
count both belong to the late philosopher Michel Foucault.

100 101 102 103

h-index

0.0

0.5

1.0

100 102 104 106

citation count

0.0

0.5

1.0

Figure 9.1: CDFs of author h-indices and citation counts

Figure 9.2 shows the CDF of node degrees for the full network and the
subgraph induced by high-impact authors. The number of collaborators
an author has is moderately correlated with h-index (the Pearson
correlation coefficient is 0.44); citation count is strongly correlated with
h-index (0.77).

100 101 102 103

degree

0.0

0.5

1.0

all

high impact

Figure 9.2: CDFs of node degree (co-author count) for the full network and the
high-impact author network.

110 Networks

The data includes 280,819 unique interests, with 337,514 authors
interested in at least one of the 500 most popular interests. The top
five interests are machine learning (listed by 38,220 authors), computer
vision (15,123), artificial intelligence (14,379), deep learning (8,984),
and bioinformatics (8,496).

Academic disciplines. We assigned the high-impact authors to one of
five academic disciplines, namely biology, physics, electrical engineering,
computer science, and artificial intelligence, in the following ad-hoc
way. First, we manually labeled the 500 most popular interests with the
academic discipline to which they belonged (interests that did not belong
to any of the five disciplines were left unlabeled). Then, we scanned
each author’s interests in the order they chose to display them on their
profile, assigning the author to the discipline associated with their first
labeled interest. For example, authors interested in machine learning
first and bioinformatics second were assigned to artificial intelligence,
while authors interested in bioinformatics first and machine learning
second were assigned to biology. Authors that did not have at least
one labeled interest were ignored. This left us with 16,569 high-impact
authors labeled with associated academic disciplines, out of 44,682.

9.2 Preprocessing

We compute graph distances between all pairs of authors. On the full
network, this yields approximately 174 billion distances, or roughly
696 GB of data, too much to store in the memory of our machine.
To make the embedding tractable, we sample a small fraction of the
graph distances uniformly at random, choosing to retain 0.05 percent
of the distances. This results in a graph Eall on 590,028 vertices, with
87,033,113 edges. Computing all 174 billion distances and randomly
subsampling them took seven hours using six CPU cores. We repeat
this preprocessing on the high-impact network, retaining 10 percent of
the graph distances. This yields a graph Eimpact with 88,422,873 edges.
Computing the graph distances with PyMDE took less than one minute,
using six CPU cores.

9.3. Embedding 111

The CDFs of graph distances are shown in Figure 9.3. The values
4, 5, and 6 account for around 90% of the distances in both networks.
(We will see artifacts of these highly quantized values in some of our
embeddings.)

1 2 3 4 5 6 7 8 9 10
graph distances

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
graph distances

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.3: CDFs of graph distances. Top. All authors. Bottom. High-impact
authors.

9.3 Embedding

We solve two unconstrained MDE problems, based on Eall and Eimpact.
The MDE problems are derived from original deviations, with δij being
the graph distance between i and j. For both, we use the absolute loss
(4.5) and embed into R2.

9.3.1 All authors

The embedding on Eall has distortion 1.58. The embedding was computed
in 300 iterations by PyMDE, to a residual norm of 1.9 × 10−5. This
took 71 seconds on our GPU.

112 Networks

Figure 9.4 shows a CDF of the the distortions. The five largest
distortions all belong to pairs whose true distance is 9, but whose
embedding distances are small (the pair with the largest distortion
includes a philosopher and an automatic control engineer). The authors
in these pairs are “unimportant” in that they have very few co-authors,
and lie on the periphery of the embedding.

10−2 10−1 100 101

distortion

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.4: CDF of distortions for the embedding on all authors.

Figure 9.5 shows the embedding. (Plots of embeddings in this chapter
have black backgrounds, to make various features of the embeddings
easier to see.) Each embedding vector is colored by its author’s degree in
the co-authorship network; the brighter the color, the more co-authors
the author has. The embedding appears sensible: highly collaborative
authors are near the center, with the degree decreasing as one moves
outward. The diameter of the embedding is approximately 13 (measured
in Euclidean norm), compared to the original network’s 10 (measured
in graph distance).

9.3.2 High-impact authors

An embedding on the graph Eimpact has average distortion 1.45 (Fig-
ure 9.6 shows a CDF of the distortions). PyMDE computed this em-
bedding on a GPU in 54 seconds, in 173 iterations.

Figure 9.7 shows the embedding, colored by degree. Highly collabo-
rative authors are near the center, with collaboration decreasing radially
from the center. The diameter is approximately 16, compared to the
original network’s 13.

9.3. Embedding 113

Figure 9.5: Co-authorship network. An embedding of a co-authorship network
from Google Scholar, colored by degree percentile. The brighter the color, the more
co-authors the author has. The network has 590,028 authors.

The embedding has an interesting structure, with many intersecting
arcs. These arcs are likely due to the original distances taking on highly
quantized values (see Figure 9.3). In Figure 9.8 we overlay a large
fraction of the original high-impact network’s edges onto the embedding
(i.e., edges (i, j) for which δij = 1); we show 50,000 edges, sampled
uniformly at random from the original 210,681. The edges trace out the
arcs, and connect adjacent communities of highly collaborative authors.

114 Networks

10−2 10−1 100 101

distortion

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.6: CDF of distortions for the embedding on high-impact authors.

Academic disciplines. Figure 9.9 shows the embedding vectors colored
by academic discipline (authors that are not tagged with a discipline are
omitted). Purple represents biology, orange represents physics, green
represents electrical engineering, cyan represents computer science, and
red represents artificial intelligence.

Authors are grouped by academic discipline, and similar disciplines
are near each other. Additionally, it turns out nearby curves in an
academic discipline roughly correspond to sub-disciplines. For example,
authors in the purple curves toward the center of the embedding are
largely interested in ecology, while authors in the outer purple curves
are more interested in genomics and medicine.

Most highly-collaborative authors (authors near the center of the
embedding) study computer science, artificial intelligence, or biology.
This is consistent with a previous study of Google Scholar (Chen et
al., 2017), which found that computer scientists and biologists are
disproportionately important in the co-authorship network, as measured
by metrics such as degree and PageRank (Page et al., 1999).

9.3.3 Comparison to other methods

For comparison, we embed the high-impact co-authorship networks
using UMAP (McInnes et al., 2018) and t-SNE (Maaten and Hinton,
2008), using the umap-learn and the scikit-learn (Pedregosa et al., 2011)
implementations. We give UMAP and t-SNE the distance matrices
containing the graph distances associated with Eimpact, and we use the
default hyper-parameters set by the software.

9.3. Embedding 115

Figure 9.7: High-impact authors. An embedding of a co-authorship network on
authors with an h-index of 50 or higher, colored by degree percentile.

The embeddings are shown in Figure 9.10, colored by degree and
academic discipline. Neither method has preserved the global structure
of the network, but both have organized the embedding vectors by
discipline. (As we have seen, embeddings emphasizing local structure
over global structure are readily produced with PyMDE; in this chapter,
however, we chose to emphasize global structure instead.)

116 Networks

Figure 9.8: High-impact authors, with links. High-impact author embedding, colored
by degree percentile, with links between co-authors displayed as white line segments.

9.3. Embedding 117

Figure 9.9: Academic disciplines. High-impact author embedding, colored by aca-
demic discipline. The disciplines are biology (purple), physics (orange), electrical
engineering (green), computer science (cyan), and artificial intelligence (red).

118 Networks

Figure 9.10: UMAP (left) and t-SNE (right) embeddings of the high-impact author
network, colored by degree (top) and academic discipline (bottom).

10
Counties

In this example, we embed demographic data for 3,139 United States
counties into R2. The data broadly describes the composition of the
counties, and contains information about gender, ethnicity, and income
(among other things). To make sure our embeddings make sense, we will
use an additional attribute for each county to validate the embeddings,
which is the fraction who voted Democratic in the 2016 election. (We
do not use this attribute in forming the embeddings.)

10.1 Data

Our raw data comes from the 2013–2017 American Community Survey
(ACS) 5-Year Estimates (United States Census Bureau, n.d.), which
is a longitudinal survey run by the United States Census Bureau that
records demographic information about the n = 3, 139 US counties. We
will use 34 of the demographic features to create our embedding of US
counties.

119

120 Counties

Table 10.1: List of the features in the ACS data set, along with the initial prepro-
cessing transformation we applied.

Feature Transformation

Number of people Log-transform
Number of voting age citizens Log-transform
Number of men Normalize
Number of women Normalize
Fraction Hispanic None
Fraction White None
Fraction Black None
Fraction Native American or Alaskan None
Fraction Asian None
Fraction Native Hawaiian or Pacific Islander None
Median household income Log-transform
Median household income standard deviation Log-transform
Household income per capita Log-transform
Household income per capita standard devia-
tion

Log-transform

Fraction below the poverty threshold None
Fraction of children below the poverty thresh-
old

None

Fraction working in management, business, sci-
ence, or the arts

None

Fraction working in a service job None
Fraction working in an office or sales job None
Fraction working in natural resources, construc-
tion, and maintenance

None

Fraction working in production, transportation,
and material movement

None

Fraction working in the private sector None
Fraction working in the public sector None
Fraction working for themselves None
Fraction doing unpaid family work None
Number that have a job (are employed) Normalize
Fraction unemployed None
Fraction commuting to work alone in a car,
van, or truck

None

Fraction carpooling in a car, van, or truck None
Fraction commuting via public transportation None
Fraction walking to work None
Fraction commuting via other means None
Fraction working at home None
Average commute time in hours None

10.2. Preprocessing 121

10.2 Preprocessing

We carry out some standard preprocessing of the raw features, listed in
Table 10.1. For positive features that range over a very wide scale, such
as household income, we apply a log-transform, i.e., replace the raw
feature with its logarithm. We normalize raw features that are counts,
i.e., divide them by the county population. (We do not transform features
that are given as fractions or proportions.) After these transformations,
we standardize each feature to have zero mean and standard deviation
one over the counties.

Using these preprocessed features, we generate a k-nearest (Eu-
clidean) neighbor graph, with k = 15, which gives a graph Esim with
36, 992 edges. We then sample, at random, another 36, 992 pairs of
counties not in Esim, to obtain a graph of dissimilar counties, Edis. Our
final graph E = Esim ∪Edis has 73, 984 edges, corresponding to an average
degree of around 47. We assign weight wij = 2 for (i, j) ∈ Esim when
counties i and j are both neighbors of each other. We assign weight
wij = 1 for (i, j) ∈ Esim when i is a neighbor of j but j is not a neighbor
of i (or vice versa). We assign weight wij = −1 for (i, j) ∈ Edis.

10.3 Embedding

10.3.1 PCA embedding

We consider PCA first. The PCA embedding for m = 2 is shown in
Figure 10.1, with each county shown as a colored dot, with colors
depending on the fraction of voters who voted Democratic in 2016,
from red (0%) to blue (100%). The embedding clearly captures some
of the structure of the voting patterns, but we can see many instances
where counties with very different voting appear near each other in the
embedding. (The blue counties are urban, and far more populous than
the many rural red counties seen in the embedding. The total number of
people who voted Democratic exceeded those who voted Republican.)

122 Counties

−10 −5 0 5 10

−10

−5

0

5

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 10.1: PCA embedding of the election data, colored by the fraction of voters
in each county who voted Democratic in the 2016 United States presidential election,
from red (0%) to blue (100%).

10.3.2 Unconstrained embedding

Next we solve an unconstrained (centered) MDE problem based on the
graph E = Esim ∪ Edis. We use the log-one-plus penalty (4.3) (α = 2)
for ps and the logarithmic penalty (4.4) for pd (α = 0.5). We choose
embedding dimension m = 2.

Figure 10.2 shows the results. Compared to the PCA embedding, we
see a better separation of regions corresponding to heavily Democratic,
heavily Republican, and mixed voting. Figures 10.3 and 10.4 take a
closer look at the upper right and bottom of the plot, labeling some
representative counties. We can also see a few swing counties, i.e.,

10.3. Embedding 123

counties that historically vote Democratic, but recently lean Republican
(or vice versa), near the strongly Democratic (or Republican) counties;
these counties are colored light red (or blue), because they have weak
majorities.

We give two alternative visualizations of the embedding in figure
10.5. In these visualizations, we color each county according to its value
in each of the two embedding coordinates. In Figure 10.6, we show
the counties colored with the fraction of people who actually voted
Democratic in the 2016 election, as a point of reference.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 10.2: Embedding. A centered embedding of the election data, with log-one-
plus attractive and logarithmic repulsive penalty functions.

124 Counties

1.5 2.0 2.5 3.0 3.5 4.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

San Francisco County, CA

District of Columbia, DC

New York County, NY

Philadelphia County, PA

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 10.3: Upper right corner. A closer look at the upper right corner of the
embedding shown in Figure 10.2. Several densely populated urban counties appear.

10.3.3 Comparison to other methods

We compare the embeddings generated by UMAP and t-SNE, shown in
figure 10.7. To make it easier to compare the embeddings, we orthog-
onally transformed these two embeddings with respect to the uncon-
strained embedding (as described in §2.4.5), before plotting them. The
embeddings broadly resemble the unconstrained embedding, though
they appear to be a little bit more dispersed.

10.3. Embedding 125

−2 −1 0 1 2 3

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

Denali Borough, AK

Petroleum County, MT

Harding County, NM

Kenedy County, TX

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 10.4: Bottom. A closer look at the bottom of the embedding shown in Figure
10.2. Several sparsely populated rural counties appear.

126 Counties

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

Figure 10.5: Embedding by coordinate. Counties colored by their first (top) and
second (bottom) coordinate of the embedding from Figure 10.2.

10.3. Embedding 127

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 10.6: Election data. Counties colored by the fraction of people voting for
the Democratic candidate in the 2016 election, from red (0%) to blue (100%). (The
urban blue counties are far more densely populated than the rural red counties; in
total there were more Democratic than Republican votes.)

−10 −5
−4

−2

0

2

4

6

8

−50 0 50

−50

−25

0

25

50

0.2

0.4

0.6

0.8

Figure 10.7: UMAP (left) and t-SNE (right) embeddings of the ACS data.

11
Population Genetics

Our next example is from population genetics. We consider the well-
known study carried out by Novembre et al. (2008) of high-dimensional
single nucleotide polymorphism (SNP) data associated with 3,000 indi-
viduals thought to be of European ancestry. After carefully cleaning the
data in order to remove outliers, the authors embed the data into R2 via
PCA, obtaining the embedding shown in Figure 11.1. Interestingly, the
embedding bears a striking resemblance to the map of Europe, shown
in Figure 11.2, suggesting a close relationship between geography and
genetic variation. (In these figures we use the same color legend used in
the original Novembre et al. (2008) paper.) This resemblance does not
emerge if the outliers are not first removed from the original data.

Follow-on work by Diakonikolas et al. (2017) proposed a method for
robust dimensionality reduction, showing good results on a version of
the data from the original Novembre et al. study that was intentionally
corrupted with some bad data. After appropriately tuning a number
of parameters, they were able to recover the resemblance to a map of
Europe despite the bad data. We will explore this issue of robustness
to poor data using distortion functions that are robust, i.e., allow for
some pairs of similar items to have large distance.

128

129

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Figure 11.1: PCA embedding of population genetics data. Points are colored by
country using the legend shown in the map of Europe in Figure 11.2.

130 Population Genetics

Figure 11.2: Map of Europe, showing the country color legend for the population
genetics data, taken from Novembre et al.; countries with no data points are shown
in gray.

11.1. Data 131

11.1 Data

We create two sets of data: one clean, and one intentionally corrupted,
following Diakonikolas et al. (2017). We follow the same experiment
setup as in Novembre et al. (2008) and Diakonikolas et al. (2017), and
work with the SNP data associated with 3,000 individuals thought
to be of European ancestry, coming from the Population Reference
Sample project (Nelson et al., 2008). Novembre et al. and Diakonikolas
et al. both start off by pruning the original data set down to the 1,387
individuals most likely to have European ancestry (explained in the
supplementary material of Novembre et al. (2008)), and then project
the data onto its top 20 principal components, obtaining the (clean)
samples yi ∈ R20, i = 1, . . . , 1387.

To create a corrupted set of data, we follow the method of Diakoniko-
las et al., who randomly rotate the data and then inject 154 additional
points yi, i = 1388, . . . , 1541, where the first ten entries of the yi are
i.i.d. following a discrete uniform distribution on {0, 1, 2}, and the last
ten entries of the yi are i.i.d. following a discrete uniform distribution
on {1/12, 1/8}. Thus the clean data is y1, . . . , y1387, and the corrupted
data is y1388, . . . , y1541.

We also have the country of origin for each of the data points, given
as one of 34 European countries. We use this attribute to check our
embeddings, but not to construct our embeddings. In plots, we color
the synthesized (corrupted) data points black.

11.2 Preprocessing

For both the clean and corrupted raw data sets we construct a set of pairs
of similar people Esim as the k-nearest (Euclidean) neighbors, with k =
15. For the clean data, we have |Esim| = 16, 375, and for the corrupted
data we have |Esim| = 17, 842. We also treat the remaining pairs of people
as dissimilar, so that |Edis| = 944, 816 for the clean data, and |Edis| =
1, 168, 728 for the corrupted data. We use weights wij = 2 for (i, j) ∈ Esim
when individuals i and j are both neighbors of each other. We use weights
wij = 1 for (i, j) ∈ Esim when i is a neighbor of j but j is not a neighbor
of i (or vice versa). We use weights wij = −1 for (i, j) ∈ Edis.

132 Population Genetics

11.3 Embedding

11.3.1 PCA embedding

We start with PCA, exactly following Novembre et al., which on the
clean data results in the embedding shown in Figure 11.1. In the
language of this monograph, this embedding uses quadratic distortion
for (i, j) ∈ E , weights wij = yT

i yj (after centering the data), and a
standardization constraint. The distribution of the weights is shown in
Figure 11.4. When PCA embedding is used on the corrupted data, we
obtain the embedding in Figure 11.3. In this embedding only some of
the resemblance to the map of Europe is preserved. The synthesized
points are embedded on the right side. (If those points are manually
removed, and we PCA run again, we recover the original embedding.)

11.3.2 Unconstrained embeddings

We embed both the clean and corrupted data unconstrained (centered),
based on the graph E = Esim ∪ Edis. We use a Huber attractive penalty
(4.2), and a logarithmic repulsive penalty (4.4) (α = 1) to enforce
spreading. The embedding of the clean data is shown in Figure 11.5, and
for the corrupted data in Figure 11.6. We can see that this embedding
is able to recover the similarity to the map of Europe, despite the
corrupted data. In fact, this embedding appears virtually identical to
the embedding of the clean data in Figure 11.5.

11.3.3 Comparison to other methods

We show the UMAP and t-SNE embeddings on the clean and corrupted
data in figure 11.7. These embeddings were scaled and orthogonally
transformed with respect to the map given in Figure 11.2, following the
method described in §2.4.5. The embeddings with the corrupted data
are better than the PCA embedding.

11.3. Embedding 133

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Figure 11.3: PCA embedding of corrupted data. The resemblance to a map of
Europe is substantially reduced.

134 Population Genetics

−0.1 0.0 0.1
wij

0

10

20

30

40

−0.1 0.0 0.1
wij

0

10

20

30

40

Figure 11.4: PCA weights. Distribution of the weights used by PCA, when expressed
as an MDE problem, for the clean (left) and corrupted (right) data.

11.3. Embedding 135

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 11.5: Embedding of clean data. The embedding resembles a map of Europe.

136 Population Genetics

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 11.6: Embedding of corrupted data. The embedding is able to recover the
similarity to the map of Europe.

11.3. Embedding 137

−15 −10 −5 0
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

−40 −20 0 20 40

−40

−20

0

20

40

−10 0 10 20
−10

−5

0

5

10

15

20

−50 −25 0 25 50
−60

−40

−20

0

20

40

60

Figure 11.7: UMAP (left) and t-SNE (right) embeddings of clean (top) and corrupted
data (bottom).

12
Single-Cell Genomics

For our last example we embed several thousand single-cell mRNA
(scRNA) transcriptomes. We use data that accompanies a recent pub-
lication by Wilk et al. (2020); these data are sequences of human
peripheral blood mononuclear cells (PBMCs), collected from seven pa-
tients afflicted with severe COVID-19 infections and six healthy controls.
We embed into R3 and visualize the embedding vectors, finding that
the vectors are organized by donor health status and cell type.

12.1 Data

The dataset from Wilk et al. (2020) includes n = 44, 721 scRNA tran-
scriptomes of PBMCs, with 16,627 cells from healthy donors and 28,094
from donors infected with COVID-19. Each cell is represented by a
sparse vector in R26361, and each component gives the expression level
of a gene. Wilk et al. (2020) projected the data matrix onto its top
50 principal components, yielding a matrix Y ∈ R44721×50 which they
further studied.

In constructing our embedding, we use only the reduced gene ex-
pression data, i.e., the entries of Y . Each cell is tagged with many
held-out attributes, and we use two of these to informally validate our

138

12.2. Preprocessing 139

embedding. The first attribute says whether a cell came from a donor
infected with COVID-19, and the second gives a classification of the
cells into (manually labeled) sub-families.

12.2 Preprocessing

We use distortion functions derived from weights. From the rows of Y

we construct a k-nearest (Euclidean) neighbor graph, with k = 15; this
gives a graph Esim with 515, 376 edges. We then sample, uniformly at
random, an additional |Esim| pairs not in Esim to obtain a graph Edis of
dissimilar cells. The final graph E = Esim ∪ Edis has p = 1, 030, 752 edges.
For the weights, we choose wij = +2 if i and j are both neighbors of
each other; wij = +1 if i is a neighbor of j but j is not a neighbor of i

(or vice versa); and wij = −1 for (i, j) ∈ Edis.

12.3 Embedding

We form a standardized MDE problem with embedding dimension
m = 3, based on the graph E = Esim ∪ Edis. We use the log-one-plus
penalty (4.3) (α = 1.5) for ps and the logarithmic penalty (4.4) (α = 1)
for pd.

We solved the MDE problem with PyMDE, initializing the solve
with a embedding obtained by solving a quadratic MDE problem on Esim.
The quadratic MDE problem was solved in 7 seconds (249 iterations) on
our CPU, and 2 seconds (185 iterations) on our GPU. Solving the MDE
problem took 27 seconds (300 iterations) on our CPU, and 6 seconds
(300 iterations) on our GPU. The embedding has average distortion
0.13; a CDF of distortions is shown in Figure 12.1. The embedding
used for initialization is shown in Figure 12.2, with embedding vectors
colored by the cell-type attribute.

The embedding is shown in Figure 12.3, colored by cell type; similar
cells end up near each other in the embedding. The embedding is plotted
again in Figure 12.4, this time colored by donor health status. Cells
from healthy donors are nearer to each other than to cells from infected
donors, and the analogous statement is true for cells from infected
donors.

140 Single-Cell Genomics

10−3 10−2 10−1 100 101

distortion

0.0

0.5

1.0

Figure 12.1: CDF of distortions for the embedding of scRNA data.

As a sanity check, we partition Esim into three sets: edges between
healthy donors, edges between infected patients, and edges between
infected patients and healthy donors. The average distortion of the
embedding, restricted to each of these sets, is 0.19, 0.18, and 0.21,
respectively. This means pairs linking healthy donors to infected donors
are more heavily distorted on average than pairs linking donors with
the same health status.

Figure 12.5 shows the embedding with roughly 10 percent of the
pairs in Esim overlaid as white line segments (the pairs were sampled
uniformly at random). Cells near each other are highly connected to
each other, while distant cells are not. Finally, the 1000 pairs from Esim
with the highest distortions are shown in Figure 12.6; most of these
pairs contain different types of cells.

12.3.1 Comparison to other methods

Figure 12.7 shows an embedding of the scRNA data produced by UMAP,
which took 11 seconds, and Figure 12.8 shows an embedding made using
openTSNE, which took 96 seconds, using the value bh for the parameter
negative_gradient_method (the default value resulted in an error).
The embeddings were aligned to the orientation of our embedding by
solving a Procrustes problem, as described in §2.4.5.

12.3. Embedding 141

Figure 12.2: Embedding based on Esim. An embedding of scRNA transcriptomes of
PBMCs from patients with severe COVID-19 infections and healthy controls (Wilk
et al., 2020), obtained by solving a quadratic MDE problem on Esim and colored by
cell type.

142 Single-Cell Genomics

Figure 12.3: Embedding based on Esim ∪ Edis. Embedding of scRNA transcriptomes,
colored by cell type.

12.3. Embedding 143

Figure 12.4: Health status. Embedding of scRNA data, colored by health status.

144 Single-Cell Genomics

Figure 12.5: With edges. Embedding of scRNA data, with edges between neighboring
cells displayed as white line segments.

12.3. Embedding 145

Figure 12.6: High distortion pairs. Embedding of scRNA data, with the 1000 most
heavily distorted pairs displayed as white line segments.

146 Single-Cell Genomics

Figure 12.7: UMAP. Embedding of scRNA data, produced by UMAP.

12.3. Embedding 147

Figure 12.8: t-SNE. Embedding of scRNA data, produced by t-SNE.

13
Conclusions

The task of vector embedding, i.e., assigning each of a set of items
an associated vector, is an old and well-established problem, with
many methods proposed over the past 100 years. In this monograph
we have formalized the problem as one of choosing the vectors so as
to minimize an average or total distortion, where distortion functions
specified for pairs of items express our preferences about the Euclidean
distance between the associated vectors. Roughly speaking, we want
vectors associated with similar items to be near each other, and vectors
associated with dissimilar items to not be near each other.

The distortion functions, which express our prior knowledge about
similarity and dissimilarity of pairs of items, can be constructed in
several different but related ways. Weights on edges give us a measure
of similarity (when positive) and dissimilarity (when negative). Alterna-
tively, we can start with deviations between pairs of items, with small
deviation meaning high similarity. Similarity and dissimilarity can also
be expressed by one or more graphs on the items, for example one
specifying similar pairs and another specifying dissimilar pairs. There
is some art in making the distortion functions, though we find that
a few simple preprocessing steps, such as the ones described in this
monograph, work well in practice.

148

149

Our framework includes a large number of well-known previously de-
veloped methods as special cases, including PCA, Laplacian embedding,
UMAP, multi-dimensional scaling, and many others. Some other exist-
ing embedding methods cannot be represented as MDE problems, but
MDE-based methods can produce similar embeddings. Our framework
can also be used to create new types of embeddings, depending on the
choice of distortion functions, the constraint set, and the preprocessing
of original data.

The quality of an embedding ultimately depends on whether it is
suitable for the downstream application. Nonetheless we can use our
framework to validate, or at least sanity-check, embeddings. For example,
we can examine pairs with abnormally high distortion. We can then
see if these pairs contain anomalous items, or whether their distortion
functions inaccurately conveyed their similarity or lack thereof.

Our examples in Part III focused on embedding into two or three
dimensions. This allowed us to plot the embeddings, which we judged
by whether they led to insight into the data, as well as by aesthetics.
But we can just as well embed into dimensions larger than two or three,
as might be done when developing a feature mapping on the items for
downstream machine learning tasks. When the original data records
are high-dimensional vectors (say, several thousand dimensions), we
can embed them into five or ten dimensions and use the embedding
vectors as the features; this makes the vector representation of the data
records much smaller, and the fitting problem more tractable. It can
also improve the machine learning, since the embedding depends on
whatever data we used to carry it out, and in some sense inherits its
structure.

It is practical to exactly solve MDE problems only in some special
cases, such as when the distortion functions are quadratic and the
embedding vectors are required to be standardized. For other cases, we
have introduced an efficient local optimization method that produces
good embeddings, while placing few assumptions on the distortion
functions and constraint set. We have shown in particular how to
reliably compute embeddings with a standardization constraint, even
when the objective function is not quadratic.

150 Conclusions

Our optimization method (and software) scales to very large prob-
lems, with embedding dimensions much greater than two or three, and
our experiments show that it is competitive in runtime to more spe-
cialized algorithms for specific embedding methods. The framework of
MDE problems, coupled with our solution method and software, makes
it possible for practitioners to rapidly experiment with new kinds of
embeddings in a principled way, without sacrificing performance.

Acknowledgements

We thank Amr Alexandari, Guillermo Angeris, Shane Barratt, Steven
Diamond, Mihail Eric, Andrew Knyazev, Benoit Rostykus, Sabera
Talukder, Jian Tang, Jonathan Tuck, Junzi Zhang, as well as several
anonymous reviewers, for their comments on the manuscript; Yifan
Lu and Lawrence Saul, for their careful readings and many thoughtful
suggestions; and Delenn Chin and Dmitry Kobak, for their detailed
feedback on both the manuscript and early versions of the software
package.

151

References

Absil, P.-A. and J. Malick. (2012). “Projection-like retractions on matrix
manifolds”. SIAM Journal on Optimization. 22(1): 135–158.

Absil, P.-A., R. Mahony, and R. Sepulchre. (2009). Optimization Algo-
rithms on Matrix Manifolds. Princeton University Press.

Ahmed, N., R. Rossi, J. Lee, T. Willke, R. Zhou, X. Kong, and H. El-
dardiry. (2020). “Role-based graph embeddings”. IEEE Transactions
on Knowledge and Data Engineering.

Alcorn, M. (2016). “(batter|pitcher)2vec: Statistic-free talent modeling
with neural player embeddings”. In: MIT Sloan Sports Analytics
Conference.

Andoni, A., P. Indyk, and I. Razenshteyn. (2018). “Approximate nearest
neighbor search in high dimensions”. arXiv.

Arrow, K. (1950). “A difficulty in the concept of social welfare”. Journal
of Political Economy. 58(4): 328–346.

Asgari, E. and M. Mofrad. (2015). “Continuous distributed represen-
tation of biological sequences for deep proteomics and genomics”.
PLOS One. 10(11): 1–15.

Asi, H. and J. Duchi. (2019). “Stochastic (approximate) proximal point
methods: Convergence, optimality, and adaptivity”. SIAM Journal
on Optimization. 29(3): 2257–2290.

Barocas, S., M. Hardt, and A. Narayanan. (2019). Fairness and Machine
Learning. url: fairmlbook.org.

152

fairmlbook.org

References 153

Beatson, R. and L. Greengard. (1997). “A short course on fast multi-
pole methods”. In: Wavelets, Multilevel Methods and Elliptic PDEs.
Oxford University Press. 1–37.

Belkin, M. and P. Niyogi. (2002). “Laplacian eigenmaps and spectral
techniques for embedding and clustering”. In: Advances in Neural
Information Processing Systems. 585–591.

Bender, E., T. Gebru, A. McMillan-Major, and S. Shmitchell. (2021).
“On the dangers of stochastic parrots: Can language models be too
big?” In: Proceedings of the 2021 Conference on Fairness, Account-
ability, and Transparency.

Bergmann, R. (2020). “Manopt.jl”. url: https://manoptjl.org/stable/
index.html.

Bernhardsson, E. (2020). “annoy”. url: https://github.com/spotify/
annoy.

Bernstein, M., V. De Silva, J. Langford, and J. Tenenbaum. (2000).
“Graph approximations to geodesics on embedded manifolds”. Tech.
rep. Department of Psychology, Stanford University.

Biswas, P. and Y. Ye. (2004). “Semidefinite programming for ad hoc
wireless sensor network localization”. In: Proceedings of the 3rd Inter-
national Symposium on Information Processing in Sensor Networks.
46–54.

Böhm, J. N., P. Berens, and D. Kobak. (2020). “A unifying perspective
on neighbor embeddings along the attraction-repulsion spectrum”.
arXiv.

Bolukbasi, T., K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai. (2016).
“Man is to computer programmer as woman is to homemaker?
Debiasing word embeddings”. In: Advances in Neural Information
Processing Systems. 4356–4364.

Borg, I. and P. Groenen. (2003). “Modern multidimensional scaling:
Theory and applications”. Journal of Educational Measurement.
40(3): 277–280.

Boumal, N., B. Mishra, P.-A. Absil, and R. Sepulchre. (2014). “Manopt,
a Matlab toolbox for optimization on manifolds”. Journal of Machine
Learning Research. 15(1): 1455–1459.

Bourgain, J. (1985). “On Lipschitz embedding of finite metric spaces in
Hilbert space”. Israel Journal of Mathematics. 52(1-2): 46–52.

https://manoptjl.org/stable/index.html
https://manoptjl.org/stable/index.html
https://github.com/spotify/annoy
https://github.com/spotify/annoy

154 References

Boyd, S. and L. Vandenberghe. (2004). Convex Optimization. New York,
NY, USA: Cambridge University Press.

Boyd, S. and L. Vandenberghe. (2018). Introduction to Applied Linear
Algebra: Vectors, Matrices, and Least Squares. New York, NY, USA:
Cambridge University Press.

Bradley, R. and M. Terry. (1952). “Rank analysis of incomplete block
designs: The method of paired comparisons”. Biometrika. 39(3/4):
324–345.

Broyden, C. G. (1970). “The convergence of a class of double-rank
minimization algorithms, general considerations”. IMA Journal of
Applied Mathematics. 6(1): 76–90.

Burer, S. and R. Monteiro. (2003). “A nonlinear programming algo-
rithm for solving semidefinite programs via low-rank factorization”.
Mathematical Programming. 95(2): 329–357.

Burer, S. and R. Monteiro. (2005). “Local minima and convergence in
low-rank semidefinite programming”. Mathematical Programming.
103(3, Ser. A): 427–444.

Carreira-Perpinán, M. and R. Zemel. (2005). “Proximity graphs for
clustering and manifold learning”. Advances in Neural Information
Processing Systems. 17: 225–232.

Cayton, L. (2005). “Algorithms for manifold learning”. Tech. rep. De-
partment of Computer Science, University of California at San
Diego.

Cayton, L. and S. Dasgupta. (2006). “Robust Euclidean embedding”.
In: Proceedings of the 23rd International Conference on Machine
Learning. 169–176.

Chen, S., S. Ma, A. Man-Cho So, and T. Zhang. (2020). “Proximal gra-
dient method for nonsmooth optimization over the Stiefel manifold”.
SIAM Journal on Optimization. 30(1): 210–239.

Chen, W., K. Weinberger, and Y. Chen. (2013). “Maximum variance cor-
rection with application to A* search”. In: International Conference
on Machine Learning. 302–310.

Chen, Y., C. Ding, J. Hu, R. Chen, P. Hui, and X. Fu. (2017). “Building
and analyzing a global co-authorship network using Google Scholar
Data”. In: Proceedings of the 26th International Conference on World
Wide Web Companion. 1219–1224.

References 155

Chung, F. and F. Graham. (1997). Spectral Graph Theory. No. 92.
American Mathematical Society.

Corbett-Davies, S. and S. Goel. (2018). “The measure and mismeasure
of fairness: A critical review of fair machine learning”. arXiv.

Cox, T. and M. Cox. (2000). Multidimensional Scaling. CRC Press.
Devlin, J. (2020). “BERT”. url: https://github.com/google-research/

bert.
Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. (2019). “BERT:

Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 4171–4186.

Diakonikolas, I., G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stewart.
(2017). “Being robust (in high dimensions) can be practical”. In:
International Conference on Machine Learning. 999–1008.

Dokmanic, I., R. Parhizkar, J. Ranieri, and M. Vetterli. (2015). “Eu-
clidean distance matrices: Essential theory, algorithms, and applica-
tions”. IEEE Signal Processing Magazine. 32(6): 12–30.

Dong, W., M. Charikar, and K. Li. (2011). “Efficient k-nearest neighbor
graph construction for generic similarity measures”. In: Proceedings
of the 20th International Conference on World Wide Web. 577–586.

Dwork, C., M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. (2012).
“Fairness through awareness”. In: Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference. 214–226.

Dwork, C., R. Kumar, M. Naor, and D. Sivakumar. (2001). “Rank
aggregation methods for the web”. In: Proceedings of the 10th Inter-
national Conference on World Wide Web. 613–622.

Eades, P. (1984). “A heuristic for graph drawing”. In: Proceedings
of the 13th Manitoba Conference on Numerical Mathematics and
Computing. Vol. 42. 149–160.

Easley, D. and J. Kleinberg. (2010). Networks, Crowds, and Markets.
Vol. 8. Cambridge University Press.

Eckart, C. and G. Young. (1936). “The approximation of one matrix by
another of lower rank”. Psychometrika. 1(3): 211–218.

https://github.com/google-research/bert
https://github.com/google-research/bert

156 References

Edelman, A., T. Arias, and S. Smith. (1998). “The geometry of algo-
rithms with orthogonality constraints”. SIAM Journal on Matrix
Analysis and Applications. 20(2): 303–353.

El Alaoui, A., X. Cheng, A. Ramdas, M. Wainwright, and M. Jordan.
(2016). “Asymptotic behavior of ℓp-based Laplacian regularization
in semi-supervised learning”. In: Conference on Learning Theory.
879–906.

Epskamp, S., A. Cramer, L. Waldorp, V. Schmittmann, and D. Bors-
boom. (2012). “qgraph: Network visualizations of relationships in
psychometric data”. Journal of Statistical Software. 48(4): 1–18.

Fan, K. and A. Hoffman. (1955). “Some metric inequalities in the space
of matrices”. Proceedings of the American Mathematical Society.
6(1): 111–116.

Fisk, C., d. Caskey, and L. West. (1967). “ACCEL: Automated circuit
card etching layout”. Proceedings of the IEEE. 55(11): 1971–1982.

Fletcher, R. (1970). “A new approach to variable metric algorithms”.
The Computer Journal. 13(3): 317–322.

Fligner, M. and J. Verducci. (1986). “Distance based ranking models”.
Journal of the Royal Statistical Society: Series B (Methodological).
48(3): 359–369.

Gansner, E. and S. North. (2000). “An open graph visualization system
and its applications to software engineering”. Software – Practice
and Experience. 30(11): 1203–1233.

Garg, N., L. Schiebinger, D. Jurafsky, and J. Zou. (2018). “Word
embeddings quantify 100 years of gender and ethnic stereotypes”.
Proceedings of the National Academy of Sciences. 115(16): E3635–
E3644.

Gill, P., W. Murray, and M. Saunders. (2002). “SNOPT: an SQP
algorithm for large-scale constrained optimization”. SIAM Journal
on Optimization. 12(4): 979–1006.

Goldfarb, D. (1970). “A family of variable-metric methods derived by
variational means”. Mathematics of Computation. 24(109): 23–26.

Golub, G. and C. Van Loan. (2013). Matrix Computations. Fourth.
Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins
University Press, Baltimore, MD.

References 157

Goodfellow, I., Y. Bengio, and A. Courville. (2016). Deep Learning.
MIT Press.

Google. “Google Scholar”. url: https://scholar.google.com/.
Greengard, L. and V. Rokhlin. (1987). “A fast algorithm for particle

simulations”. Journal of Computational Physics. 73(2): 325–348.
Groenen, P., J. de Leeuw, and R. Mathar. (1996). “Least squares

multidimensional scaling with transformed distances”. In: From
Data to Knowledge. Springer. 177–185.

Grover, A. and J. Leskovec. (2016). “node2vec: Scalable feature learning
for networks”. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 855–
864.

Hagberg, A., D. Schult, and P. Swart. (2008). “Exploring network
structure, dynamics, and cunction using NetworkX”. In: Proceedings
of the 7th Python in Science Conference. 11–15.

Hall, K. (1970). “An r-dimensional quadratic placement algorithm”.
Management Science. 17(3): 219–229.

Ham, J., D. Lee, S. Mika, and B. Schölkopf. (2004). “A kernel view of the
dimensionality reduction of manifolds”. In: International Conference
on Machine Learning. 47.

Hamilton, W., R. Ying, and J. Leskovec. (2017). “Representation learn-
ing on graphs: Methods and applications”. arXiv.

Hayden, T., J. Wells, W.-M. Liu, and P. Tarazaga. (1991). “The cone
of distance matrices”. Linear Algebra and its Applications. 144: 153–
169.

He, K., X. Zhang, S. Ren, and J. Sun. (2016). “Deep residual learning
for image recognition”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 770–778.

Higham, N. (1989). “Matrix nearness problems and applications”. In:
Applications of Matrix Theory. Vol. 22. Oxford University Press,
New York. 1–27.

Hinton, G. and S. Roweis. (2003). “Stochastic neighbor embedding”. In:
Advances in Neural Information Processing Systems. 857–864.

https://scholar.google.com/

158 References

Hiriart-Urruty, J.-B. and C. Lemaréchal. (1993). Convex Analysis and
Minimization Algorithms I. Fundamentals. Vol. 305. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin.

Hirsch, J. (2005). “An index to quantify an individual’s scientific research
output”. Proceedings of the National Academy of Sciences. 102(46):
16569–16572.

Holstein, K., J. Wortman Vaughan, H. Daumé III, M. Dudik, and H.
Wallach. (2019). “Improving fairness in machine learning systems:
What do industry practitioners need?” In: Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–16.

Hosseini, S., W. Huang, and R. Yousefpour. (2018). “Line search al-
gorithms for locally Lipschitz functions on Riemannian manifolds”.
SIAM Journal on Optimization. 28(1): 596–619.

Hotelling, H. (1933). “Analysis of a complex of statistical variables into
principal components”. Journal of Educational Psychology. 24(6):
417.

Hu, J., B. Jiang, L. Lin, Z. Wen, and Y. Yuan. (2019). “Structured quasi-
Newton methods for optimization with orthogonality constraints”.
SIAM Journal on Scientific Computing. 41(4): A2239–A2269.

Huang, W., P.-A. Absil, and K. Gallivan. (2017). “Intrinsic representa-
tion of tangent vectors and vector transports on matrix manifolds”.
Numerische Mathematik. 136(2): 523–543.

Huang, W., P.-A. Absil, and K. Gallivan. (2018). “A Riemannian BFGS
method without differentiated retraction for nonconvex optimization
problems”. SIAM Journal on Optimization. 28(1): 470–495.

Huang, W., K. Gallivan, and P.-A. Absil. (2015). “A Broyden class
of quasi-Newton methods for Riemannian optimization”. SIAM
Journal on Optimization. 25(3): 1660–1685.

HuggingFace. (2020). “Transformers”. url: https : / / github . com /
huggingface/transformers.

Hutchinson, B., V. Prabhakaran, E. Denton, K. Webster, Y. Zhong,
and S. Denuyl. (2020). “Social Biases in NLP Models as Barriers
for Persons with Disabilities”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. 5491–
5501.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

References 159

Hutchinson, M. (1989). “A stochastic estimator of the trace of the
influence matrix for Laplacian smoothing splines”. Communications
in Statistics – Simulation and Computation. 18(3): 1059–1076.

Indyk, P., J. Matoušek, and A. Sidiropoulos. (2017). “Low-distortion
embeddings of finite metric spaces”. In: Handbook of Discrete and
Computational Geometry. Ed. by C. D. Toth, J. O’Rourke, and J. E.
Goodman. Chapman and Hall/CRC. Chap. 8. 211–231.

Jensen, T. and M. Diehl. (2017). “An approach for analyzing the global
rate of convergence of quasi-Newton and truncated-Newton meth-
ods”. Journal of Optimization Theory and Applications. 172(1): 206–
221.

Ji, H. (2007). “Optimization approaches on smooth manifolds”. PhD
thesis. Australian National University.

Jiang, B. and Y.-H. Dai. (2015). “A framework of constraint preserving
update schemes for optimization on Stiefel manifold”. Mathematical
Programming. 153(2): 535–575.

Joachims, T. (2002). “Optimizing search engines using clickthrough
data”. In: Proceedings of the 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. 133–142.

Johnson, W. and J. Lindenstrauss. (1984). “Extensions of Lipschitz
mappings into a Hilbert space”. Contemporary Mathematics. 26(189-
206): 1.

Kamada, T. and S. Kawai. (1989). “An algorithm for drawing general
undirected graphs”. Information Processing Letters. 31(1): 7–15.

Knyazev, A. (2001). “Toward the optimal preconditioned eigensolver:
Locally optimal block preconditioned conjugate gradient method”.
SIAM Journal on Scientific Computing. 23(2): 517–541.

Knyazev, A. (2017). “Signed Laplacian for spectral clustering revisited”.
arXiv.

Knyazev, A. (2018). “On spectral partitioning of signed graphs”. In:
2018 Proceedings of the Seventh SIAM Workshop on Combinatorial
Scientific Computing. SIAM. 11–22.

Kobak, D. and P. Berens. (2019). “The art of using t-SNE for single-cell
transcriptomics”. Nature Communications. 10(1): 1–14.

Kobourov, S. (2012). “Spring embedders and force directed graph draw-
ing algorithms”. arXiv.

160 References

Kochurov, M., R. Karimov, and S. Kozlukov. (2020). “Geoopt: Rieman-
nian optimization in PyTorch”. arXiv.

Kokiopoulou, E., J. Chen, and Y. Saad. (2011). “Trace optimization and
eigenproblems in dimension reduction methods”. Numerical Linear
Algebra with Applications. 18(3): 565–602.

Koren, Y. (2003). “On spectral graph drawing”. In: International Com-
puting and Combinatorics Conference. Springer. 496–508.

Kruskal, J. (1964a). “Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis”. Psychometrika. 29(1): 1–27.

Kruskal, J. (1964b). “Nonmetric multidimensional scaling: A numerical
method”. Psychometrika. 29(2): 115–129.

Kunegis, J., S. Schmidt, A. Lommatzsch, J. Lerner, E. De Luca, and S.
Albayrak. (2010). “Spectral analysis of signed graphs for clustering,
prediction and visualization”. In: Proceedings of the 2010 SIAM
International Conference on Data Mining. SIAM. 559–570.

Lanczos, C. (1951). “An iteration method for the solution of the eigen-
value problem of linear differential and integral operators”. In: Pro-
ceedings of a Second Symposium on Large-Scale Digital Calculating
Machinery. Harvard University Press. 164–206.

Lawrence, N. (2011). “Spectral dimensionality reduction via maximum
entropy”. In: International Conference on Artificial Intelligence and
Statistics. 51–59.

Le, Q. and T. Mikolov. (2014). “Distributed representations of sentences
and documents”. In: International Conference on Machine Learning.
1188–1196.

LeCun, Y., C. Cortes, and C. Burges. (1998). The MNIST database of
handwritten digits. url: http://yann.lecun.com/exdb/mnist/.

Lee, D. and S. Seung. (1999). “Learning the parts of objects by non-
negative matrix factorization”. Nature. 401(6755): 788–791.

Liberti, L., C. Lavor, N. Maculan, and A. Mucherino. (2014). “Euclidean
distance geometry and applications”. SIAM Review. 56(1): 3–69.

Lin, T. and H. Zha. (2008). “Riemannian manifold learning”. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 30(5):
796–809.

http://yann.lecun.com/exdb/mnist/

References 161

Linial, N., E. London, and Y. Rabinovich. (1995). “The geometry of
graphs and some of its algorithmic applications”. Combinatorica.
15(2): 215–245.

Luce, R. (2012). Individual choice behavior: A theoretical analysis.
Courier Corporation.

Ma, Y. and Y. Fu. (2011). Manifold Learning Theory and Applications.
CRC press.

Maaten, L. van der and G. Hinton. (2008). “Visualizing data using
t-SNE”. Journal of Machine Learning Research. 9: 2579–2605.

Manton, J. (2002). “Optimization algorithms exploiting unitary con-
straints”. IEEE Transactions on Signal Processing. 50(3): 635–650.

Martinet, B. (1970). “Brève communication. Régularisation d’inéquations
variationnelles par approximations successives”. Revue française
d’informatique et de recherche opérationnelle. Série rouge. 4(R3):
154–158.

McInnes, L. (2020a). “pynndescent”. url: https://github.com/lmcinnes/
pynndescent.

McInnes, L. (2020b). “UMAP”. url: https://github.com/lmcinnes/
umap.

McInnes, L., J. Healy, and J. Melville. (2018). “UMAP: Uniform mani-
fold approximation and projection for dimension reduction”. arXiv.

Meghwanshi, M., P. Jawanpuria, A. Kunchukuttan, H. Kasai, and B.
Mishra. (2018). “McTorch, a manifold optimization library for deep
learning”. arXiv.

Menger, K. (1928). “Untersuchungen über allgemeine Metrik”. Mathe-
matische Annalen. 100(1): 75–163.

Meyer, R., C. Musco, C. Musco, and D. Woodruff. (2020). “Hutch++:
Optimal stochastic trace estimation”. arXiv.

Mikolov, T., I. Sutskever, K. Chen, G. Corrado, and J. Dean. (2013).
“Distributed representations of words and phrases and their compo-
sitionality”. In: Advances in Neural Information Processing Systems.
3111–3119.

Narayanan, A., M. Chandramohan, L. Rajasekar Venkatesan, Y.-L.
Chen, and S. Jaiswal. (2017). “graph2vec: Learning distributed
representations of graphs”. In: Workshop on Mining and Learning
with Graphs.

https://github.com/lmcinnes/pynndescent
https://github.com/lmcinnes/pynndescent
https://github.com/lmcinnes/umap
https://github.com/lmcinnes/umap

162 References

Nelson, M., K. Bryc, K. King, A. Indap, A. Boyko, J. Novembre, L.
Briley, Y. Maruyama, D. Waterworth, G. Waeber, et al. (2008).
“The Population Reference Sample, POPRES: a resource for popula-
tion, disease, and pharmacological genetics research”. The American
Journal of Human Genetics. 83(3): 347–358.

“NetworkLayout.jl”. (2020). url: https://github.com/JuliaGraphs/
NetworkLayout.jl.

Ng, P. (2017). “dna2vec: Consistent vector representations of variable-
length k-mers”. arXiv.

Nickel, M. and D. Kiela. (2017). “Poincaré embeddings for learning
hierarchical representations”. Advances in Neural Information Pro-
cessing Systems. 30: 6338–6347.

Nocedal, J. (1980). “Updating quasi-Newton matrices with limited
storage”. Mathematics of Computation. 35(151): 773–782.

Nocedal, J. and S. Wright. (2006). Numerical Optimization. Second.
Springer Series in Operations Research and Financial Engineering.
Springer, New York.

Novembre, J., T. Johnson, K. Bryc, Z. Kutalik, A. Boyko, A. Auton,
A. Indap, K. King, S. Bergmann, M. Nelson, et al. (2008). “Genes
mirror geography within Europe”. Nature. 456(7218): 98–101.

Page, L., S. Brin, R. Motwani, and T. Winograd. (1999). “The PageRank
citation ranking: Bringing order to the web”. Tech. rep. Stanford
InfoLab.

Parikh, N. and S. Boyd. (2014). “Proximal algorithms”. Foundations
and Trends in Optimization. 1(3): 127–239.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. (2019). “PyTorch:
An imperative style, high-performance deep learning library”. In:
Advances in Neural Information Processing Systems. 8024–8035.

Pearson, K. (1901). “On lines and planes of closest fit to systems of
points in space”. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science. 2(11): 559–572.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et
al. (2011). “Scikit-learn: Machine learning in Python”. Journal of
Machine Learning Research. 12: 2825–2830.

https://github.com/JuliaGraphs/NetworkLayout.jl
https://github.com/JuliaGraphs/NetworkLayout.jl

References 163

Perozzi, B., R. Al-Rfou, and S. Skiena. (2014). “DeepWalk: Online
learning of social representations”. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. 701–710.

Plackett, R. (1975). “The analysis of permutations”. Journal of the
Royal Statistical Society: Series C (Applied Statistics). 24(2): 193–
202.

Poličar, P., M. Stražar, and B. Zupan. (2019). “openTSNE: A modular
Python library for t-SNE dimensionality reduction and embedding”.
bioRxiv. doi: 10.1101/731877.

Pothen, A., H. Simon, and K.-P. Liou. (1990). “Partitioning sparse
matrices with eigenvectors of graphs”. SIAM Journal on Matrix
Analysis and Applications. 11(3): 430–452.

Quinn, N. and M. Breuer. (1979). “A forced directed component place-
ment procedure for printed circuit boards”. IEEE Transactions on
Circuits and systems. 26(6): 377–388.

Řehůřek, R. and P. Sojka. (2010). “Software Framework for Topic
Modelling with Large Corpora”. In: Proceedings of the LREC 2010
Workshop on New Challenges for NLP Frameworks. ELRA. 45–50.

Richardson, M. (1938). “Multidimensional psychophysics”. Psychological
Bulletin. 35: 659–660.

Ring, W. and B. Wirth. (2012). “Optimization methods on Riemannian
manifolds and their application to shape space”. SIAM Journal on
Optimization. 22(2): 596–627.

Rockafellar, R. (1976). “Monotone operators and the proximal point
algorithm”. SIAM Journal on Control and Optimization. 14(5): 877–
898.

Roweis, S. and L. Saul. (2000). “Nonlinear dimensionality reduction by
locally linear embedding”. Science. 290(5500): 2323–2326.

Ryu, E. and S. Boyd. (2014). “Stochastic proximal iteration: A non-
asymptotic improvement upon stochastic gradient descent”.

Sala, F., C. De Sa, A. Gu, and C. Ré. (2018). “Representation trade-
offs for hyperbolic embeddings”. In: International Conference on
Machine Learning. 4460–4469.

Sammon, J. (1969). “A nonlinear mapping for data structure analysis”.
IEEE Transactions on Computers. 100(5): 401–409.

https://doi.org/10.1101/731877

164 References

Sandberg, R. (2014). “Entering the era of single-cell transcriptomics in
biology and medicine”. Nature Methods. 11(1): 22–24.

Saul, L. (2020). “A tractable latent variable model for nonlinear di-
mensionality reduction”. Proceedings of the National Academy of
Sciences. 117(27): 15403–15408.

Saul, L. and S. Roweis. (2001). “An introduction to locally linear
embedding”. Tech. rep.

Schönemann, P. (1966). “A generalized solution of the orthogonal Pro-
crustes problem”. Psychometrika. 31(1): 1–10.

Schouten, B., M. Calinescu, and A. Luiten. (2013). “Optimizing quality
of response through adaptive survey designs”. Survey Methodology.
39(1): 29–58.

Shanno, D. (1970). “Conditioning of quasi-Newton methods for function
minimization”. Mathematics of Computation. 24(111): 647–656.

Sherwani, N. (2012). Algorithms for VLSI Physical Design Automation.
Springer Science & Business Media.

Sigl, G., K. Doll, and F. Johannes. (1991). “Analytical placement: A
linear or a quadratic objective function?” In: Proceedings of the 28th
ACM/IEEE design automation conference. 427–432.

Szubert, B., J. Cole, C. Monaco, and I. Drozdov. (2019). “Structure-
preserving visualisation of high dimensional single-cell datasets”.
Scientific Reports. 9(1): 1–10.

Tang, J., J. Liu, M. Zhang, and Q. Mei. (2016). “Visualizing large-scale
and high-dimensional data”. In: Proceedings of the 25th International
Conference on World Wide Web. 287–297.

Tang, J., M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. (2015).
“LINE: Large-scale information network embedding”. In: Proceedings
of the 24th International Conference on World Wide Web. 1067–
1077.

Tenenbaum, J., V. De Silva, and J. Langford. (2000). “A global geo-
metric framework for nonlinear dimensionality reduction”. Science.
290(5500): 2319–2323.

Torgerson, W. (1952). “Multidimensional scaling: I. Theory and method”.
Psychometrika. 17(4): 401–419.

References 165

Townsend, J., N. Koep, and S. Weichwald. (2016). “PyManopt: A
python toolbox for optimization on manifolds using automatic dif-
ferentiation”. The Journal of Machine Learning Research. 17(1):
4755–4759.

Trefethen, L. and D. Bau. (1997). Numerical Linear Algebra. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Tutte, W. T. (1963). “How to draw a graph”. Proceedings of the London
Mathematical Society. 3(1): 743–767.

Udell, M., C. Horn, R. Zadeh, S. Boyd, et al. (2016). “Generalized low
rank models”. Foundations and Trends in Machine Learning. 9(1):
1–118.

United States Census Bureau. “American Community Survey 2013–
2017 5-Year Data”. url: https://www.census.gov/newsroom/press-
kits/2018/acs-5year.html.

Von Ahn, L. and L. Dabbish. (2008). “Designing games with a purpose”.
Communications of the ACM. 51(8): 58–67.

von Luxburg, U. (2007). “A tutorial on spectral clustering”. Statistics
and Computing. 17(4): 395–416.

Wächter, A. and L. Biegler. (2006). “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming”. Mathematical Programming. 106(1, Series A): 25–57.

Wang, Y., H. Huang, C. Rudin, and Y. Shaposhnik. (2020). “Understand-
ing how dimension deduction tools work: An empirical approach
to deciphering t-SNE, UMAP, TriMAP, and PaCMAP for data
visualization”. arXiv.

Weinberger, K. and L. Saul. (2004). “Unsupervised learning of image
manifolds by semidefinite programming”. In: Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. Vol. 2.

White, L. and D. Ellison. (2019). “Embeddings.jl: Easy access to pre-
trained word embeddings from Julia”. Journal of Open Source Soft-
ware. 4(36): 1013.

Wilk, A., A. Rustagi, N. Zhao, J. Roque, G. Martínez-Colón, J. McK-
echnie, G. Ivison, T. Ranganath, R. Vergara, T. Hollis, et al. (2020).
“A single-cell atlas of the peripheral immune response in patients
with severe COVID-19”. Nature Medicine: 1–7.

https://www.census.gov/newsroom/press-kits/2018/acs-5year.html
https://www.census.gov/newsroom/press-kits/2018/acs-5year.html

166 References

Wilson, R., E. Hancock, E. Pekalska, and R. Duin. (2014). “Spherical
and hyperbolic embeddings of data”. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 36(11): 2255–2269.

Xu, Y. (2010). “Semi-supervised Learning on Graphs: A Statistical
Approach”. PhD thesis. Stanford University.

Yan, S., D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. (2006).
“Graph embedding and extensions: A general framework for dimen-
sionality reduction”. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 29(1): 40–51.

Young, G. and A. Householder. (1938). “Discussion of a set of points in
terms of their mutual distances”. Psychometrika. 3(1): 19–22.

Zhou, S., N. Xiu, and H.-D. Qi. (2019). “Robust Euclidean embedding
via EDM optimization”. Mathematical Programming Computation:
1–51.

Zhu, Z., S. Xu, M. Qu, and J. Tang. (2019). “GraphVite: A high-
performance CPU-GPU hybrid system for node embedding”. In:
Proceedings of the World Wide Web Conference. 2494–2504.

	Introduction
	Contributions
	Outline
	Related work

	I Minimum-Distortion Embedding
	Minimum-Distortion Embedding
	Embedding
	Distortion
	Minimum-distortion embedding
	Constraints
	Simple examples
	Validation

	Quadratic MDE Problems
	Solution by eigenvector decomposition
	Historical examples

	Distortion Functions
	Functions involving weights
	Functions involving original distances
	Preprocessing

	II Algorithms
	Stationarity Conditions
	Centered MDE problems
	Anchored MDE problems
	Standardized MDE problems

	Algorithms
	A projected quasi-Newton algorithm
	A stochastic proximal algorithm

	Numerical Examples
	Quadratic MDE problems
	Other MDE problems
	A very large problem
	Implementation

	III Examples
	Images
	Data
	Preprocessing
	Embedding

	Networks
	Data
	Preprocessing
	Embedding

	Counties
	Data
	Preprocessing
	Embedding

	Population Genetics
	Data
	Preprocessing
	Embedding

	Single-Cell Genomics
	Data
	Preprocessing
	Embedding

	Conclusions
	Acknowledgements
	References

