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ABSTRACT

For linear systems with unspecified parameters that lie between given upper and
lower bounds, we present a branch and bound algorithm that computes the minimum
stability degree.

1. INTRODUCTION

1.1. Notation

R (C) denotes the set of real (complex) numbers. For ¢ € C, Re c is the real part of
¢. The set of n x n matrices with real (complex) entries is denoted R*** (C**»), PT
stands for the transpose of P, and P*, the complex conjugate transpose. I denotes
the identity matrix, with size determined from context. For a matrix P € R**" (or
C™*"), Ai(P), 1 £ i < n denotes the ith eigenvalue of P (with no particular ordering).
Omax(P) denotes the maximum singular value (or spectral norm) of P, defined as

Tmas(P) = max /\(P*P).
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SD(P) denotes the stability degree of P ¢ R"**, defined as
SD(P) = ~ [max Re A;(P).

P is stable if SD{P) > 0, unstable otherwise.
The stability degree determines the slowest decay rate of any solution of # = Pxz:

SD(P) = inf {liminf:-—lo—sw ¢ = Pz, z(0) = zo}.

r€ER" t—r00

Thus, P is stable if and only if all solutions of # = Pz decay to zero as t — oo.

1.2. A Standard Form a Parameter-Dependent Linear System

We consider the family of linear time-invariant systems described by

z =Az+ Bu, z(0)=z,,
y =Cz+ Du, (1)
u = Ay,

where z(t) € R™, u(t), y(t) € R”, and A, B, C and D are real matrices of appropriate
sizes. A is a diagonal perturbation matriz. In the sequel, we will assume that A is
parametrized by a vector of parameters g = [91,921. .., gm], and is given by

A= diag(qulaqzjﬁ’-"iqum)! (2)

where I; is an identity matrix of size pi- Of course, 37" p; = p. We will also assume
that ¢ lies in a rectangle Qi = [hour) x [l3,ug) x -+ x [lm,um]. A block diagram of
the above family of linear systems is given in figure 1.

For future reference, we define

H(s)=C(sI - A)"'B + D,

which is the transfer matrix of the system from u to y. We will assume in the sequel
that the realization {A, B, C, D} is minimal.
We may now write down a state-space realization for the closed-loop system in
figure 1:
t =(A+ BA(I - DAY 'C)z,

for all A such that (I — DA) is invertible. We will use A(q) to denote the closed-loop
system matrix, that is

A(g) = (A + BA(I - DA)-'C). (3)

Note that the entries of A(g) are rational functions of the components of the parameter
vector g. Conversely, given any R**".valued function A(g) that has no singularities
at ¢ =0, we can find A, B, C, D and A such that equation (3) holds, i.e., we can
cast the system ¢ = A(q)z in the standard form.
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Figure 1: The standard form.

1.3. Some Important Questions
For uncertain systems in the standard form, there arise several important questions:

¢ Does the feedback system (1) make sense for all ¢ € Qinit, that is, do we have
det(I— DA) #0 for all ¢ € Qin, (4)

or equivalently, does the rational function A(¢) have no singularities in the rect-
angle Qinit? If (4) holds we say that the system is well-posed.

o If the feedback system (1) is well-posed, we can ask whether it is robustly stable,
that is, whether we have

A(q) is stable for all ¢ € Qins. (5)

The robust stability question can be adapted in several ways to form a quantitative
measure of stability robustness. We now describe two of these measures.
o Stability robustness margin

The stability margin SM of the system (1) is the largest factor by which the rect-
angle Qinis can be scaled about its center, while still guaranteeing well-posedness
and robust stability. That is,

SM(A, Qinis} = sup{7 : A(7(g — go) + o) is well-posed and stable ¥ ¢ € Qinit}s

where go is the center of the rectangle Q. If the stability margin is much larger
than one, we conclude that the uncertain system is not only robustly stable, but
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is “far away” from instability, in the sense that much larger parameter variations
are needed to destabilize the system. Conversely if the stability margin is much
smaller than one, we conclude that the system is not robustly stable, and indeed
there are parameters near the center of the rectangle that result in an unstable
system.

* Minimum stability degree

If the parameter-dependent system (1) is well-posed, we define jts minimum
stability degree (MSD) as

MSD(A, Qi) = \ eigf SDA(q).

nit

Of course, the parameter-dependent system (1) is robustly stable if and only if
its minimum stability degree is positive. Moreover, the MSD gives a guaranteed
rate of decay of the solutions z(t) of the state equations: for every value of the
parameter vector ¢, the solutions z(t) decay no slower than e~ (MSDIA.Quni))t | [y
fact,

MSD(A4, Qini) = sup {a : ‘11.12 z(t)e™ = 0 whenever z = A(g)z,q € ann} .

Equivalently,

MSD(A4, Qin) = inf {liminfl"gf”—(ﬂ l & = A(q)z, z(0) = xo}.

To€R™, g€Qini f—o0

1.4. Remarks:

We note that the stability margin and minimum stability degree are not equivalent
measures of stability robustness. Consider for example

eI
where ¢ is positive and small. No matter what interval the parameter q lies in, the
stability margin is +oc, and the minimum stability degree is ¢. Thus, for € small, this
system has a large (indeed, infinite) SM but a small MSD.

Conversely consider
E=—(l+e-gq)'s,

where ¢ is small and positive and 0 < ¢ < 1. For this system, the SM is 1 + 2¢,
indicating that the parameter dependent system is “just barely” robustly stable. On
the other hand, the MSD is 1 /(1 +€). For small ¢, therefore, all solutions decay not
much slower than e~*, which suggests the system is quite robust.

We also note that the MSD is a continuous function of the input data (A, B,
C, D, l;, u;), whereas the SM is not [2, 8]. Continuity of the MSD with respect to
the input data is an immediate consequence of the fact that the eigenvalues of the
matrix (A + BA(I - DA)~'C) are continuous functions of 4, B,C, D and A, as long
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as det(/ — DA) is bounded away from zero. In contrast, what follows shows that the
SM is not, in general, a continuous function of the input data.
Our example consists of a family of single-input-single-output linear time invari-
ant systems
z=(A+ el - kbe)z,

where ¢ and & are parameters and A, b and ¢ are constant matrices with

((s +0.8)* + 17.8929) ((s + 1.2)? + 16)

- -1y —
AL = A = G T + 178929) (s 17 % 16) (s = (5 = 315 5"

The following block diagram shows the setup.

(A+ ez + bu y
C

P =
y =cz

©,

We will regard k as the uncertain parameter and ¢ is the “state-space parameter”
or the “input datum”. Then for fixed ¢, the robust stability margin SM is just the
half-length of the largest interval of k centered at the nominal value ko (= 100), for
which the system is stable. For this system, it turns out that the robust stability
margin with respect to k is not a continuous function of e. Figure 2 shows the SM as
a function of e.

The discontinuity of SM as a function of ¢ is evident. The reason for the dis-
continuity is immediately obvious from the root locus with k of the system shown in
figure 3 (with ¢ = 0).

It is clear from the root locus plot that & is not a (single-valued) function of
the real part of the least damped eigenvalue. Now, as ¢ increases, the locus shifts
to the right and the value of k for which the locus crosses into the right half plane
decreases continuously for a while. When ¢ ~ 0.34, the value of k for which the locus
crosses into the right half plane becomes non-unique and causes the SM to have a
discontinuity.,
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Figure 2: The stability margin of the system as function of e.
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Figure 3: A portion of the root locus of the system showing the eigenvalues with
positive imaginary part.
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1.5. Some Approaches

Many of the questions described above have been extensively studied, and for some
special cases, efficient methods are known. For systems with a single uncertain pa-
rameter, for example, the Evan’s root locus can be used to ascertain robust stability
or determine the stability margin or minimum stability degree [4]. Less trivially,
Kharitonov’s theorem [5, 6] gives a very efficient method for determining robust sta-
bility for the special case when the coefficients of the characteristic polynomial of
A(q) are just the uncertain parameters g;. Kharitonov's theorem has been extended
to cover the case in which the characteristic polynomial is an affine function of ¢ (7, 8].

In [9], Anderson et al observed that the robust stability question is decidable,
which means that by evaluating a finite number of polynomial functions of the in-
put data (the entries of A, B, C, D, and the I;, ;), we can determine whether the
system is robustly stable. We can think of these decision procedures as generaliza-
tions of Routh’s procedure for determining stability of the characteristic polynomial
of a fixed matrix. It turns out, however, that these decision procedures involve an
extraordinarily large number of polynomials, even for small systems with few parame-
ters. Moreover the number of polynomials that need to be checked grows very rapidly
(more than exponentially) with system size and number of parameters.

Many methods for assessing robust stability of parameter-dependent linear sys-
tems fall into two categories—those that underestimate robustness and those that
overestimate robustness.

Pessimistic or conservative methods for robustness analysis underestimate ro-
bustness. These methods are usually based on some analytical result that describes
sufficient (but not necessary) conditions for robust stability, for example, a small gain
theorem, circle theorem, or Lyapunov theorem.

Optimistic methods, on the other hand, overestimate robustness, often by re-
stricting attention to a large but finite subset of Q;n;,. One example is Monte Carlo
methods: the minimum stability degree of a system is approximated by the smallest
stability degree of A(q) over many values of ¢ drawn from some distribution, often
uniform, on Qini. Another class of optimistic methods uses (local) optimization to
search for the “worst” parameter, that is, we find a local minimum of the function
SD{.A(q)) over the rectangle Qipi.

We describe an approach that uses a pessimistic method to establish the robust
stability of the shifted system & = (A(q) + al)z for some a; this value of a then serves
as a lower bound for MSD(A, Qinit). An upperbound for MSD(A, Qinit) is obtained by
one of the optimistic methods above. However, these bounds may be unsatisfactory,
in which case, a branch and bound technique [10, 11] is used to systematically improve
the bounds. At each stage of the algorithm, guaranteed upper and lower bounds are
available for MSD(A, Qinit).

The use of branch and bound algorithms for robustness analysis is not new. De
Gaston and Safonov [12] use a branch and bound algorithm for computing the SM
for systems with uncorrelated uncertain parameters (though they do not explicitly
mention the term “branch and bound”). Sideris and Peia [13] extend this algorithm
to the case when the parameters are real and may be correlated. In [14], Chang et
al. describe a similar branch and bound algorithm for computing the real structured
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singular value and the real multivariable stability margin. Vicino et al, (15]) use a
branch and bound algorithm with geometric programming ideas to compute the SM.,
Demarco et al. [16] use a branch and bound algorithm to study stability problems
arising in power systems. Our algorithm is closer to those described in [16], [12] and
[13]. .

In the following section, we describe the basic branch and bound algorithm in
detail; we then use it to compute the MSD in subsequent sections,

2. THE BRANCH AND BOUND ALGORITHM

The branch and bound algorithm (10, 11] finds the (global) minimum of a function
f:R™ — R over an m-dimensional rectangle Qini,.
For a rectangle Q C Qinit We define

Prin(Q) = ggg f(9).

Then, the algorithm computes ®p;,(Qinit) to within an absolute accuracy of ¢ >
0, using two functions ®1(Q) and ®,(Q) defined over {Q:Q¢ Qinit} (which,
presumably, are easier to compute than Pmin(Q)). These two functions satisfy the
following conditions.

(R1) P (Q) < Pmin(Q) < Pu(Q).

Thus, the functions &y, and ®.b compute a lower and upper bound on @y, ( Q),
respectively.

(R2} As the maximum half-length of the sides of Q, denoted by size( @), goes to zero,
the difference between upper and lower bounds uniformly converges to zero, i.e.,

Ve>036>0 VQC Qunt size(Q) < § = ‘bub(Q)-—@lb(Q) <e

Roughly speaking, then, the bounds P and P, become sharper as the rectangle
shrinks to a point.

We now describe the algorithm. We start by computing ®1,( Qinic) and Pub(Qinic)-
If @y (Qinie) — Pi(Qinit) < ¢, the algorithm terminates. Qtherwise we partition Q.
as a union of sub-rectangles as Q,;, = Q, U QzU... UQp, and compute ®15(Q;) and
Pu(Qi), ¢ =1,2,...,N. Then

1'5133_34 Pin( Qi) < Pmin(Qinit) < lfsl}isl}v Pun(Q:),
so we have new bounds on Prnin(Qirit). If the difference between the new bounds is
less than or equal to ¢, the algorithm terminates. Otherwise, the partition of Q,,, is
further refined and the bounds updated.
If a partition Qi = UN, Q; satisfies size(Qi) < 6,i=1,2,..., N, then by condi-
tion (R2) above,

lg}lsl}v Pun(Qi) - I!ST!!S!}V Pu(Qi) < ¢
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thus a “6-grid” ensures that ®uin(Qinit) is determined to within an absolute accuracy
of e. However, for the “5-grid”, the number of rectangles forming the partition (and
therefore the number of upper and lower bound calculations) grows exponentially
with 1/6. The branch and bound algorithm applies a heuristic rule for partitioning
Qinit» which in most cases leads to a reduction of the number of calculations compared
to the 6-grid. The heuristic is this: Given any partition Qinie = U, Q; that is to be
refined, pick a rectangle Q, from the partition such that ,,(Q;) = mimcicn Piu(Qi),
and split it into two halves. The rationale behind this rule is that since we are trying
to find the minimum of a function, we should concentrate on the “most promising”
rectangle,

The General Branch and Bound Algorithm

In the following description, k stands for the iteration index. L denotes the list of
rectangles, L; the lower bound and U, the upper bound for ®min(Qinit), at the end of
k iterations.

The Algorithm

k=0;

Lo= {Qinit}y'

Lo = ®1,(Qinic);

Vo = ®ub(Qinie);

while U, — Ly > ¢, {
pick @ € Ly such that $,(Q) = Ly;
split Q along one of its longest edges into Qp and Qyy;
Lipr:= (Lx = {QH U (Qr, Qui};
Lir := mingeg,,, Pn(Q);
Uksr 1= minqec.,,, Dun(Q);
k=k+1;

At the end of k iterations, Uy and L, are upper and lower bounds respectively
for ®4in(Qinic). Since the bounds ®1(Q) and &y, (Q) satisfy condition (R2), Uy — Ly
is guaranteed to converge to zero, and therefore the branch and bound algorithm
always terminates in finite number of steps. We refer the reader to [1] for a proof of
this fact.

It is clear that in the branching process described above, the number of rectangles
grows with the number of iterations N. Thus, as iterations proceed, the number of
rectangles might grow to be unmanageably large. However, under certain conditions,
we may eliminate some rectangles from consideration; they may be pruned since
®min(Qinit) cannot be achieved in them. This is done as follows.

Eliminate from list Ls, the rectangles Q € L, that satisfy

‘P]b( Q) > Uy.
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If a rectangle Q € L, satisfies this condition, then ¢ € Q = flq) > Us; however the
minimum of f(q) over Q. is guaranteed to be less then Us, and therefore cannot be
found in Q.

Though pruning is not necessary for the algorithm to work, it does reduce the
computation and storage requirements. We will see in the examples we present that
the algorithm often quickly prunes a large portion Q;ni,, and works with only a small
remaining subset.

3. COMPUTATION OF THE MSD

3.1. Computation of Upper and Lower Bounds for the MSD

With the system in the standard form, we now consider the problem of computing
upper and lower bounds for the MSD. Following the notation used to describe the
branch and bound algorithm, we have f(q) = SD(A(qg)) and @pin(Q) = MSD(A4, Q).
We now need to compute a lower bound P(Q) and an upper bound ®.(Q) for
MSD(4, Q).

For simplicity, we first consider the case where Q is the cube &/ = (-1,1]™.
We then demonstrate how the problem of computation of the bounds for a general
rectangle @ can be transformed into the simpler problem where Q = ¥/.

3.1.1. Bounds for an m-dimensional Cube U

A simple upper bound on the MSD over the cube Y is just the stability degree of the
system evaluated at the midpoint of the cube. Thus:

®ub(U4) = SD(A(0}) = SD(A). (6)

Computation of the lower bound s a little more involved; it is based on the
application of the small gain theorem (SGT) [17]. SGT states that the system in
figure 1 is well-posed and robustly stable (with Q = U) if |H|lo < 1, where

Hlle = sup omac(H(s))
Re >0

is the Hoo-norm of the transfer matrix H. Thus, we have
1l <1 == Ais well-posed over & and MSD(A,U) > 0.

To derive a better lower bound on MSD(A,uU), we consider the exponentially
time-weighted system

(A+al)z + Bu, z(0) = zy,
Cz + Du, (7)
Ay.

z
¥
u
Note that the solutions of equations (7) and (1) are simply related by z(t) = e™z(t).

Therefore,

MSD(A + al,U) = MSD(A, U) - a.
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Thus we have

MSD(A,U) > a, whenever [[H]lcoxr < 1,

where
[Hlloa = sup Omax{H(s))
Re > -a
is the o-shifted Ho norm of H [18]. Therefore, we define &y, (i) as
Qu(U) = inf {a: ||H|ca =1} .

(Note that if | H[|co,a 2 1 for all o, then p(U) = —o00.)

-

We now show how to compute Oy, (U). We first observe that:

¢ || H]|w,o is a nondecreasing function of a.
® ||H|loo,a = o0 for a > SD(A).

. “H”oo.a i Umu(D) as a — —00,

369

Obviously, ®y,(U) = —oo if and only if ome(D) 2 1, in which case SGT cannot
even establish well-posedness. However, ona(D) < 1 ensures that (I — DA) is

invertible for all ¢ € U, and the situation shown in figure 4 obtains.

IHan |

Figure 4: When oy (D) < 1, a bisection method can be used to compute &y

In (19, 20], it is shown that provided oma(D) < 1 and a < SD(A),
HHlw,a <1 if and only if

y. - [A+al+BRDTC ~-BR™'BT
a= cTs-1C —AT — ol - CTDR-BT

has no imaginary eigenvalues,
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where R = (I ~ DTD) and § = (I - DDT). Therefore, we may compute ®,{l{) via
a bisection on a, by checking whether M, has any imaginary eigenvalues.

We note that the above procedure for computing ®,(L/) is an application of the
“shifted circle criterion” (Anderson and Moore [21]).

3.1.2.  Normalization of the Parameter Rectangle Q

We demonstrate how, given a general rectangle Q, we may perform a loop trans-
formation so that the transformed system has perturbations that lie in [-1,1]™, s0
that then we may directly apply the results of the previous subsection. Figure 5
demonstrates the loop transformation, where the symbols H(s) and A refer to the
“loop-transformed” system and the normalized perturbation. (See [17] for a complete
discussion of loop transformations. )

The loop transformation can be interpreted as translating @ to the origin, and
then scaling it to the hypercube [-1,1™.

u2+12 um'f"lm
5 IL,..., 5 1),

ug -1 Um — Iy .
- ’1,,...-,~—'f‘r1,:)
are the offset and scaling respectively that accomplish thjs®
It is now epsily verified that A has the form diag(d; Jy, gz 1, . . +ygmln), where §
lies in the m-dimensional cube [=1,1]™ It is also easily verified that a state-space
representation of the loop-transformed system H(s) is given by {A, B, C, D}, where

A=A+ B(I-KD)KC, B =B(I- KDy F2, ©)
C = FY¥I - pK)-ic, D = F'3D(I - KD)-'F2,

K= diag("’;" h,
F=ding(M =l

Performing this loop transformation immediately checks the well-posedness of the
closed-loop system in figure 1 with A = K: the system is well-posed for A = K if

matrix (/ — K D).
We finally summarize the computation of the lower bound & (Q).

1. Compute A, B, ¢ and P according to equation (9).

2. Check that R= (I - DTD) > 0 and § = (I~ DDT) > 0. I either fails to hold,
then our lower bound on the MSD is —o0, i.e., we cannot even be sure that the
system is well-posed over Q. Otherwise, we have established well-posedness of
the feedback system in figure 1 for all g € Q.

3. If the feedback system is well-posed, then compute the lower bound as
[ A+QI-E}?“DT(’,‘ —BRjBT J
STS-16 iT AT 7y i1 AT
®1(Q) = inf {a: ¢isme —AT —al +CTDR'B

has imaginary eigenvalues
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Figure 5: Loop Transformation.

We show in 1] that the bounds that we have derived above satisfy the second
requirement (R2) listed at beginning of section 2, i.e., that the difference between the
two bounds converges uniformly to zero as the size of the parameter region goes to
zero.

3.2. Remarks

The branch and bound algorithm outlined in §2. may now be directly used to compute
the MSD. We observe the following:

¢ The algorithm first tries to establish well-posedness, and then goes on to compute
the MSD. To see this, we note that during the kth iteration, the branch and
bound algorithm splits a rectangle @ which satisfies ®w(Q) = Ly, where L, is
the lower bound on the MSD. Therefore, if L, = —o0, the rectangles which
are split are those over which the algorithm has been unable to establish well-
posedness. And the algorithm continues to concentrate on such rectangles until
it either establishes well-posedness through determining a lower bound for the
MSD that is greater than —co or finds a parameter value gy _posed Such that the
feedback system is not well-posed for ¢ = giy _posed:

o If &5(Q) > —oo, the algorithm also provides a “certificate” that proves that
$in(Q) is a lower bound: it is shown in [19] (see also {22, 23]) how to construct
a quadratic positive definite Lyapunov function V(z) that satisfies

V(z) < 200(Q)V(2) forall z € R™, g€ Q.

This proves that SD(A(q)) > ®1,(Q) for all ¢ € Q. Thus the algorithm proves
every lower bound on the MSD by “paving” the parameter space with quadratic
Lyapunov functions.

¢ The algorithm provides a “bad” parameter value on exit: the parameter vector
Qbad Such that SD(A(guea)) equals the upper bound on the MSD on exit, satisfies

F(Qoad) — MSD(A, Quuit) < .
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4. AN EXAMPLE

We consider the problem of computing the MSD of a family of systems
' 1

a(ql, q'l) .
= ) ,
b(?ll 42)

where ¢, € [-4,0] and ¢; € [—4,4] and

a(qnq) = (@ 4358+ (g +1)7+1/0.9
5(q1,q1) g + q; +1.

Obviously, the eigenvalues of A(q) are just 1/a(q;,q;) and 1 /¥%q1,93); therefore
the MSD is -1, and is achieved at =04 =0.

As the first step towards applying the branch and bound algorithm to this prob-
lem, we cast the system into the standard form of figure . This is a tedious, but
straightforward exercise; it involves realizing the rational functions that make up the
entries of A(¢) as a block diagram involving only simple gain blocks. The A B,C
and D matrices for the standard form are not shown here.

Figure 6 shows the level sets of SD(A(q)) over the parameter region. This is
nothing but a contour plot of the negative of the maximum real part of the eigenval-
ues of A(q). There are two local minima for SD(A(q)), and it so happens that the
minimum on the right is the global minimum. It is clear from the figure that a local
optimization procedure with random starting points will converge to the “spurious”
minimum on the left in about 75% of the cases. This includes the vertices of the
parameter region; a local optimization starting at any of the vertices will converge to
the peak on the left, which is not the global minimum. Of course, if the local opti-
mization procedure were repeated several times with randomly chosen initial starting
points, the procedure would probably converge to the global minimum at least once.
However, there is no way of telling if the local method has converged to the global
minimum; in other words, there are no guarantees.

On the other hand, figure 7 shows guaranteed upper and lower bounds for the
MSD returned by the branch and bound algorithm. It is clear that the algorithm
first attempts to establish well-posedness, i.e. , that the entries of A(q) are bounded
over the range of values for q. Figure 7 also shows the fraction of the volume {or in
this case, the area) of parameter space that has been eliminated from consideration
by the algorithm, as a function of iterations. Finally, figure 7 shows the number of
rectangles in the rectangle list, as a function of iterations.

Figure 8 shows the regions in parameter space that are still under consideration
at various stages of the algorithm. The algorithm can prove that the MSD cannot be
achieved outside these regions.

The algorithm returns a value of 1.00 for the MSD to within an absolute accuracy
of 0.01 at the end of about 10000 iterations. The algorithm also returns a “bad”
parameter value of g1 = 0 and ¢2 = 0.
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q2)

4 (q) 0

Figure 6: Level sets of SD(A(q)).

The reader might note with some concern that the algorithm takes 10000 it-
erations to compute the MSD which, as noted before, can be determined by mere
inspection. We address this with two remarks. First, the example presented above
has been carefully designed so that the MSD is a particularly simple function of
the parameters, which, needless to say, will not be the case in general. Secondly,
the bounds on the MSD that we have employed in the branch and bound algorithm
are quite crude; we mention a few improvements to the bounds in the conclusion.
We believe that such improvements will cut down the number of branch and bound
iterations significantly.
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After 500 iterations After 1000 iterations

After 2000 iterations ' After 4000 iterations

After 6000 iterations After 10000 iterations

Figure 8: The unpruned parameter region at various stages of the algorithm.
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3. CONCLUSIONS

We have described a simple branch and bound algorithm for computing the mini-
murm stability degree of parameter-dependent linear systems. The algorithm main-
tains provable upper and lower bounds on the MSD as it proceeds: it “paves” the
parameter space with quadratic positive definite Lyapunov functions that prove the
lower bound, and gives a parameter value that achieves the upper bound. The upper
and lower bounds are guaranteed to converge to the MSD. As iterations progress, the
algorithm prunes regions of parameter space, eliminating the possibility of the MSD
being achieved in these regions. Thus, the algorithm may be terminated at any stage
giving useful information about the MSD. The algorithm often performs well, but, in
the worst case, effectively grids the parameter space in which case the computational
effort will increase exponentially with the number of parameters.

There are some obvious ways in which the algorithm may be improved. The
upper bound computation may be improved through a local optimization or line
search (see, for example, [24]). The lower bound computation can be improved via
scaling the transfer matrix H so as to reduce its H..-norm [25, 26, 27). While these
improvements can substantially reduce computation times, they do not alter the
worst-case combinatorial nature of the algorithm, as far as we know.
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