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Abstract— This paper concerns a fractional function of the

form xT a/
√

xT Bx, where B is positive definite. We consider
the game of choosing x from a convex set, to maximize the
function, and choosing (a, B) from a convex set, to minimize
it. We prove the existence of a saddle point and describe an
efficient method, based on convex optimization, for computing
it. We describe applications in machine learning (robust Fisher
linear discriminant analysis), signal processing (robust beam-
forming, robust matched filtering), and finance (robust portfolio
selection). In these applications, x corresponds to some design
variables to be chosen, and the pair (a, B) corresponds to the
statistical model, which is uncertain.

I. INTRODUCTION

This paper concerns a fractional function of the form

f(x, a, B) =
xT a√
xT Bx

, (1)

where x, a ∈ R
n and B = BT ∈ R

n×n. We assume that

x ∈ X ⊆ R
n\{0} and (a, B) ∈ U ⊆ R

n ×S
n
++. Here S

n
++

denotes the set of n×n symmetric positive definite matrices.

We list some of the basic properties of the function f . It

is (positive) homogeneous (of degree 0) in x: for all t > 0,

f(tx, a, B) = f(x, a, B).

If

xT a ≥ 0 for all x ∈ X and for all a with (a, B) ∈ U , (2)

then for fixed (a, B) ∈ U , f is quasiconcave in x, and for

fixed x ∈ X , f is quasiconvex in (a, B). This can be seen

as follows: for γ ≥ 0, the set

{x | f(a, B, x) ≥ γ} =
{

x
∣

∣ γ
√

xT Bx ≤ xT a
}

is convex (since it is a second-order cone in R
n), and the

set

{(a, B) | f(a, B, x) ≤ γ} =
{

(a, B)
∣

∣ γ
√

xT Bx ≥ xT a
}

is convex (since
√

xT Bx is concave in B).

In this paper we consider the zero-sum game of choosing x
from a convex set X , to maximize the function, and choosing

(a, B) from a convex compact set U , to minimize it. The

game is associated with the following two problems:

• Max-min problem:

maximize inf
(a,B)∈U

f(x, a, B)

subject to x ∈ X ,
(3)

with variables x ∈ R
n.

• Min-max problem:

minimize sup
x∈X

f(x, a, B)

subject to (a, B) ∈ U ,
(4)

with variables a ∈ R
n and B = BT ∈ R

n×n.

The minimax inequality or weak minimax property

sup
x∈X

inf
(a,B)∈U

f(x, a, B) ≤ inf
(a,B)∈U

sup
x∈X

f(x, a, B) (5)

always holds for any X ⊆ R and any U ⊆ S
n
++. The

minimax equality or strong minimax property

sup
x∈X

inf
(a,B)∈U

f(x, a, B) = inf
(a,B)∈U

sup
x∈X

f(x, a, B) (6)

holds if X is convex, U is convex and compact, and (2)

holds, which follows from Sion’s quasiconvex-quasiconcave

minimax theorem [23].

In this paper we will show that the strong minimax

property holds with a weaker assumption than (2).

Theorem 1: Suppose that X is a cone in R
n, that does

not contain the origin, with X ∪{0} convex and closed, and

U is a convex compact subset of R
n×S

n
++. Suppose further

that
there exists x̄ ∈ X such that

x̄T a > 0 for all a with (a, B) ∈ U .
(7)

Consider the optimization problem

minimize (a + λ)T B−1(a + λ)
subject to (a, B) ∈ U , λ ∈ X ∗,

(8)

with variables a ∈ R
n, B = BT ∈ R

n×n, and λ ∈ R
n,

where X ∗ is the dual cone of X , i.e.,

X ∗ = {λ ∈ R
n | λT x ≥ 0, ∀x ∈ X}.

Then, this problem has a solution, say (a⋆, B⋆, λ⋆), that

satisfies

a⋆ + λ⋆ 6= 0, x⋆ = B⋆−1(a⋆ + λ⋆) ∈ X ,

and the triple (x⋆, a⋆, B⋆) satisfies the saddle-point property

xT a⋆

√
xT B⋆x

≤ x⋆T a⋆

√
x⋆T B⋆x⋆

≤ x⋆T a√
x⋆T Bx⋆

,

∀x ∈ X , ∀(a, B) ∈ U .
(9)

The proof is given in the full version [13] of the paper.
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From a standard result [3, §2.6] in minimax theory, the

saddle-point property (9) means that

f(x⋆, a⋆, B⋆) = sup
x∈X

f(x, a⋆, B⋆)

= inf
(a,B)∈U

f(x⋆, a, B)

= sup
x∈X

inf
(a,B)∈U

f(x, a, B)

= inf
(a,B)∈U

sup
x∈X

f(x, a, B).

As a consequence, x⋆ solves (3), and the pair (µ⋆, Σ⋆)
solves (4).

This minimax theorem has applications in machine learn-

ing (robust Fisher linear discriminant analysis), signal

processing (robust beamforming, robust matched filtering),

and finance (robust portfolio selection). In these applica-

tions, x corresponds to some design or model parameters to

be chosen, and the pair (a, B) corresponds to the statistical

model, which is uncertain.

The paper is organized as follows. We give a probabilistic

interpretation of the minimax result in Section II. We then

give the applications of the minimax result in machine learn-

ing, signal processing, and finance in Section III–Section V.

We give our conclusions in Section VI.

II. A PROBABILISTIC INTERPRETATION

In this section, we give a probabilistic interpretation of

Theorem 1.

A. Probabilistic linear separation

Suppose z ∼ N (a, B), and x ∈ R
n. Here, we use

N (a, B) to denote the Gaussian distribution with mean a
and covariance B. Then, xT z ∼ N (xT a, xT Bx), so

Prob(xT z ≥ 0) = Φ

(

xT a√
xT Bx

)

, (10)

where Φ is the cumulative distribution function of the stan-

dard normal distribution.

Theorem 1 with U = {(a, B)} tells us that the righthand

side of (10) is maximized (over x ∈ X ) by x = B−1(a+λ⋆),
where λ⋆ solves the convex problem (8) with U = {(a, B)}.

In other words, x = B−1(a + λ⋆) gives the hyperplane

through the origin that maximizes the probability of z being

on its positive side. The associated maximum probability is

Φ
(

[

(a + λ⋆)T B−1(a + λ⋆)
]1/2

)

. Thus, (a+λ⋆)T B−1(a+

λ⋆) (which is the objective of (8)) can be used to measure

the extent to which a hyperplane perpendicular to x ∈ X can

separate a random signal z ∼ N (a, B) from the origin.

We give another interpretation. Suppose that we know the

mean E z = a and the covariance E(z − a)(z − a)T = B
of z but its third and higher moments are unknown. Here E

denotes the expectation operation. Then, ExT z = xT a and

E(xT z − xT a)2 = xT Bx, so by the Chebyshev bound, we

have

Prob(xT z ≥ 0) ≥ Ψ

(

xT a√
xT Bx

)

, (11)

0

x⋆

Fig. 1. Illustration of x⋆ = B−1a. The center of the two confidence
ellipsoids (whose boundaries are shown as dashed curves) is a, and their
shapes are determined by B.

where Ψ(u) = max{u, 0}2/1 + max{u, 0}2. This bound is

sharp; in other words, there is a distribution for z with mean

a and covariance B for which equality holds in (11) [4], [25].

Since Ψ is increasing, this probability is also maximized by

x = B−1(a + λ⋆). Thus x = B−1(a + λ⋆) gives the hy-

perplane through the origin and perpendicular to x ∈ X that

maximizes the Chebyshev lower bound for Prob(xT z ≥
0). The maximum value of Chebyshev lower bound is

p⋆/(1 + p⋆), where p⋆ =
[

(a + λ⋆)T B−1(a + λ⋆)
]1/2

. This

quantity assesses the maximum extent to which a hyperplane

perpendicular to x ∈ X can separate from the origin

a random signal z whose first and second moments are

known but otherwise arbitrary. This quantity is an increasing

function of p⋆, so the hyperplane perpendicular to x ∈ X
that maximally separates from the origin a Gaussian random

signal z ∼ N (a, B) also maximally separates, in the sense

of the Chebyshev bound, a signal with known mean and

covariance.

When X = R
n\{0}, we have X ∗ = 0, so x = B−1a

maximizes the righthand side of (10). We can give its

graphical interpretation. We find the confidence ellipsoid of

the Gaussian distribution N (a, B) whose boundary touches

the origin. This ellipsoid is tangential to the hyperplane

through the origin and perpendicular to x = B−1a. Figure 1

illustrates this interpretation in R
2.

B. Worst-case statistics

We now assume that the mean and covariance are uncer-

tain, but known to belong to a convex compact subset U of

R
n × S

n
++. We make one technical assumption: for each

(a, Σ) ∈ U , we have a 6= 0. In other words, we rule out the

possibility that the mean is zero.

For fixed x, the problem of finding the worst-case statistics

can be written as

minimize Prob(xT z > 0)
subject to (a, B) ∈ U

where z ∼ N (a, B) and the variables are a ∈ R
n and B =

BT ∈ R
n×n. This problem is equivalent to

minimize f(x, a, B)
subject to (a, B) ∈ U .
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C. An interpretation of the minimax result

Consider the problem of finding a hyperplane through the

origin and perpendicular to x ∈ X that separates a normal

random variable z on R
n with uncertain first and second

moments belonging to U :

maximize inf
(a,B)∈U ,z∼N (a,B)

Prob(xT z ≥ 0)

subject to x ∈ X .

This problem is equivalent to

maximize inf
(a,B)∈U

f(x, a, B)

subject to x ∈ X .

Theorem 1 gives an effective solution method for this prob-

lem, based on convex optimization.

We close by pointing out that at the saddle point

(a⋆, B⋆, λ⋆) in Theorem 1, the pair (a⋆, B⋆) solves

minimize sup
x∈X

xT a/
√

xT Bx

subject to (a, B) ∈ U ,

so it solves

minimize sup
x∈X ,z∼N (a,B)

Prob(xT z > 0)

subject to (a, B) ∈ U .

In other words, the pair (a⋆, B⋆) gives the least favorable

statistics, with x chosen optimally to maximize the separation

probability.

III. ROBUST FISHER DISCRIMINANT ANALYSIS

As another application, we consider a robust classification

problem.

A. Fisher linear discriminant analysis

In linear discriminant analysis (LDA), we want to separate

two classes which can be identified with two random vari-

ables in R
n. Fisher linear discriminant analysis (FLDA) is

a widely-used technique for pattern classification, proposed

by R. Fisher in the 1930s. The reader is referred to standard

textbooks on statistical learning, e.g., [9], for more on FLDA.

For a (linear) discriminant characterized by w ∈ R
n,

the degree of discrimination is measured by the Fisher

discriminant ratio

F (w, µ+, µ−, Σ+, Σ−) =
(wT (µ+ − µ−))2

wT (Σ+ + Σ−)w
,

where µ+ and Σ+ (µ+ and Σ−) denote the mean and

covariance of examples drawn from the positive (negative)

class. A discriminant that maximizes the Fisher discriminant

ratio is given by

w̄ = (Σ+ + Σ−)−1(µ+ − µ−),

which gives the maximum Fisher discriminant ratio

sup
w 6=0

F (w, µ+, µ−, Σ+, Σ−)

= (µ+ − µ−)T (Σ+ + Σ−)−1(µ+ − µ−).

Once the optimal discriminant is found, we can form the

(binary) classifier

φ(x) = sgn(w̄T x + v), (12)

where

sgn(z) =

{

+1 z > 0
−1 z ≤ 0,

and v is the bias or threshold. The classifier picks the

outcome, given x, according to the linear boundary between

the two binary outcomes (defined by w̄T x + v = 0).

We can give a probabilistic interpretation of FLDA. Sup-

pose that x ∼ N (µ+, Σ+) and y ∼ N (µ−, Σ−). We want

to find w that maximizes Prob(wT x > wT y). Here,

x − y ∼ N (µ+ − µ−, Σ+ + Σ−),

so

Prob(wT x > wT y) = Prob(wT (x − y) > 0)

= Φ

(

wT (µ+ − µ−)
√

wT (Σ+ + Σ−)w

)

.

This probability is called the nominal discrimination proba-

bility. Evidently, FLDA amounts to maximizing the fractional

function

f(w, µ+ − µ−, Σ+ + Σ−) =
wT (µ+ − µ−)

√

wT (Σ+ + Σ−)w
.

B. Robust Fisher linear discriminant analysis

In FLDA, the problem data or parameters (i.e., the first

and second moments of the two random variables) are not

known but are estimated from sample data. FLDA can be

sensitive to the variation or uncertainty in the problem data,

meaning that the discriminant computed from an estimate

of the parameters can give very poor discrimination for

another set of problem data that is also a reasonable estimate

of the parameters. Robust FLDA attempts to systematically

alleviate this sensitivity problem by explicitly incorporating

a model of data uncertainty in the classification problem and

optimizing for the worst-case scenario under this model; see

[14] for more on robust FLDA and its extension.

We assume that the problem data µ+, µ−, Σ+, and Σ−

are uncertain, but known to belong to a convex compact

subset U of R
n×R

n×S
n
++×S

n
++. We make the following

assumption:

for each (µ+, µ−, Σ+, Σ−) ∈ U , we have µ+ 6= µ−. (13)

This assumption simply means that for each possible value

of the means and covariances, the two classes are distin-

guishable via FLDA.

The worst-case analysis problem of finding the worst-case

means and covariances for a given discriminant w can be

written as

minimize f(w, µ+ − µ−, Σ+ + Σ−)
subject to (µ+, µ−, Σ+, Σ−) ∈ U ,

(14)

with variables µ+, µ−, Σ+, and Σ−. Optimal points for

this problem, say (µwc
+ , µwc

− , Σwc
+ , Σwc

− ), are called worst-case
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means and covariances, which depend on w. With the worst-

case means and covariances, we can compute the worst-case

discrimination probability

Pwc(w) = Φ

(

wT (µwc
+ − µwc

− )
√

wT (Σwc
+ + Σwc

− )w

)

(over the set U of possible means and covariances).

The robust FLDA problem is to find a discriminant that

maximizes the worst-case Fisher discriminant ratio:

maximize inf
(µ+,µ

−
,Σ+,Σ

−
)∈U

f(w, µ+ − µ−, Σ+ + Σ−)

subject to w 6= 0,
(15)

with variable w. Here we choose a linear discriminant that

maximizes the Fisher discrimination ratio, with the worst

possible means and covariances that are consistent with our

data uncertainty model. Any solution to (15) is called a

robust optimal Fisher discriminant.

The robust robust FLDA problem (15) has the form (3)

We can see from (13) that the assumption (7) holds. The

robust FLDA problem can therefore be solved by using the

minimax result described above.

C. Numerical example

We illustrate the result with a classification problem in

R
2. The nominal means and covariances of the two classes

are

µ̄+ = (1, 0), µ̄− = (−1, 0), Σ̄+ = Σ̄− = I ∈ R
2×2.

We assume that only µ+ is uncertain and lies within the

ellipse

E = {µ+ ∈ R
2 | µ+ = µ̄+ + Pu, ‖u‖ ≤ 1},

where the matrix P which determines the shape of the ellipse

is

P =

[

0.78 0.64
0.64 0.78

]

∈ R
2×2.

Figure 2 illustrates the setting described above. Here the

shaded ellipse corresponds to E and the dotted curves are

the set of points µ+ and µ− that satisfy

‖Σ+
−1/2(µ+ − µ̄+)‖ = ‖µ+ − µ̄+‖ = 1,

‖Σ−
−1/2(µ− − µ̄−)‖ = ‖µ− − µ̄−‖ = 1.

The nominal optimal discriminant which maximizes the

Fisher discriminant ratio with the nominal means and co-

variances is given by wnom = (1, 0). The robust optimal

discriminant wrob is computed using the method described

above. Figure 2 shows two linear decision boundaries,

xT wnom = 0, xT wrob = 0,

determined by the two discriminants. Since the mean of the

positive class is uncertain and the uncertainty is significant

in a certain direction, the robust discriminant is tilted toward

the direction.

Table I summarizes the results. Here, Pnom is the nom-

inal discrimination probability and Pwc is the worst-case

µ+µ−

E
xT wnom = 0 xT wrob = 0

Fig. 2. A simple example for robust FLDA.

Pnom Pwc

nominal optimal discriminant 0.92 0.78
robust optimal discriminant 0.87 0.83

TABLE I

ROBUST DISCRIMINANT ANALYSIS RESULTS.

discrimination probability. The nominal optimal discriminant

achieves Pnom = 0.92, which corresponds to 92% of correct

discrimination without uncertainty. However, with uncer-

tainty present, its nominal discrimination probability de-

grades rapidly; the worst-case discrimination probability for

the nominal optimal discriminant is 78%. The robust optimal

discriminant performs well in the presence of uncertainty. It

has worst-case discrimination probability around 83%, 5%
higher than that of the nominal optimal discriminant.

IV. ROBUST MATCHED FILTERING

As another application, we consider robust matched filter-

ing, which has been extensively studied in 1980s; see, e.g.,

[11], [10], [21], [26], [27], [28] and the survey paper [12] for

robust signal processing techniques. In [28], Verdú and Poor

consider a game-theoretic approach to the design of filters

that are robust with respect to modeling uncertainties in the

signal and covariance and describe a set of convexity and

regularity conditions for the existence of a saddle point in

the game when the uncertainties in the signal and covariance

are separable. Most work on robust matched filtering focused

on finding signal and noise covariance models which allow

one to solve the robust matched filtering problem analytically

not numerically. More recently, ideas from the (worst-case)

robust optimization [1], [2] have been applied to robust

beamforming, a special type of robust matched filtering

problem [15].

In this section, we consider robust matched filtering with

a general uncertainty model.

A. Matched filtering

Consider a signal model

y(t) = s(t)a + v(t) ∈ R
n,

where s(t) ∈ R is the desired signal, y(t) ∈ R
n is the

received signal, and v(t) ∼ N (0, Σ) is the noise. The filtered
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output with weight vector w ∈ R
n is given by

z(t) = wT y(t) = s(t)wT a + wT v(t).

The goal is to detect the presence of the desired signal (which

usually takes its value from {0, 1}).

In (standard) matched filtering, we want to choose w that

maximizes the signal to noise ratio (SNR):

S(w, a, Σ) =
(wT a)2

wT Σw
.

This problem is equivalent to maximizing the square root of

the SNR (SSNR)

f(w, a, Σ) =
wT a√
wT Σw

.

The filter, called the nominal optimal filter, that maximizes

SSNR, is given by w = Σ−1a. When the covariance is an

identity matrix, the matched filter w = a is optimal. (See,

e.g., [24] for more on matched filtering.)

Once the filter coefficients are found, we can use a simple

thresholding rule

h(a) =

{

there is no signal, wT a < t
there is a signal, wT a > t,

(16)

to detect whether the desired signal is present. Here, t is the

threshold. By varying the threshold over R, we can obtain the

optimal receiver operating characteristic (ROC) curve, which

describes a fundamental limit of detection performance [24].

B. Robust matched filtering

We assume that the steering vector and covariance matrix

are uncertain, but known to belong to a convex compact

subset U of C
n ×S

n
++. We make one technical assumption:

for each pair (a, Σ) ∈ U , we have a 6= 0.

The worst-case SSNR analysis problem of finding a steer-

ing vector and a covariance that minimize SSNR for a given

weight vector w can be written as

minimize f(w, a, Σ)
subject to (a, Σ) ∈ U ,

(17)

with variables a and Σ. The optimal value of this problem

is the worst-case SSNR (over the uncertainty set U).

The robust matched filtering problem is to find a weight

vector that maximizes the worst-case SSNR. This problem

can be cast as the optimization problem

maximize inf
(a,Σ)∈U

f(x, a, B)

subject to w 6= 0,
(18)

with variables w. (The thresholding rule (16) that uses a

solution of this problem as the weight vector yields the robust

ROC curve that specifies limits of performance in the worst-

case sense.) This problem can be solved using Theorem 1.

We close by pointing out that we can handle convex

constraints on the weight vector. For example, in robust

beamforming, a special type of robust matched filtering

problem, we often want to choose the weight vector that

maximizes the worst-case SSNR, subject to a unit array

nominal SSNR worst-case SSNR

nominal optimal filter 5.5 3.0
robust optimal filter 4.9 3.6

TABLE II

ROBUST MATCHED FILTERING RESULTS.

gain for the desired wave and rejection constraints on in-

terferences [19]. This problem can also be solved using

Theorem 1.

C. Numerical example

As an illustrative example, we consider the case when

a = (2, 3, 2, 2) is fixed (with no uncertainty) and the noise

covariance Σ is uncertain and has the form








1 − + −
1 ? +

1 ?
1









.

(Only the upper triangular part is shown because the matrix

is symmetric.) Here, ‘+′ means that Σij ∈ [0, 1], ‘−′ means

that Σij ∈ [−1, 0], and ‘?′ means that Σij ∈ [−1, 1]. Of

course we assume Σ ≻ 0. The nominal noise covariance is

taken as

Σ̄ =









1 −.5 .5 −.5
1 0 .5

1 0
1









.

Here, the upper-triangular part is shown, since the matrix

is symmetric. With the nominal covariance, we compute the

nominal optimal weight vector or filter.

The least favorable covariance, found by solving the

convex problem (8) corresponding to the problem data above,

is given by

Σlf =









1 0 .38 −.12
1 .41 .74

1 .23
1









.

With the least favorable covariance, we compute the robust

optimal weight vector or filter.

Table II summarizes the results. The nominal optimal filter

achieves SSNR 5.5 without uncertainty. In the presence of

uncertainty, the SSNR achieved by the filter can degrade

rapidly; the worst-case SSNR level for the nominal optimal

filter is 3.0. The robust filter performs well in the presence

of model mismatch; It has the worst-case SSNR 3.6, which

is 20% larger than that of the nominal optimal filter.

V. WORST-CASE SHARPE RATIO MAXIMIZATION

As the final application, we consider robust asset alloca-

tion.
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A. Mean-variance asset allocation

Since the pioneering work of Markowitz [17], [18], mean-

variance (MV) analysis has been a topic of extensive re-

search. In MV analysis, the (percentage) returns of risky

assets 1, . . . , n over a period are modeled as a random vector

a = (a1, . . . , an) in R
n. The data or asset statistics needed

for MV analysis are the mean µ and covariance matrix Σ
of a:

µ = E a, Σ = E (a − µ)(a − µ)T .

Let wi denote the amount of asset i held throughout the

period. A long position in asset i corresponds to wi > 0, and

a short position in asset i corresponds to wi < 0. The return

of a portfolio w = (w1, . . . , wn) is a random variable wT a =
∑n

i=1 wiai whose mean and volatility (standard deviation)

are µT w and
√

wT Σw.

The portfolio budget constraint on w can be expressed,

without loss of generality, as 1
T w = 1. Here 1 is the vector

of all ones. We assume that an admissible portfolio w =
(w1, . . . , wn) is constrained to lie in a convex compact

subset A of R
n. The set of admissible portfolios under the

portfolio budget constraint is given by

W = {w | w ∈ A, 1
T w = 1}.

If the n risky assets with (single period) returns follow

a ∼ N (µ, Σ), then

wT a ∼ N (wT µ, wT Σw),

so the probability of outperforming a risk-free asset with

return µrf is

Prob(aT w > µrf) = Φ

(

µT w − µrf√
wT Σw

)

.

This probability is maximized by w ∈ W that maximizes

the Sharpe ratio (SR)

S(w, µ, Σ) =
µT w − µrf√

wT Σw
.

This portfolio is called the tangency portfolio (TP). (See,

e.g., [5], [22] for more on the role of the tangency portfolio

in asset pricing theory and practice.)

Suppose E a = µ, E (a− µ)T (a− µ) = Σ and otherwise

arbitrary. Then, E aT w = µT x, E (aT x− µT x)2 = wT Σw,

so it follows from the Chebyshev bound that

Prob(aT w ≥ µrf) ≥ Ψ

(

µT w − µrf√
wT Σw

)

.

This bound is also maximized by the tangency portfolio,

since Ψ is increasing.

B. Robust allocation

In ‘standard’ MV portfolio analysis, we assume that the

input parameters, namely, the mean vector and covariance

matrix of asset returns, are known for certain. In practice, the

input parameters are estimated through a statistical estima-

tion procedure and hence uncertain due to the imperfections

in the estimation procedure. Standard MV analysis is often

sensitive to uncertainty or estimation error in the parameters,

meaning that MV efficient portfolios computed with an

estimate of the parameters can give very poor performance

for another set of parameters that is similar and statistically

hard to distinguish from the estimate.

There has been a growing interest in (worst-case) robust

MV analysis and optimization as a systematic way of finding

portfolio weights that not only work well with the particular

baseline or nominal model, but that also performs reasonably

well despite model uncertainty or mis-specification; see,

e.g., [6], [7], [8], [16], [20]. The basic idea is to explicitly

incorporate a model of data uncertainty in the formulation

of a portfolio optimization problem, and to optimize for the

worst-case scenario under this model.

We assume that the expected return µ and covariance Σ
of the asset returns are uncertain but known to belong to a

convex compact subset U of R
n × S

n
++:

(µ, Σ) ∈ U ⊂ R
n × S

n
++.

Here, we assume that

there exists a portfolio w̄ ∈ W
such that µT w > µrf for all (µ, Σ) ∈ U .

(19)

For fixed w, the worst-case SR analysis problem can be

formulated as

minimize S(w, µ, Σ)
subject to (µ, Σ) ∈ U ,

(20)

in which the optimization variables µ and Σ. Note that w is

fixed here. The optimal value of this problem is called the

worst-case Sharpe ratio (over the uncertainty set U), and

denoted as Swc(w). In the sequel, we are only interested in

case when the maximum Sharpe ratio is greater than zero.

The problem of finding a portfolio w consisting only of

risky assets that maximizes the worst-case SR with the given

model U of uncertainty can be formulated as

maximize inf
(µ,Σ)∈U

S(w, µ, Σ)

subject to w ∈ W ,
(21)

with variable w ∈ R
n. This problem is called the worst-

case SR maximization problem. The optimal solution of the

problem is called a (worst-case) robust tangency portfolio

wrtp.

We cannot apply Theorem 1 immediately to the worst-

case SR maximization problem (21), since the objective is

not a fractional function of the form (1). However, we can

easily reformulate the problem to have our form. Note that

1
T w = 1 for all w ∈ W . Therefore, the SR has the form (1)

when the domain is restricted to W :

µT w − µrf√
wT Σw

=
(µ − µrf1)T w√

wT Σw
, ∀ w ∈ W .

The set

X = cl {tw ∈ R
n | w ∈ W , t > 0}\{0},

where clA means the closure of the set A and A\B means

the complement of B in A, is a cone in R
n, with X ∪
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{0} closed and convex. The assumption (19) along with the

compactness of U means that

inf
(µ,Σ)∈U

w̄T (µ − µrf1) > 0.

We can therefore apply Theorem 1 to a problem of the form

maximize inf
(a,Σ)∈U

f(x, µ − µrf1, Σ)

subject to x ∈ X .
(22)

This problem has a solution, say x⋆. It satisfies 1
T x⋆ ≥ 0.

Suppose x⋆ satisfies 1
T x⋆ > 0. Then, the portfolio

w⋆ = (1/1T x⋆)x⋆

satisfies the budget constraint and is admissible (i.e., w⋆ ∈
W). Therefore, it is a solution to the worst-case SR max-

imization (21). The case of 1
T x⋆ = 0 may arise when

the set W is unbounded. In this case, the worst-case SR

maximization problem (21) has no solution, so the game

involving the SR has no saddle point. The details are given

in the full version [13] of this paper.

C. Numerical example

We illustrate the result with a synthetic example with n =
7 risky assets. The risk-free return is taken as µrf = 5.

The nominal returns µ̄i and variances σ̄2
i of the risky assets

are taken as

µ̄ = [10.3 10.5 5.5 10.5 110 14.4 10.1]T ,

σ̄ = [11.3 18.1 6.8 22.7 24.0 14.7 20.9]T .

The nominal correlation matrix Ω̄ is

Ω̄ =





















1.00 .07 −.12 .43 −.11 .44 .25
1.00 .73 −.14 .39 .28 .10

1.00 .14 .5 .52 −.13
1.00 .04 .35 .38

1.00 .7 .04
1.00 −.09

1.00





















.

The nominal covariance is

Σ̄ = diag(σ̄)Ω̄ diag(σ̄),

where we use diag(u1, . . . , um) to denote the diagonal

matrix with diagonal entries u1, . . . , um.

The mean uncertainty model used in our study is

|µi − µ̄i| ≤ 0.3|µ̄i|, i = 1, . . . , 7,

|1T µ − 1
T µ̄| ≤ 0.15|1T µ̄|,

These constraints mean that the possible variation in the

expected return of each asset is at most 30% and the possible

variation in the expected return of the portfolio (1/n)1 (in

which a fraction 1/n of budget is allocated to each asset

of the n assets) is at most 15%. The covariance uncertainty

model used in our study is

|Σij − Σ̄ij | ≤ 0.3|Σ̄ij |, i, j = 1, . . . , 7,

‖Σ − Σ̄‖F ≤ 0.15‖Σ̄‖F .

(Here, ‖A‖F denotes the Frobenius norm of A, i.e., ‖A‖F =
(
∑n

i,j=1 A2
ij)

1/2.) These constraints mean that the possible

variation in each component of the covariance matrix is

at most 30% and the possible deviation of the covariance

from the nominal covariance is at most 15% in terms of the

Frobenius norm.

We consider the case when short selling is allowed in a

limited way as follows:

w = wlong − wshort,

wlong, wshort � 0,

1
T wshort ≤ η1T wlong,

where η is a positive constant, and wlong and wshort represent

the total long position and short position at the beginning of

the period, respectively. (w � 0 means that w is componen-

twise nonnegative.) The last constraint limits the total short

position to some fraction η of the total long position. In our

numerical study, we take γ = 0.3.

The asset constraint set is given by the cone

W =

{

w ∈ R
n | w = wlong − wshort, A

[

wlong

wshort

]

� 0

}

,

where

A =





−I 0
0 −I

−γ1
T

1
T



 ∈ R
(2n+1)×(2n).

A simple argument based on linear programming duality

shows that the dual cone of X = W is given by

X ∗ =

{

λ ∈ R
n

∣

∣

∣

∣

AT y +

[

λ
−λ

]

= 0 for some y � 0

}

.

We can find the robust tangency portfolio, by applying

Theorem 1 to the corresponding problem (22) with the asset

allocation constraints and uncertainty model described above.

The nominal tangency portfolio can be found using Theorem

1 with the singleton U = {(µ̄, Σ̄)}.

Table III shows the nominal and worst-case SR of the

nominal optimal and robust optimal allocations. In compar-

ison with the market portfolio, the robust market portfolio

shows a relatively small decrease in the SR, in the presence

of possible variations in the parameters. The SR of the robust

market portfolio decreases about 39% from 0.57 to 0.36,

while the SR of the robust market portfolio decreases about

70% from 0.74 to 0.22.

Table IV shows the probabilities of outperforming the

risk-free asset for the nominal optimal and robust optimal

weight allocations, when the asset returns follow a normal

distribution. Here, Pnom is the probability of beating the

risk-free asset without uncertainty called the outperformance

probability, and Pwc is the worst-case probability of out-

performing the risk-free asset with uncertainty. The nominal

optimal TP achieves Pnom = 0.77, which corresponds to

77% of outperforming the risk-free asset without uncertainty.

However, in the presence of uncertainty in the parameters,

its performance degrades rapidly; the worst-case outperfor-

mance probability for the nominal optimal discriminant is
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nominal SR worst-case SR

nominal TP 0.74 0.22

robust TP 0.57 0.36

TABLE III

NOMINAL AND WORST-CASE SR OF NOMINAL AND ROBUST TANGENCY

PORTFOLIOS.

Pnom Pwc

nominal TP 0.77 0.59

robust TP 0.71 0.64

TABLE IV

OUTPERFORMANCE PROBABILITY OF NOMINAL AND ROBUST

TANGENCY PORTFOLIOS.

59%. The robust optimal allocation performs well in the

presence of uncertainty in the parameters, with the worst-

case outperformance probability 5% higher than that of the

nominal optimal allocation.

VI. CONCLUSIONS

The fractional function f(x, a, B) = aT x/
√

xT Bx comes

up in many contexts, some of which are discussed above.

In this paper, we have established a minimax result for

this function, and a general computational method, based

on convex optimization, for computing a saddle point.

The arguments used to establish the minimax result do

not appear to be extensible to other fractional functions that

have a similar form. For instance, the extension to a general

fractional function of the form

g(x, A, B) =
xT Ax

xT Bx
,

which is the Rayleigh quotient of the matrix pair A ∈ R
n×n

and B ∈ R
n×n evaluated at x ∈ R

n, is not possible; see,

e.g., [28] for a counterexample. However, the arguments can

be extended to the special case when A is a dyad, i.e., A =
aaT with a ∈ R

n, and X = R
n\{0}. In this case, the

minimax equality

sup
x 6=0

inf
(a,B)∈U

(xT a)2

xT Bx
= inf

(a,B)∈U

sup
x 6=0

(xT a)2

xT Bx

holds with the assumption (7); see [14] for the proof.
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[27] S. Verdú and H. Poor. Signal selection for robust matched filtering.
IEEE Transactions on Communications, 31(5):667–670, 1983.
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