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Abstract. In this paper, we examine the convergence of mirror descent in a class of stochastic
optimization problems that are not necessarily convex (or even quasi-convex) and which we call
variationally coherent. Since the standard technique of ``ergodic averaging"" offers no tangible benefits
beyond convex programming, we focus directly on the algorithm's last generated sample (its ``last
iterate""), and we show that it converges with probabiility 1 if the underlying problem is coherent.
We further consider a localized version of variational coherence which ensures local convergence of
Stochastic mirror descent (SMD) with high probability. These results contribute to the landscape of
nonconvex stochastic optimization by showing that (quasi-)convexity is not essential for convergence
to a global minimum: rather, variational coherence, a much weaker requirement, suffices. Finally,
building on the above, we reveal an interesting insight regarding the convergence speed of SMD: in
problems with sharp minima (such as generic linear programs or concave minimization problems),
SMD reaches a minimum point in a finite number of steps (a.s.), even in the presence of persistent
gradient noise. This result is to be contrasted with existing black-box convergence rate estimates
that are only asymptotic.
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1. Introduction. Stochastic mirror descent (SMD) and its variants make up
arguably one of the most widely used families of first-order methods in stochastic
optimization---convex and nonconvex alike [3, 9, 10, 13, 24, 26, 27, 28, 29, 30, 31,
32, 34, 40, 45]. Heuristically, in the ``dual averaging"" (or ``lazy"") incarnation of the
method [34, 40, 45, 48], SMD proceeds by aggregating a sequence of independent and
identically distributed (i.i.d.) gradient samples and then mapping the result back to
the problem's feasible region via a specially constructed ``mirror map"" (the namesake
of the method). In so doing, SMD generalizes and extends the classical stochastic
gradient descent (SGD) algorithm (with Euclidean projections playing the role of
the mirror map) [33, 35, 36], the exponentiated gradient method of [22], the matrix
regularization schemes of [21, 26, 42], and many others.

Starting with the seminal work of Nemirovski and Yudin [32], the convergence
of mirror descent has been studied extensively in the context of convex program-
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ming (including distributed and stochastic optimization problems) [3, 31, 34, 45],
non-cooperative games/saddle-point problems [28, 31, 34, 47], and monotone varia-
tional inequality [20, 30, 34]. In this monotone setting, it is customary to consider
the so-called ergodic average \=Xn =

\sum n
k=1 \gamma kXk

\big/ \sum n
k=1 \gamma k of the algorithm's gener-

ated sample points Xn, with \gamma n denoting the method's step-size. The reason for this
is that, by Jensen's inequality, convexity guarantees that a regret-based analysis can
lead to explicit convergence rates for \=Xn [31, 34, 40, 45]. However,(a) this type of aver-
aging provides no tangible benefits in nonconvex programs; and (b) it is antagonistic
to sparsity (which plays a major role in applications to signal processing, machine
learning, and beyond). In view of this, we focus here directly on the properties of the
algorithm's last generated sample---often referred to as its ``last iterate.""

The long-term behavior of the last iterate of SMD was recently studied by Shamir
and Zhang [41] and Nedic and Lee [29] in the context of strongly convex problems.
In this case, the algorithm's last iterate achieves the same value convergence rate as
its ergodic average, so averaging is not more advantageous. Jiang and Xu [19] also
examined the convergence of the last iterate of SGD in a class of (not necessarily
monotone) variational inequalities that admit a unique solution, and they showed
that it converges to said solution with probability 1. In [11], it was shown that in
phase retrieval problems (a special class of nonconvex problems that involve systems
of quadratic equations), SGD with random initialization converges to global optimal
solutions with probability 1. Finally, in general nonconvex problems, Ghadimi and
Lan [15, 16] showed that running SGD with a randomized stopping time guarantees
convergence to a critical point in the mean, and they estimated the speed of this
convergence. However, beyond these (mostly recent) results, not much is known about
the convergence of the individual iterates of mirror descent in nonconvex programs.

Our contributions. In this paper, we examine the asymptotic behavior of mir-
ror descent in a class of stochastic optimization problems that are not necessarily
convex (or even quasi-convex). This class of problems, which we call variationally
coherent, are related to a class of variational inequalities studied by Jiang and Xu [19]
and, earlier, by Wang, Xiu, and Wang [44]---though, importantly, we do not assume
here the existence of a unique solution. Focusing for concreteness on the dual av-
eraging variant of SMD (also known as ``lazy"" mirror descent) [34, 40, 45], we show
that the algorithm's last iterate converges to a global minimum with probability 1
under mild assumptions for the algorithm's gradient oracle (unbiased i.i.d. gradient
samples that are bounded in L2). This result can be seen as the ``mirror image"" of
the analysis of [19] and reaffirms that (quasi-)convexity/monotonicity is not essential
for convergence to a global optimum point: the weaker requirement of variational
coherence suffices.

To extend the range of our analysis, we also consider a localized version of
variational coherence which includes multimodal functions that are not even locally
(quasi-)convex near their minimum points (so, in particular, an eigenvalue-based
analysis cannot be readily applied to such problems). Here, in contrast to the glob-
ally coherent case, a single, ``unlucky"" gradient sample could drive the algorithm away
from the ``basin of attraction"" of a local minimum (even a locally coherent one), pos-
sibly never to return. Nevertheless, we show that, with overwhelming probability, the
last iterate of SMD converges locally to minimum points that are locally coherent (for
a precise statement, see section 5).

Going beyond this ``black-box"" analysis, we also consider a class of optimization
problems that admit sharp minima, a fundamental notion due to Polyak [35]. In stark
contrast to existing ergodic convergence rates (which are asymptotic in nature), we
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show that the last iterate of SMD converges to sharp minima of variationally coherent
problems in an almost surely finite number of iterations, provided that the method's
mirror map is surjective. As an important corollary, it follows that the last iterate of
(lazy) SGD attains a solution of a stochastic linear program in a finite number of steps
(a.s.). For completeness, we also derive a localized version of this result for problems
with sharp local minima that are not globally coherent: in this case, convergence in
a finite number of steps is retained but, instead of ``almost surely,"" convergence now
occurs with overwhelming probability.

Important classes of problems that admit sharp minima are generic linear pro-
grams (for the global case) and concave minimization problems (for the local case).
In both instances, the (fairly surprising) fact that SMD attains a minimizer in a fi-
nite number of iterations should be contrasted to existing work on stochastic linear
programming which exhibits asymptotic convergence rates [2, 43]. We find this result
particularly appealing as it highlights an important benefit of working with ``lazy""
descent schemes: ``greedy"" methods (such as vanilla gradient descent) always take
a gradient step from the last generated sample, so convergence in a finite number
of iterations is a priori impossible in the presence of persistent noise. By contrast,
the aggregation of gradient steps in ``lazy"" schemes means that even a ``bad"" gradi-
ent sample might not change the algorithm's sampling point (if the mirror map is
surjective), so finite-time convergence is possible in this case.

Our analysis hinges on the construction of a primal-dual analogue of the Breg-
man divergence which we call the Fenchel coupling and which tracks the evolution
of the algorithm's (dual) gradient aggregation variable relative to a target point in
the problem's (primal) feasible region. This energy function allows us to perform
a quasi-Fej\'erian analysis of stochastic mirror descent and, combined with a series
of (sub)martingale convergence arguments, ultimately yields the convergence of the
algorithm's last iterate---first as a subsequence, then with probability 1.

Notation. Given a finite-dimensional vector space \scrV with norm \| \cdot \| , we write \scrV \ast 

for its dual, \langle y, x\rangle for the pairing between y \in \scrV \ast and x \in \scrV , and \| y\| \ast \equiv sup\{ \langle y, x\rangle :
\| x\| \leq 1\} for the dual norm of y in \scrV \ast . If \scrC \subseteq \scrV is convex, we also write ri(\scrC )
for the relative interior of \scrC , \| \scrC \| = sup\{ \| x\prime  - x\| : x, x\prime \in \scrC \} for its diameter, and
dist(\scrC , x) = infx\prime \in \scrC \| x\prime  - x\| for the distance between x \in \scrV and \scrC . For a given x \in \scrC ,
the tangent cone TC\scrC (x) is defined as the closure of the set of all rays emanating from
x and intersecting \scrC in at least one other point; dually, the polar cone PC\scrC (x) to \scrC 
at x is defined as PC\scrC (x) = \{ y \in \scrV \ast : \langle y, z\rangle \leq 0 for all z \in TC\scrC (x)\} . For concision,
we will write TC(x) and PC(x) instead when \scrC is clear from the context.

2. Problem setup and basic definitions.

2.1. The main problem. Let \scrX be a convex compact subset of a d-dimensional
vector space \scrV with norm \| \cdot \| . Throughout this paper, we will focus on stochastic
optimization problems of the general form

minimize f(x),

subject to x \in \scrX ,
(Opt)

where

f(x) = \BbbE [F (x;\omega )](2.1)

for some stochastic objective function F : \scrX \times \Omega \rightarrow \BbbR defined on an underlying (com-
plete) probability space (\Omega ,\scrF ,\BbbP ). In terms of regularity, our blanket assumptions for
(Opt) will be as follows.
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Assumption 1. F (x, \omega ) is continuously differentiable in x for almost all \omega \in \Omega .

Assumption 2. The gradient of F is uniformly bounded in L2, i.e., \BbbE [\| \nabla F (x;
\omega )\| 2\ast ] \leq M2 for some finite M \geq 0 and all x \in \scrX .

Remark 2.1. In the above, gradients are treated as elements of the dual space
\scrY \equiv \scrV \ast of \scrV . We also note that \nabla F (x;\omega ) refers to the gradient of F (x;\omega ) with
respect to x; since \Omega is not assumed to carry a differential structure, there is no
danger of confusion.

Assumption 1 is a token regularity assumption which can be relaxed to account for
nonsmooth objectives by using subgradient devices (as opposed to gradients). How-
ever, this would make the presentation significantly more cumbersome, so we stick
with smooth objectives throughout. Assumption 2 is also standard in the stochastic
optimization literature: it holds trivially if F is uniformly Lipschitz (another com-
monly used condition) and, by the dominated convergence theorem, it further implies
that f is smooth and \nabla f(x) = \nabla \BbbE [F (x;\omega )] = \BbbE [\nabla F (x;\omega )] is bounded. As a result,
the solution set

\scrX \ast = argmin f(2.2)

of (Opt) is closed and nonempty (by the compactness of \scrX and the continuity of f).
We briefly discuss below two important examples of (Opt).

Example 2.1 (distributed optimization). An important special case of (Opt) with
high relevance to statistical inference, signal processing, and machine learning is when
f is of the special form

f(x) =
1

N

N\sum 
i=1

fi(x)(2.3)

for some family of functions (or training samples) fi : \scrX \rightarrow \BbbR , i = 1, . . . , N . As an
example, this setup corresponds to empirical risk minimization with uniform weights,
the sample index i being drawn with uniform probability from \{ 1, . . . , N\} .

Example 2.2 (noisy gradient measurements). Another widely studied instance of
(Opt) is when

F (x;U) = f(x) + \langle U, x\rangle (2.4)

for some random vector U such that \BbbE [U ] = 0 and \BbbE [\| U\| 2\ast ] < \infty . This gives
\nabla F (x;U) = \nabla f(x) + U , so (Opt) can be seen here as a model for deterministic
optimization problems with noisy gradient measurements.

2.2. Variational coherence. We are now in a position to define the class of
variationally coherent problems.

Definition 2.1. We say that (Opt) is variationally coherent if

\langle \nabla f(x), x - x\ast \rangle \geq 0 for all x \in \scrX , x\ast \in \scrX \ast ,(VC)

and there exists some x\ast \in \scrX \ast such that equality holds in (VC) only if x \in \scrX \ast .

In words, (VC) states that solutions of (Opt) can be harvested by solving a
(Minty) variational inequality---hence the term ``variational coherence."" To the best
of our knowledge, the closest analogue to this condition first appeared in the classical
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paper of Bottou [5] on online learning and stochastic approximation algorithms, but
with the added assumptions that (a) the problem (Opt) admits a unique solution x\ast 

and (b) an extra positivity requirement for \langle \nabla f(x), x - x\ast \rangle in punctured neighborhoods
of x\ast . In the context of variational inequalities, a closely related variant of (VC) has
been used to establish the convergence of extragradient methods [14, 44] and SGD [19]
in (Stampacchia) variational inequalities with a unique solution. By contrast, there
is no uniqueness requirement in (VC), an aspect of the definition which we examine
in more detail below.

We should also note that, as stated, (VC) is a nonrandom requirement for f so
it applies equally well to deterministic optimization problems. Alternatively, by the
dominated convergence theorem, (VC) can be written equivalently as

\BbbE [\langle \nabla F (x;\omega ), x - x\ast \rangle ] \geq 0,(2.5)

so it can be interpreted as saying that F is variationally coherent ``on average,""
without any individual realization thereof satisfying (VC). Both interpretations will
come in handy later on.

All in all, the notion of variational coherence will play a central role in our paper
so a few examples are in order.

Example 2.3 (convex programming). If f is convex, \nabla f is monotone [38] in the
sense that

\langle \nabla f(x) - \nabla f(x\prime ), x - x\prime \rangle \geq 0 for all x, x\prime \in \scrX .(2.6)

By the first-order optimality conditions for f , it follows that \langle f(x\ast ), x  - x\ast \rangle \geq 0 for
all x \in \scrX . Hence, by monotonicity, we get

\langle \nabla f(x), x - x\ast \rangle \geq \langle \nabla f(x\ast ), x - x\ast \rangle \geq 0 for all x \in \scrX , x\ast \in \scrX \ast .(2.7)

By convexity, it further follows that \langle \nabla f(x), x  - x\ast \rangle < 0 whenever x\ast \in \scrX \ast and
x \in \scrX \setminus \scrX \ast , so equality holds in (2.7) if and only if x \in \scrX \ast . This shows that convex
programs automatically satisfy (VC).

Example 2.4 (quasi-convex problems). More generally, the above analysis also
extends to quasi-convex objectives, i.e., when

f(x\prime ) \leq f(x) =\Rightarrow \langle \nabla f(x), x\prime  - x\rangle \leq 0(QC)

for all x, x\prime \in \scrX [6]. In this case, we have the following.

Proposition 2.2. Suppose that f is quasi-convex and nondegenerate, i.e.,

\langle \nabla f(x), z\rangle \not = 0 for all nonzero z \in TC(x), x \in \scrX \setminus \scrX \ast .(2.8)

Then, f is variationally coherent.

Remark 2.2. The nondegeneracy condition (2.8) is generic in that it is satisfied
by every quasi-convex function after an arbitrarily small perturbation leaving its min-
imum set unchanged. In particular, it is automatically satisfied if f is convex or
pseudoconvex.

Proof. Take some x\ast \in \scrX \ast and x \in \scrX . Then, letting x\prime = x\ast in (QC), we readily
obtain \langle \nabla f(x), x  - x\ast \rangle \geq 0 for all x \in \scrX , x\ast \in \scrX \ast . Furthermore, if x /\in \scrX \ast but
\langle \nabla f(x), x  - x\ast \rangle = 0, the gradient nondegeneracy condition (2.8) would be violated,
implying in turn that, for any x\ast \in \scrX \ast , we have \langle \nabla f(x), x - x\ast \rangle = 0 only if x \in \scrX \ast .
This shows that f satisfies (VC).
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Example 2.5 (beyond quasi-convexity). A simple example of a function that is
variationally coherent without even being quasi-convex is

f(x) = 2

d\sum 
i=1

\surd 
1 + xi, x \in [0, 1]d.(2.9)

When d \geq 2, it is easy to see f is not quasi-convex: for instance, taking d = 2,
x = (0, 1), and x\prime = (1, 0) yields f(x/2 + x\prime /2) = 2

\surd 
6 > 2

\surd 
2 = max\{ f(x), f(x\prime )\} ,

so f is not quasi-convex. On the other hand, to estabilish (VC), simply note that

\scrX \ast = \{ 0\} and \langle \nabla f(x), x - 0\rangle =
\sum d

i=1 xi/
\surd 
1 + xi > 0 for all x \in [0, 1]d\setminus \{ 0\} .

Example 2.6 (a weaker version of coherence). Consider the function

f(x) =
1

2

d\prod 
i=1

x2
i , x \in [ - 1, 1]d.(2.10)

By inspection, it is easy to see that the minimum set of f is \scrX \ast = \{ x\ast \in [ - 1, 1]d :
x\ast 
i = 0 for at least one i = 1, . . . , d\} .1 Since \scrX \ast is not convex for d \geq 2, f is not

quasi-convex. On the other hand, we have \nabla f(x) = 2f(x) \cdot (1/x1, . . . , 1/xd), so
\langle \nabla f(x), x - 0\rangle \geq 0 for all x \in [ - 1, 1]d with equality only if x \in \scrX \ast . Moreover, for any
x\ast \in \scrX \ast and all x \in \scrX sufficiently close to x\ast , we have

\langle \nabla f(x), x - x\ast \rangle = 2f(x)

d\sum 
i=1

\biggl[ 
1 - x\ast 

i

xi

\biggr] 
= 2f(x)

\left[  d - \sum 
i:x\ast 

i \not =0

x\ast 
i

xi

\right]  \geq 0.(2.11)

We thus conclude that f satisfies the following weaker version of (VC).

Definition 2.3. We say that f : \scrX \rightarrow \BbbR is weakly coherent if the following con-
ditions are satisfied:

(a) There exists some p \in \scrX \ast such that \langle \nabla f(x), x  - p\rangle \geq 0 with equality only if
x \in \scrX \ast .

(b) For all x\ast \in \scrX \ast , \langle \nabla f(x), x - x\ast \rangle \geq 0 whenever x is close enough to x\ast .

Our analysis also applies to problems satisfying these less stringent requirements,
in which case the minimum set \scrX \ast = argmin f of f need not even be convex.2 For
simplicity, we will first work with Definition 2.1 and relegate these considerations to
section 5.

2.3. Stochastic mirror descent. To solve (Opt), we will focus on the SMD
family of algorithms, a class of first-order methods pioneered by Nemirovski and Yudin
[32] and studied further by Beck and Teboulle [3], Nesterov [34], Lan, Nemirovski, and
Shapiro [24], and many others. Referring to [8, 40] for an overview, the specific variant
of SMD that we consider here is usually referred to as dual averaging [28, 34, 45] or
lazy mirror descent [40].

The main idea of the method is as follows: At each iteration, the algorithm
takes as input an i.i.d. sample of the gradient of F at the algorithm's current state.
Subsequently, the method takes a step along this stochastic gradient in the dual space

1Linear combinations of functions of this type play an important role in training deep learning
models---and, in particular, generative adversarial network [17].

2Obviously, Definitions 2.1 and 2.3 coincide if \scrX \ast is a singleton. This highlights the intricacies
that arise in problems that do not admit a unique solution.
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\scrY \equiv \scrV \ast of \scrV (where gradients live), the result is ``mirrored"" back to the problem's
feasible region \scrX , and the process repeats. Formally, this gives rise to the recursion

Xn = Q(Yn),

Yn+1 = Yn  - \gamma n\nabla F (Xn;\omega n),
(SMD)

where
1. n = 1, 2, . . . denotes the algorithm's running counter,
2. Yn \in \scrY is a score variable that aggregates gradient steps up to stage n,
3. Q : \scrY \rightarrow \scrX is the mirror map that outputs a solution candidate Xn \in \scrX as a

function of the score variable Yn \in \scrV \ast ,
4. \omega n \in \Omega is a sequence of i.i.d. samples,3

5. \gamma n > 0 is the algorithm's step-size sequence, assumed in what follows to
satisfy the Robbins--Monro summability condition

\infty \sum 
n=1

\gamma 2
n <\infty and

\infty \sum 
n=1

\gamma n =\infty .(2.12)

For a schematic illustration and a pseudocode implementation of (SMD), see Figure 1
and Algorithm 1, respectively.

\scrX \subseteq \scrV 

\scrY = \scrV \ast 

Q

Y1

Y2 Y3

 - \gamma 1\nabla F (X1;\omega 1)

 - \gamma 2\nabla F (X2;\omega 2)

X1 X2

X3

Q

Q
Q

Fig. 1. Schematic representation of SMD (Algorithm 1).

Algorithm 1 Stochastic mirror descent.

Require: mirror map Q : \scrY \rightarrow \scrX ; step-size sequence \gamma n > 0
1: choose Y \in \scrY \equiv \scrV \ast \# initialization

2: for n = 1, 2, . . . do

3: set X \leftarrow Q(Y ) \# set state

4: draw \omega \in \Omega \# gradient sample

5: get \^v =  - \nabla F (X;\omega ) \# get oracle feedback

6: set Y \leftarrow Y + \gamma n\^v \# update score variable

7: end for

8: return X \# output

3The indexing convention for \omega n means that Yn and Xn are predictable relative to the natural
filtration \scrF n = \sigma (\omega 1, . . . , \omega n) of \omega n, i.e., Yn+1 and Xn+1 are both \scrF n-measurable. To this history,
we also attach the trivial \sigma -algebra as \scrF 0 for completeness.
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In more detail, the algorithm's mirror map Q : \scrY \rightarrow \scrX is defined as

Q(y) = argmax
x\in \scrX 

\{ \langle y, x\rangle  - h(x)\} ,(2.13)

where the regularizer (or penalty function) h : \scrX \rightarrow \BbbR is assumed to be continuous
and strongly convex on \scrX , i.e., there exists some K > 0 such that

h(\tau x+ (1 - \tau )x\prime ) \leq \tau h(x) + (1 - \tau )h(x\prime ) - 1
2K\tau (1 - \tau )\| x\prime  - x\| 2(2.14)

for all x, x\prime \in \scrX and all \tau \in [0, 1]. The mapping Q : \scrV \ast \rightarrow \scrX defined by (2.13) is
then called the mirror map induced by h. For concreteness, we present below some
well-known examples of regularizers and mirror maps.

Example 2.7 (Euclidean regularization). Let h(x) = 1
2\| x\| 

2
2. Then, h is 1-strongly

convex with respect to the Euclidean norm \| \cdot \| 2, and the induced mirror map is the
closest point projection

\Pi (y) = argmax
x\in \scrX 

\bigl\{ 
\langle y, x\rangle  - 1

2\| x\| 
2
2

\bigr\} 
= argmin

x\in \scrX 
\| y  - x\| 22.(2.15)

The resulting descent algorithm is known in the literature as (lazy) SGD and we study
it in detail in section 6. For future reference, we also note that h is differentiable
throughout \scrX and \Pi is surjective (i.e., im\Pi = \scrX ).

Example 2.8 (entropic regularization). Let \Delta = \{ x \in \BbbR d
+ :

\sum d
i=1 xi = 1\} denote

the unit simplex of \BbbR d. A widely used regularizer in this setting is the (negative) Gibbs

entropy h(x) =
\sum d

i=1 xi log xi: this regularizer is 1-strongly convex with respect to
the L1-norm and a straightforward calculation shows that the induced mirror map is

\Lambda (y) =
1\sum d

i=1 exp(yi)
(exp(y1), . . . , exp(yd)).(2.16)

This example is known as entropic regularization and the resulting mirror descent
algorithm has been studied extensively in the context of linear programming, online
learning, and game theory [1, 40]. For posterity, we also note that h is differentiable
only on the relative interior \Delta \circ of \Delta and im\Lambda = \Delta \circ (i.e., \Lambda is ``essentially"" surjective).

2.4. Overview of main results. To motivate the analysis to follow, we provide
below a brief overview of our main results:

\bullet Global convergence: If (Opt) is variationally coherent, the last iterate Xn of
(SMD) converges to a global minimizer of f with probability 1.

\bullet Local convergence: If x\ast is a locally coherent minimum point of f (a notion
introduced in section 5), the last iterate Xn of (SMD) converges locally to x\ast 

with high probability.
\bullet Sharp minima: If Q is surjective and x\ast is a sharp minimum of f (a funda-

mental notion due to Polyak which we discuss in section 6), Xn reaches x\ast in
a finite number of iterations (a.s.).

3. Main tools and first results. As a stepping stone to analyze the long-term
behavior of (SMD), we derive in this section a recurrence result which is interesting
in its own right. Specifically, we show that if (Opt) is coherent, then, with probability
1, Xn visits any neighborhood of \scrX \ast infinitely often; as a corollary, there exists a
(random) subsequence Xnk

of Xn that converges to argmin f (a.s.). In what follows,
our goal will be to state this result formally and to introduce the analytic machinery
used for its proof (as well as the analysis of the subsequent sections).
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3.1. The Fenchel coupling. The first key ingredient of our analysis will be the
Fenchel coupling, a primal-dual variant of the Bregman divergence [7] that plays the
role of an energy function for (SMD).

Definition 3.1. Let h : \scrX \rightarrow \BbbR be a regularizer on \scrX . The induced Fenchel
coupling F (p, y) between a base point p \in \scrX and a dual vector y \in \scrY is defined as

F (p, y) = h(p) + h\ast (y) - \langle y, p\rangle ,(3.1)

where h\ast (y) = maxx\in \scrX \{ \langle y, x\rangle  - h(x)\} denotes the convex conjugate of h.

By Fenchel's inequality (the namesake of the Fenchel coupling), we have h(p) +
h\ast (y)  - \langle y, p\rangle \geq 0 with equality if and only if p = Q(y). As such, F (p, y) can be
seen as a (typically asymmetric) ``distance measure"" between p \in \scrX and y \in \scrY . The
following lemma quantifies some basic properties of this coupling.

Lemma 3.2. Let h be a K-strongly convex regularizer on \scrX . Then, for all p \in \scrX 
and all y, y\prime \in \scrY , we have

(a) F (p, y) \geq K

2
\| Q(y) - p\| 2,(3.2a)

(b) F (p, y\prime ) \leq F (p, y) + \langle y\prime  - y,Q(y) - p\rangle + 1

2K
\| y\prime  - y\| 2\ast .(3.2b)

Lemma 3.2 (which we prove in Appendix B) shows that Q(yn) \rightarrow p whenever
F (p, yn) \rightarrow 0, so the Fenchel coupling can be used to test the convergence of the
primal sequence xn = Q(yn) to a given base point p \in \scrX . For technical reasons, it
will be convenient to also make the converse assumption.

Assumption 3. F (p, yn)\rightarrow 0 whenever Q(yn)\rightarrow p.

Assumption 3 can be seen as a ``reciprocity condition"": essentially, it means
that the sublevel sets of F (p, \cdot ) are mapped under Q to neighborhoods of p in \scrX 
(cf. Appendix B). In this way, Assumption 3 can be seen as a primal-dual analogue
of the reciprocity conditions for the Bregman divergence that are widely used in
the literature on proximal and forward-backward methods [9, 23]. Most common
regularizers satisfy this technical requirement (including the Euclidean and entropic
regularizers of Examples 2.7 and 2.8, respectively).

3.2. Main recurrence result. To state our recurrence result, we require one
last piece of notation pertaining to measuring distances in \scrX .

Definition 3.3. Let \scrC be a subset of \scrX .
1. The distance between \scrC and x \in \scrX is defined as dist(\scrC , x) = infx\prime \in \scrC \| x\prime  - x\| ,

and the corresponding \varepsilon -neighborhood of \scrC is

\BbbB (\scrC , \varepsilon ) = \{ x \in \scrX : dist(\scrC , x) < \varepsilon \} .(3.3a)

2. The (setwise) Fenchel coupling between \scrC and y \in \scrY is defined as F (\scrC , y) =
infx\in \scrC F (x, y), and the corresponding Fenchel \delta -zone of \scrC under h is

\BbbB F (\scrC , \delta ) = \{ x \in \scrX : x = Q(y) for some y \in \scrY with F (\scrC , y) < \delta \} .(3.3b)

We then have the following recurrence result for variationally coherent problems.

Proposition 3.4. Fix some \varepsilon > 0 and \delta > 0. If (Opt) is variationally coherent
and Assumptions 1--3 hold, the (random) iterates Xn of Algorithm 1 enter \BbbB (\scrX \ast , \varepsilon )
and \BbbB F (\scrX \ast , \delta ) infinitely many times (a.s.).
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Corollary 3.5. With probability 1, there exists a subsequence Xnk
of Xn con-

verging to a (random) minimum point x\ast of (Opt).

The proof of Proposition 3.4 consists of three main steps, which we outline below.

Step 1: Martingale properties of Yn. First, let

v(x) =  - \BbbE [\nabla F (x;\omega )] =  - \nabla f(x)(3.4)

denote the negative gradient of f at x \in \scrX , and write

\^vn =  - \nabla F (Xn;\omega n)(3.5)

for the corresponding oracle feedback at stage n. Then, Algorithm 1 may be written
in Robbins--Monro form as

Yn+1 = Yn + \gamma n\^vn = Yn + \gamma n[v(Xn) + Un],(3.6)

where

Un = \nabla f(Xn) - \nabla F (Xn;\omega n)(3.7)

denotes the difference between the mean gradient of f at Xn and the nth stage
gradient sample.4 By construction, Un is a martingale difference sequence relative
to the history (natural filtration) \scrF n = \sigma (\omega 1, . . . , \omega n) of \omega n, i.e.,

\BbbE [Un | \scrF n - 1] = 0 for all n.(3.8a)

Furthermore, by Assumption 2, it readily follows that Un has uniformly bounded
second moments, i.e., there exists some finite \sigma \geq 0 such that

\BbbE [\| Un\| 2\ast | \scrF n - 1] \leq \sigma 2 for all n,(3.8b)

implying in turn that Un is bounded in L2 (for a more detailed treatment, see Ap-
pendix B).

Step 2: Recurrence of \varepsilon -neighborhoods. Invoking the law of large numbers for
L2-bounded martingale difference sequences and using the Fenchel coupling as an
energy function (cf. Appendix B), we show that if Xn remains outside \BbbB (\scrX \ast , \varepsilon ) for
sufficiently large n, we must also have F (\scrX \ast , Yn) \rightarrow  - \infty (a.s.). This contradicts the
nonnegativity of F , so Xn must enter \BbbB (\scrX \ast , \varepsilon ) infinitely often (a.s.).

Step 3: Recurrence of Fenchel zones. By reciprocity (Assumption 3), \BbbB F (\scrX \ast , \delta )
always contains an \varepsilon -neighborhood of \scrX \ast . Since Xn enters \BbbB (\scrX \ast , \varepsilon ) infinitely many
times (a.s.), the same must hold for \BbbB F (\scrX \ast , \delta ). Our claim and Corollary 3.5 then
follow immediately.

4. Global convergence under coherence. The convergence of a subsequence
of Xn to the minimum set of (Opt) is one of the crucial steps in establishing our first
main result.

Theorem 4.1 (almost sure global convergence). Suppose that (Opt) is varia-
tionally coherent. Then, under Assumptions 1--3, Xn converges with probability 1 to
a (possibly random) minimum point of (Opt).

4Recall here that there is a one-step offset between Xn and \omega n+1 at the nth iteration of SMD.
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Corollary 4.2. If f is a nondegenerate quasi-convex (or pseudoconvex, or con-
vex ) function and Assumptions 1--3 hold, the last iterate of (SMD) converges with
probability 1 to a (possibly random) minimum point of (Opt).

Before discussing the proof of Theorem 4.1, it is important to note that most
of the literature surrounding (SMD) and its variants (see, e.g., [13, 31, 34, 45] and
references therein) focuses on the so-called ergodic average of Xn, i.e.,

\=Xn =

\sum n
k=1 \gamma kXk\sum n
k=1 \gamma k

.(4.1)

Despite the appealing ``self-averaging"" properties of \=Xn in convex problems [31, 34],
it is not clear how to extend the standard tools used to establish convergence of \=Xn

beyond convex/monotone problems (even to pseudoconvex programs). Since conver-
gence of Xn automatically implies that of \=Xn, Theorem 4.1 simultaneously establishes
the convergence of the last iterate of SMD and extends existing ergodic convergence
results to a wider class of nonconvex stochastic programs.

Corollary 4.2 also extends the corresponding results of [29] for the convergence of
the last iterate of (SMD) when f is (strongly) convex and h has Lipschitz-continuous
gradients (so the induced Bregman divergence can be bounded from above by a qua-
dratic surrogate of the primal norm). Our proof strategy is similar and relies on the
following lemma, often attributed to Gladyshev [35, p. 49].5

Lemma 4.3 (Gladyshev). Let an, n = 1, 2, . . . , be a sequence of nonnegative
random variables such that

\BbbE [an+1 | a1, . . . , an] \leq (1 + \delta n)an + \varepsilon n,(4.2)

where \delta n and \varepsilon n are nonnegative deterministic sequences with

\infty \sum 
n=1

\delta n <\infty and

\infty \sum 
n=1

\varepsilon n <\infty .(4.3)

Then, an converges (a.s.) to some random variable a\infty \geq 0.

As shown below, this ``quasi-Fej\'er"" monotonicity property plays a critical part in
establishing the convergence of (SMD).

Proof of Theorem 4.1. Let x\ast \in \scrX \ast be a minimum point of (Opt). Then, letting
Fn = F (x\ast , Yn), Lemma 3.2 gives

Fn+1 = F (x\ast , Yn+1) = F (x\ast , Yn + \gamma n\^vn)

\leq F (x\ast , Yn) + \gamma n\langle \^vn, Xn  - x\ast \rangle + \gamma 2
n

2K
\| \^vn\| 2\ast 

= Fn + \gamma n\langle v(Xn), Xn  - x\ast \rangle + \gamma n\xi n +
\gamma 2
n

2K
\| \^vn\| 2\ast 

\leq Fn + \gamma n\xi n +
\gamma 2
n

2K
\| \^vn\| 2\ast ,(4.4)

where we set \xi n = \langle Un, Xn  - x\ast \rangle in the third line and used the fact that f satis-
fies (VC) in the last one. Since Yn is predictable relative to \scrF n (i.e., Yn is \scrF n - 1-
measurable), the process Fn = F (x\ast , Yn) is itself adapted to the shifted filtration

5We thank an anonymous reviewer for suggesting this approach. Our original proof strategy
relied on the so-called ODE method of stochastic approximation [4] and was considerably more
intricate.
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\scrF \prime 
n = \sigma (\omega 1, Y2 . . . , \omega n - 1, Yn) = \scrF n - 1. Thus, taking conditional expectations and

invoking Assumption 2, the bound (4.4) becomes

\BbbE [Fn+1 | \scrF \prime 
n] \leq Fn + \BbbE [\xi n | \scrF \prime 

n] +
\gamma 2
n

2K
\BbbE [\| \^vn\| 2\ast | \scrF \prime 

n]

= Fn + \BbbE [\xi n | \scrF n - 1] +
\gamma 2
n

2K
\BbbE [\| \nabla F (Xn;\omega n)\| 2\ast | \scrF n - 1]

\leq Fn +
\gamma 2
nM

2

2K
,(4.5)

where, in the last line, we used Assumption 2 and the fact that Un is a martingale
difference sequence (so \BbbE [\xi n | \scrF n - 1] = 0; for a detailed derivation, see the proof of
Proposition 3.4 in Appendix B). Hence, with

\sum \infty 
n=1 \gamma 

2
n <\infty , Lemma 4.3 implies that

Fn converges (a.s.) to some finite limit F\infty .
Now, by Proposition 3.4, there exists (a.s.) a subsequence Ynk

of Yn and some
(possibly random) x\ast \in \scrX \ast such that limk\rightarrow \infty F (x\ast , Ynk

) = 0. Since the limit
limn\rightarrow \infty F (x\ast , Yn) exists (a.s.), it follows that limn\rightarrow \infty F (x\ast , Yn) = 0. This shows
that, with probability 1, Xn = Q(Yn) converges to some (random) minimum point x\ast 

of (Opt), as claimed.

In closing this section, we should note that the conclusion of Theorem 4.1 also
applies to problems that are ``almost"" coherent in the sense of Example 2.6, i.e.,

(a) there exists a minimizer p \in \scrX \ast such that \langle \nabla f(x), x  - p\rangle \geq 0 with equality
only if x \in \scrX \ast ;

(b) for all x\ast \in \scrX \ast , \langle \nabla f(x), x - x\ast \rangle \geq 0 whenever x is close enough to x\ast .
Proving this more general result requires some of the machinery presented in the
following section, so we relegate its discussion until all the requisite tools are in place.

5. Convergence under local/weak coherence. In this section, our goal is to
extend the convergence analysis of the previous section to account for optimization
problems that are only ``locally"" coherent. Building on Definition 2.1, these are defined
as follows.

Definition 5.1. Let \scrC be a closed set of local minimizers of f , viz. f(x) \geq f(x\ast )
for all x\ast \in \scrC and all x sufficiently close to \scrC . We say that \scrC is locally coherent if
there exists an open neighborhood U of \scrC such that

\langle \nabla f(x), x - x\ast \rangle \geq 0 for all x \in U , x\ast \in \scrC ,(LVC)

and there exists some x\ast \in \scrC such that equality holds in (LVC) only if x \in \scrC .
An immediate consequence of Definition 5.1 is that locally coherent sets are iso-

lated components of local minimizers of f . To see this, if \scrC , U , and x\ast are as in
Definition 5.1 and x \in U is a local minimizer of f , we would have \langle \nabla f(x), z\rangle \geq 0 for
all tangent z \in TC(x). Applying this to z = x\ast  - x gives \langle \nabla f(x), x - x\ast \rangle \geq 0, so, by
the definition of local coherence, we conclude that x \in \scrC .

We also note that although the minimum set of a globally coherent problem is a
fortiori locally coherent, the converse need not hold. A concrete example of a function
which is not globally coherent but which admits a locally coherent minimum is the
Rosenbrock test function

f(x) =

d\sum 
i=1

[100(xi+1  - xi)
2 + (1 - x2

i )], x \in [ - 2, 2]d,(5.1)
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which has seen extensive use in the literature as a nonconvex convergence speed
benchmark (cf. section 7).6 From this example, we see that the profile of f around a
locally coherent set could be highly nonconvex, possibly including a wide variety of
valleys, talwegs, and ridges; in fact, even quasi -convexity may fail to hold locally.

Now, in contrast to globally coherent optimization problems, an ``unlucky"" gra-
dient sample could drive (SMD) out of the ``basin of attraction"" of a locally coherent
set (the largest neighborhood U for which (LVC) holds), possibly never to return. For
this reason, instead of focusing on global convergence results with probability one, we
will focus on local convergence with high probability. Our main result along these
lines is as follows.

Theorem 5.2 (local convergence with high probability). Let \scrC be locally coher-
ent for (Opt) and fix some confidence level \delta > 0. Then, under Assumptions 1--3,
there exists an open neighborhood \scrU of \scrC , independent of \delta , such that

\BbbP (Xn converges to \scrC | X1 \in \scrU ) \geq 1 - \delta ,(5.2)

provided that the algorithm's step-size sequence \gamma n is small enough.

Remark 5.1. As a concrete application of Theorem 5.2, fix any \beta \in (1/2, 1]. Then,
for every confidence level \delta > 0, Theorem 5.2 implies that there exists some small
enough \gamma > 0 such that if Algorithm 1 is run with step-size \gamma n = \gamma /n\beta , (5.2) holds.
We emphasize the interesting point here: the open neighborhood \scrU is fixed once and
for all and does not depend on the probability threshold \delta . That is, to get convergence
with higher probability, it is not necessary to assume that X1 starts closer to \scrC : one
need only use a smaller step-size sequence satisfying (2.12).

The key idea behind the proof of Theorem 5.2 is as follows. First, it suffices to
consider the case where \scrC consists of a single local minimizer x\ast ; the argument for the
general case follows the same techniques as in section 4. Then, conditioning on the
event that Xn remains sufficiently close to x\ast for all n, convergence can be obtained
by invoking Theorem 4.1 and treating (Opt) as a variationally coherent problem over
a smaller subset of \scrX over which (LVC) holds. Therefore, to prove Theorem 5.2, it
suffices to show that Xn remains close to x\ast for all n with probability no less than
1 - \delta . To achieve this, we rely again on the properties of the Fenchel coupling, and we
decompose the stochastic errors affecting each iteration of the algorithm into a first-
order \scrO (\gamma n) martingale term and a second-order \scrO (\gamma 2

n) submartingale perturbation.
Using Doob's maximal inequality, we then show that the aggregation of both errors
remains controllably small with probability at least 1 - \delta .

We formalize all this below.

Proof of Theorem 5.2. We break the proof into three steps.

Step 1: Controlling the martingale error. Fix some \varepsilon > 0. As in the proof of
Theorem 4.1, let Un = \nabla f(Xn)  - \nabla F (Xn;\omega n) and set \xi n = \langle Un, Xn  - x\ast \rangle , where
x\ast \in \scrC is such that (LVC) holds as an equality only if x \in \scrC (cf. Definition 5.1). We
show below that there exists a step-size sequence (\gamma n)

\infty 
n=1 such that

\BbbP 

\Biggl( 
sup
n

n\sum 
k=1

\gamma k\xi k \leq \varepsilon 

\Biggr) 
\geq 1 - \delta 

2
.(5.3)

To show this, we start by noting that, as in the proof of Proposition 3.4, the aggregate
process Sn =

\sum n
k=1 \gamma k\xi k is a martingale relative to the natural filtration \scrF n of \omega n.

6Local coherence can be proved by a straightforward algebraic calculation (omitted for concision).
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Then, letting R = supx\in \scrX \| x\| , we can bound the variance of each individual term of
Sn as follows:

\BbbE [\xi 2k] = \BbbE [\BbbE [| \langle Uk, Xk  - x\ast \rangle | 2 | \scrF k - 1]]

\leq \BbbE [\BbbE [\| Uk\| 2\ast \| Xk  - x\ast \| 2 | \scrF k - 1]]

= \BbbE [\| Xk  - x\ast \| 2 \BbbE [\| Uk\| 2\ast | \scrF k - 1]]

\leq R2M2,(5.4)

where the first inequality follows from the definition of the dual norm and the second
one follows from (3.8b). Consequently, by Doob's maximal inequality (Theorem A.4
in Appendix A), we have

\BbbP 
\biggl( 

sup
0\leq k\leq n

Sk \geq \varepsilon 

\biggr) 
\leq \BbbP 

\biggl( 
sup

0\leq k\leq n
| Sk| \geq \varepsilon 

\biggr) 
\leq \BbbE [S2

n]

\varepsilon 2
\leq 

R2M2
\sum n

k=1 \gamma 
2
k

\varepsilon 2
,(5.5)

where the last inequality follows from expanding \BbbE [| Sn| 2], using (5.4), and noting that
\BbbE [\xi k\xi \ell ] = \BbbE [\BbbE [\xi k\xi \ell ] | \scrF k\vee \ell  - 1] = 0 whenever k \not = \ell . Therefore, by picking \gamma n so that\sum \infty 

k=1 \gamma 
2
k \leq \varepsilon 2\delta /(2R2M2), (5.5) gives

\BbbP 
\biggl( 

sup
0\leq k\leq t

Sk \geq \varepsilon 

\biggr) 
\leq 

R2M2
\sum n

k=1 \gamma 
2
k

\varepsilon 2
\leq 

R2M2
\sum \infty 

k=1 \gamma 
2
k

\varepsilon 2
\leq \delta 

2
for all n.(5.6)

Since the above holds for all n, our assertion follows.

Step 2: Controlling the submartingale error. Again, fix some \varepsilon > 0 and, with
a fair amount of foresight, let Rn = (2K) - 1

\sum n
k=1 \gamma 

2
k\| \^vk\| 2\ast . By construction, Rn is

a nonnegative submartingale relative to \scrF n. We again establish that there exists
step-size sequence (\gamma n)

\infty 
n=1 satisfying the summability condition (2.12) and such that

\BbbP 
\biggl( 
sup
n

Rn \leq \varepsilon 

\biggr) 
\geq 1 - \delta 

2
.(5.7)

To show this, Doob's maximal inequality for submartingales (Theorem A.3) gives

\BbbP 
\biggl( 

sup
0\leq k\leq n

Rk \geq \varepsilon 

\biggr) 
\leq \BbbE [Rn]

\varepsilon 
\leq 

M2
\sum n

k=1 \gamma 
2
k

2K\varepsilon 
,(5.8)

where we used the fact that \BbbE [\| \nabla F (Xn;\omega n)\| 2\ast ] \leq M2 for some finite M < \infty . Con-
sequently, if we choose \gamma n so that

\sum \infty 
k=1 \gamma 

2
k \leq K\delta \varepsilon /M2, (5.8) readily gives

\BbbP 
\biggl( 

sup
0\leq k\leq n

Rk \geq \varepsilon 

\biggr) 
\leq 

M2
\sum \infty 

k=1 \gamma 
2
k

2K\varepsilon 
\leq \delta 

2
for all n.(5.9)

Since the above is true for all n, (5.7) follows.

Step 3: Error aggregation. To combine the above, assume that \varepsilon > 0 is sufficiently
small so that \BbbB F (x

\ast , 3\varepsilon ) \subset U , where U is the open neighborhood given in (LVC).
Furthermore, let \scrU = \BbbB F (x

\ast , \varepsilon ) and pick a step-size sequence \gamma n satisfying (2.12) and
such that

\infty \sum 
n=1

\gamma 2
n \leq min

\biggl\{ 
\delta \varepsilon 2

2R2M2
,
K\delta \varepsilon 

M2

\biggr\} 
.(5.10)

If X1 \in \scrU , it follows that F (x\ast , Y1) < \varepsilon by the definition of \BbbB F (cf. Definition 3.3).
Then, by (5.3) and (5.7), we get \BbbP (supn Sn \geq \varepsilon ) \leq \delta /2 and \BbbP (supn Rn \geq \varepsilon ) \leq \delta /2.
Consequently, with this choice of \gamma n, it follows that
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\BbbP (supn max\{ Sn, Rn\} \leq \varepsilon ) \geq 1 - \delta /2 - \delta /2 = 1 - \delta .(5.11)

Then, letting Fn = F (x\ast , Yn) and arguing as in the proof of Theorem 4.1, we may
expand Fn = F (x\ast , Yn) to get

Fn = F (x\ast , Yn + \gamma n\^vn)

\leq Fn + \gamma n\langle v(Xn), Xn  - x\ast \rangle + \gamma n\xi n +
\gamma 2
n

2K
\| \nabla F (Xn;\omega n)\| 2\ast (5.12)

with \xi n = \langle Un, Xn  - x\ast \rangle defined as above. Telescoping (5.12) then yields

Fn \leq F1 +

n\sum 
k=1

\gamma k\langle v(Xk), Xk  - x\ast \rangle + Sn +Rn

\leq \varepsilon +

n\sum 
k=1

\gamma k\langle v(Xk), Xk  - x\ast \rangle + \varepsilon + \varepsilon (5.13)

with probability at least 1 - \delta . Therefore, with probability at least 1 - \delta , we have

F (x\ast , Yn) \leq 3\varepsilon +

n\sum 
k=1

\gamma k\langle v(Xk), Xk  - x\ast \rangle .(5.14)

Now, assume inductively that, for all k \leq n, we have F (x\ast , Yk) \leq 3\varepsilon or, equiv-
alently, Xk \in \BbbB F (x

\ast , 3\varepsilon ). In turn, this implies that \langle v(Xk), Xk  - x\ast \rangle \leq 0 for all
k \leq n and hence, by (5.14), that F (x\ast , Yn) \leq 3\varepsilon as well. Since the base case
X1 \in \scrU = \BbbB F (x

\ast , \varepsilon ) \subset \BbbB F (x
\ast , 3\varepsilon ) is satisfied automatically, we conclude that Xn

stays in \BbbB F (x
\ast , 3\varepsilon ) \subset U for all n with probability at least 1  - \delta . Our claim then

follows by conditioning on this event and repeating the same steps as in the proof of
Theorem 4.1.

We close this section by revisiting the notion of weak coherence (Definition 2.3).
In view of Definition 5.1, we see that weak coherence mixes elements of both global
and local coherence: on the one hand, it posits the existence of a (global) minimizer
p \in \scrX \ast for which (VC) holds globally, thus satisfying the second part of Definition 2.1;
on the other hand, minimizers other than p are only required to satisfy (VC) locally
(though they need not be locally coherent themselves). From a stability viewpoint,
this means that individual elements of a weakly coherent set may be stable but not
necessarily attracting (even locally). However, taken as a whole, weakly coherent sets
are globally attracting.

Theorem 5.3. Suppose that (Opt) is weakly coherent. Then, under Assump-
tions 1--3, Xn converges with probability 1 to a (possibly random) minimum point of
(Opt).

Proof. The proof is essentially a combination of the proofs of Theorems 4.1
and 5.2, so we only provide the main arguments and omit the minor details.

The first observation is that the conclusion of Proposition 3.4 only requires the
first part of Definition 2.3 (simply take x\ast = p in the proof of Proposition 3.4). From
this, we conclude that, with probability 1, the sequence of generated states Xn admits
a subsequence that converges to some (possibly random) point in \scrX \ast .

To proceed, fix some positive \delta and \varepsilon as in the proof of Theorem 5.2. Then, analo-
gously to (5.10), there exists some starting index n0 \equiv n0(\delta , \varepsilon ) such that

\sum \infty 
n=n0

\gamma 2
n \leq 
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M - 2 min
\bigl\{ 
\delta \varepsilon 2/(2R2),K\delta \varepsilon 

\bigr\} 
, implying in turn that \BbbP (supn\geq n0

Sn \geq \varepsilon ) \leq \delta /2 and
\BbbP (supn\geq n0

Rn \geq \varepsilon ) \leq \delta /2 (by (5.3) and (5.7), respectively). Then, arguing as in
(5.13), we get

Fn \leq Fn1
+

n\sum 
k=n1

\gamma k\langle v(Xk), Xk  - x\ast \rangle + 2\varepsilon for all n \geq n1 \geq n0(5.15)

with probability at least 1 - \delta .
Assume now that \varepsilon > 0 is sufficiently small so that \langle \nabla f(x), x  - x\ast \rangle \geq 0 for all

x \in \BbbB F (x
\ast , 3\varepsilon ) and all x\ast \in \scrX \ast (that such an \varepsilon exists is a consequence of Definition 2.3

and the compactness of \scrX \ast ). With this \varepsilon in hand, if x\ast \in \scrX \ast is a limit point of Xn

(recall our first observation above), we may instantiate n1 so that Fn1
= F (x\ast , Yn1

) <
\varepsilon . Then, for all n \geq n1, we will have Fn \leq 3\varepsilon +

\sum n
k=n1

\gamma k\langle v(Xk), Xk  - x\ast \rangle with
probability at least 1 - \delta . Thus, proceeding inductively as in the proof of Theorem 5.2,
we finally get

\BbbP (Xn \in \BbbB F (x
\ast , 3\varepsilon ) for all n \geq n1) \geq 1 - \delta .(5.16)

Since \varepsilon can be taken arbitrarily small in (5.16), we conclude that Xn converges to a
(possibly random) minimizer x\ast \in \scrX \ast with probability at least 1  - \delta . Hence, with
\delta > 0 itself arbitrary, our assertion follows.

6. Sharp minima and applications. Given the randomness involved at each
step, obtaining an almost sure (or high probability) bound for the convergence speed
of the last iterate of SMD is fairly involved: indeed, in contrast to the ergodic rate
analysis of SMD for convex programs, there is no intrinsic averaging in the algorithm's
last iterate, so it does not seem possible to derive a precise black-box convergence rate
for Xn. Essentially, as in the analysis of section 5, a single ``unlucky"" gradient sample
could violate any convergence speed estimate that is probabilistically independent of
any finite subset of realizations.

Despite this difficulty, if SMD is run with a surjective mirror map, we show below
that Xn reaches a minimum point of (Opt) in a finite number of iterations for a
large class of optimization problems that admit sharp minima (see below). As we
noted in section 2, an important example of a surjective mirror map is the standard
Euclidean projection \Pi (y) = argminx\in \scrX \| y  - x\| 2. The resulting descent method is
the well-known SGD algorithm (cf. Algorithm 2 below), so our results in this section
also provide new insights into the behavior of SGD.

6.1. Definition and characterization. The starting point of our analysis is
Polyak's fundamental notion of a sharp minimum [35, Chapter 5.2], which describes
functions that grow at least linearly around their minimum points.

Definition 6.1. We say that x\ast \in \scrX is a \rho -sharp (local) minimum of f if

f(x) \geq f(x\ast ) + \rho \| x - x\ast \| for some \rho > 0 and all x sufficiently close to x\ast .(6.1)

Polyak's original definition concerned global sharp minima of unconstrained (con-
vex) optimization problems; by contrast, the above definition is tailored to local op-
tima of constrained (and possibly nonconvex) programs. In particular, Definition 6.1
implies that sharp minima are isolated (local) minimizers of f , and they remain invari-
ant under small perturbations of f (assuming of course that such a minimizer exists
in the first place). In what follows, we shall omit the modifier ``local"" for concision
and rely on the context to resolve any ambiguities.
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Algorithm 2 Stochastic gradient descent.

Require: step-size sequence \gamma n > 0
1: choose Y \in \BbbR d, X = \Pi (Y ) \# initialization

2: for n = 1, 2, . . . do

3: get \^v =  - \nabla F (X;\omega ) \# oracle feedback

4: set Y \leftarrow Y + \gamma n\^v \# gradient step

5: set X \leftarrow \Pi (Y ) \# set state

6: end for

7: return X \# output

Sharp minima admit a useful geometric interpretation in terms of the polar cone
of \scrX . To state it, recall first the following basic definitions (see also the notation in
section 1).

Definition 6.2. Let \scrX be a closed convex subset of \BbbR d. Then,
1. the tangent cone TC(p) to \scrX at p is defined as the closure of the set of all

rays emanating from p and intersecting \scrX in at least one other point;
2. the dual cone TC\ast (p) to \scrX at p is the dual set of TC(p), viz. TC\ast (p) = \{ y \in 

\BbbR d : \langle y, z\rangle \geq 0 for all z \in TC(p)\} ;
3. the polar cone PC(p) to \scrX at p is the polar set of TC(p), viz. PC(p) =
 - TC\ast (p) = \{ y \in \BbbR d : \langle y, z\rangle \leq 0 for all z \in TC(p)\} .

The above gives the following geometric characterization of sharp minima.

Lemma 6.3. If x\ast \in \scrX is a \rho -sharp minimum of f , we have

\langle \nabla f(x\ast ), z\rangle \geq \rho \| z\| for all z \in TC(x\ast ).(6.2)

In particular, \nabla f(x\ast ) belongs to the topological interior of TC\ast (x\ast ). Conversely, if
(6.2) holds and f is convex, x\ast is sharp.

Proof of Lemma 6.3. For the direct implication, fix some x \in \scrX satisfying (6.1),
and let z = x - x\ast \in TC(x\ast ). Then, by the definition of a sharp minimum, we get

f(x\ast + \tau z) \geq f(x\ast ) + \rho \tau \| z\| for all \tau \in [0, 1].(6.3)

In turn, this implies that

f(x\ast + tz) - f(x\ast )

t
\geq \rho \| z\| for all sufficiently small t > 0.(6.4)

Hence, taking the limit t \rightarrow 0+, we get \langle \nabla f(x\ast ), z\rangle \geq \rho \| z\| , and our claim follows
from the definition of TC(x\ast ) as the closure of the set of all rays emanating from
x\ast and intersecting \scrX in at least one other point. Furthermore, if \nabla f(x\ast ) lies at the
boundary of TC(x\ast ), there exists some nonzero z \in TC(x\ast ) such that \langle \nabla f(x\ast ), z\rangle = 0;
this contradicts (6.2), so we conclude that \nabla f(x\ast ) is interior.

Finally, for the converse implication of the theorem, simply note that f(x)  - 
f(x\ast ) \geq \langle \nabla f(x\ast ), x - x\ast \rangle \geq \rho \| x - x\ast \| if f is convex.

Example 6.1 (linear programs). A first important class of examples of functions
that admit sharp minima is that of generic linear programs.7 Indeed, by definition, a

7``Generic"" means here that \scrX is a polytope, f : \scrX \rightarrow \BbbR is affine, and f is constant only on the
zero-dimensional faces of \scrX . Any linear program can be turned into a generic one after an arbitrarily
small perturbation.
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linear function grows (exactly) linearly around its minimum points so, by genericity,
we have the following.

Example 6.2 (concave minimization). For a nonconvex class of examples, let f
: \scrX \rightarrow \BbbR be a strictly concave function defined over a convex polytope \scrX of \BbbR d.
Concavity implies that f is superharmonic, i.e.,

\Delta f(x) =

d\sum 
i=1

\partial 2f

\partial x2
i

\leq 0(6.5)

for all x \in \scrX .8 By the minimum principle for superharmonic functions, the minimum
of f over any connected region \scrC of \scrX is attained at the boundary of \scrC . Hence, by strict
concavity, we conclude that the local minima of f are attained at zero-dimensional
faces of \scrX , and they are de facto sharp (simply note that f is strictly concave along
any ray of the form x\ast + tz, z \in TC(x\ast )).

Remark 6.1. Sharp minima have several other interesting and useful properties.
First, by Lemma 6.3, sharp minimum points are locally coherent. To see this, simply
note that for all x \in \scrX sufficiently close to x\ast (with x \not = x\ast ), we have z = x  - x\ast \in 
TC(x\ast ) and \langle \nabla f(x\ast ), z\rangle \geq \rho \| z\| > 0. Consequently, \langle \nabla f(x\ast ), x  - x\ast \rangle > 0, implying
by continuity that \langle \nabla f(x), x  - x\ast \rangle > 0 for all x in some open neighborhood of x\ast 

(excluding x\ast ). In addition, if (Opt) is variationally coherent, then a sharp (local)
minimum is globally sharp as well.

A second important property is that the dual cone TC\ast (x\ast ) of a sharp minimum
must necessarily have nonempty topological interior---since it contains \nabla f(x\ast ) by
Lemma 6.3. This implies that sharp minima can only occur at corners of \scrX : for
instance, if a sharp minimum were an interior point of \scrX , the dual cone to \scrX at x\ast 

would be a proper linear subspace of the ambient vector space, so it would have no
topological content (see also Example 6.2 above).

6.2. Global convergence in a finite number of iterations. We now turn to
showing that if a variationally coherent program admits a sharp minimum x\ast , Algo-
rithm 1 reaches x\ast in a finite number of iterations (a.s.). The interesting feature here
is that convergence is guaranteed to occur in a finite number of iterations: specifi-
cally, there exists some (random) n0 such that Xn = x\ast for all n \geq n0. In general,
this is a fairly surprising property for a first-order descent scheme, even if one con-
siders the ergodic average n - 1

\sum n
k=1 Xk: a priori, a single ``bad"" sample could kick

Xn away from x\ast , which is the reason why (ergodic) convergence rates are typically
asymptotic.

The key intuition behind our analysis is that sharp minima must occur at corners
of \scrX (as opposed to interior points). As a further key insight, when the solution
of (Opt) occurs at a corner, noisy gradients may still play the role of a random
disturbance; however, since they are applied to the dual process Yn, a surjective
mirror map would immediately project Yn back to a corner of \scrX if Yn has progressed
far enough in the interior of the polar cone to \scrX at x. This ensures that the last iterate
Xn of SMD will stay exactly at the optimal point, irrespective of the persistent noise
entering Algorithm 1. Exploiting these insights and the structural properties of sharp
minima, we have the following.

8We tacitly assume above that f is twice-differentiable but this conclusion still holds even if f is
not differentiable.
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Theorem 6.4. Suppose that (Opt) is variationally coherent. If f admits a (nec-
essarily unique) sharp minimum x\ast , and Algorithm 1 is run with a surjective mirror
map and Assumptions 1--3 hold, Xn converges to x\ast in a finite number of steps (a.s.).
More precisely, we have

\BbbP (Xn = x\ast for all sufficiently large n) = 1(6.6)

Corollary 6.5. Let f be a nondegenerate quasi-convex (or pseudoconvex, or
convex ) function and let x\ast be a sharp minimum of f . Then, with assumptions as
above, Xn reaches x\ast in a finite number of steps (a.s.).

The prototypical example of a surjective mirror map is the Euclidean projec-
tor \Pi (y) = argminx\in \scrX \| y  - x\| 2 induced by the quadratic regularization function
h(x) = \| x\| 22/2 (cf. Example 2.7). The resulting descent scheme is the well-known
SGD algorithm (see Algorithm 2 for a pseudocode implementation), for which we
obtain the following novel convergence result.

Corollary 6.6. If (Opt) is a generic linear program, the last iterate Xn of SGD
reaches its (necessarily unique) solution in a finite number of steps (a.s.).

Remark 6.2. The sharpness assumption is crucial for obtaining convergence in a
finite number of iterations, as is the use of ``lazy"" versus ``greedy"" mirror steps. A
special case of this result, when the objective is convex, was independently obtained
in the context of constraint identification and stochastic optimization in the recent
work [12].9

With all this said and done, we proceed with the proof of Theorem 6.4.

Proof of Theorem 6.4. Since x\ast is a \rho -sharp minimum, there exists a sufficiently
small open neighborhood \scrU of x\ast such that \langle \nabla f(x), z\rangle \geq \rho \| z\| /2 for all z \in TC(x\ast )
and all x \in \scrU (cf. Remark 6.1). By Theorem 4.1, Xn converges to x\ast (a.s.), so there
exists some (random) n0 such that Xn \in \scrU for all n \geq n0. In turn, this implies
that \langle \nabla f(Xn), z\rangle \geq \rho \| z\| /2 for all n \geq n0. Thus, continuing to use the notation
v(Xn) =  - \nabla f(Xn) and Un = \nabla f(Xn) - \nabla F (Xn;\omega n), we get for all z \in TC(x\ast ) with
\| z\| \leq 1

\langle Yn, z\rangle =

\Biggl\langle 
Yn0 +

n\sum 
k=n0

\gamma k\^vk, z

\Biggr\rangle 

= \langle Yn0
, z\rangle +

n\sum 
k=n0

\gamma k\langle v(Xk), z\rangle +
n\sum 

k=n0

\gamma k\langle Uk, z\rangle 

\leq \| Yn0
\| \ast  - 

\rho 

2

n\sum 
k=n0

\gamma k +

n\sum 
k=n0

\gamma k\langle Uk, z\rangle ,(6.7)

where, in the last line, we used the fact that Xk \in \scrU for all k \geq n0.
As we discussed in the proof of Theorem 4.1, \gamma nUn is a martingale difference

sequence relative to the natural filtration \scrF n of \omega n. Hence, by the law of large
numbers for martingale differences (cf. Theorem A.1 for p = 2 and \tau n =

\sum n
k=0 \gamma k),

we get

9We were made aware of the work of [12] during the final stages of the revision of our paper; we
are grateful to the authors for bringing it to our attention.
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lim
n\rightarrow \infty 

\sum n
k=n0

\gamma kUk\sum n
k=n0

\gamma k
= 0 (a.s.).(6.8)

Thus, there exists some n\ast such that \| 
\sum n

k=n0
\gamma kUk\| \ast \leq (\rho /4)

\sum n
k=n0

\gamma k for all n \geq n\ast 

(a.s.). (6.7) then implies

\langle Yn, z\rangle \leq \| Yn0
\| \ast  - 

\rho 

2

n\sum 
k=n0

\gamma k +

n\sum 
k=n0

\gamma k\langle Uk, z\rangle 

\leq \| Yn0
\| \ast  - 

\rho 

2

n\sum 
k=n0

\gamma k +
\rho 

4

n\sum 
k=n0

\gamma k = \| Yn0
\| \ast  - 

\rho 

4

n\sum 
k=n0

\gamma k,(6.9)

where we used the assumption that \| z\| \leq 1. Since
\sum n

k=n0
\gamma k \rightarrow \infty as n\rightarrow \infty , we get

\langle Yn, z\rangle \rightarrow  - \infty with probability 1.
To proceed, we claim that y\ast + PC(x\ast ) \subseteq Q - 1(x\ast ) whenever Q(y\ast ) = x\ast , i.e.,

Q - 1(x\ast ) contains all cones of the form y\ast + PC(x\ast ) for y\ast \in Q - 1(x\ast ). Indeed, note
first that x\ast = Q(y\ast ) if and only if y\ast \in \partial h(x\ast ), where \partial h(x\ast ) is the set of all
subgradients of h at x\ast [37]. Therefore, it suffices to show that y\ast + w \in \partial h(x\ast )
whenever w \in PC(x\ast ). To that end, note that the definition of the polar cone gives

\langle w, x - x\ast \rangle \leq 0 for all x \in \scrX , w \in PC(x\ast ),(6.10)

and hence

h(x) \geq h(x\ast ) + \langle y\ast , x - x\ast \rangle \geq h(x\ast ) + \langle y\ast + w, x - x\ast \rangle .(6.11)

The above shows that y\ast + w \in \partial h(x\ast ), as claimed.
With Q surjective, the set Q - 1(x\ast ) is nonempty, so it suffices to show that Yn lies

in the cone y\ast +PC(x\ast ) for some y\ast \in Q - 1(x\ast ) and all sufficiently large n. To do so,
simply note that Yn \in y\ast + PC(x\ast ) if and only if \langle Yn  - y\ast , z\rangle \leq 0 for all z \in TC(x\ast )
with \| z\| = 1. Since \langle Yn, z\rangle converges to  - \infty (a.s.), our assertion is immediate.

6.3. Local convergence in a finite number of iterations. Our convergence
analysis for locally coherent sets of minimizers (cf. section 5) showed that SMD con-
verges locally with high probability. Our last result in this section complements this
analysis by showing that, with high probability, SMD converges locally to sharp local
minima in a finite number of iterations.

Theorem 6.7. Let x\ast be a sharp (local) minimum of f , and fix some confidence
level \delta > 0. If Algorithm 1 is run with a surjective mirror map and Assumptions 1--3
hold, there exists an open neighborhood \scrU of x\ast , independent of \delta , such that

\BbbP (Xn = x\ast for all sufficiently large n | X1 \in \scrU ) \geq 1 - \delta ,(6.12)

provided that the algorithm's step-size sequence \gamma n is small enough.

Given that local minimizers of concave minimization programs are sharp, an ap-
plication of Theorem 6.7 gives the following convergence result for SGD.

Corollary 6.8. Suppose that f is strictly concave as in Example 6.2. Then, un-
der Assumptions 1 and 2, the last iterate of SGD converges locally to a local minimum
of (Opt) with arbitrarily high probability.
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Proof of Theorem 6.7. Under the stated assumptions, Theorem 5.2 implies that
there exists an open neighborhood \scrU of x\ast such that \BbbP (limn\rightarrow \infty Xn = x\ast | X0 \in \scrU ) \geq 
1  - \delta . In turn, this means that there exists some (random) n0 which is finite with
probability at least 1  - \delta and is such that \langle \nabla f(xn), z\rangle \geq \rho \| z\| /2 for all n \geq n0 (by
the sharpness assumption). Our assertion then follows by conditioning on this event
and proceeding as in the proof of Theorem 6.4.

We close this section by noting that the convergence of Xn in a finite number of
steps is a unique feature of lazy descent schemes with a surjective mirror map. For
example, if we consider the greedy (or eager) projected descent scheme

Xn+1 = \Pi (Xn  - \gamma n\nabla F (Xn;\omega n)),(6.13)

it is not possible to obtain a result similar to Theorems 6.4 and 6.7 without fur-
ther assumptions on the stochasticity affecting (Opt). To see why, assume that x\ast 

is a sharp minimum of (Opt) and Xn = x\ast for some n. If the sampled gradient
\nabla F (Xn;\omega n) attains all directions with positive probability (more precisely, if the
unit vector \nabla F (Xn;\omega n)/\| \nabla F (Xn;\omega n)\| \ast is supported on the entire unit sphere \BbbS d of
\BbbR d), there exists some \delta > 0 such that

\BbbP (\nabla F (Xn;\omega n) /\in TC\ast (x\ast )) \geq \delta for all n.(6.14)

We thus obtain

\BbbP (Xn+1 \not = x\ast | Xn = x\ast ) \geq \delta for all n,(6.15)

implying in turn that Xn cannot converge to x\ast in a finite number of iterations. We
find this property of lazy descent schemes particularly appealing as it ensures very
fast convergence in the presence of sharp minima.

7. Numerical experiments. In this section, we validate the theoretical analy-
sis of the previous sections via a series of numerical experiments.

As a first illustration of Theorems 4.1 and 5.3, we begin by plotting the gener-
ated trajectories of (SMD) for two nonconvex test functions satisfying the coherence
requirements of Definitions 2.1 and 2.3 respectively. Referring to Figure 2 for the
detailed expressions, the specific setup is as in Example 2.2 with U following a stan-
dard Gaussian distribution; (SMD) was then run with the Euclidean projector of
Example 2.7 and a step-size sequence \gamma n \propto 1/n. In both cases, the (randomly) gen-
erated trajectories of (SMD) are seen to converge to a minimum point of (Opt), even
when the problem's minimum set is nonconvex (as in the second example plotted in
Figure 2).

To go beyond globally coherent problems, we also test the convergence of (SMD)
against the widely used Rosenbrock benchmark of (5.1). This test function admits
a unique global minimum point at x\ast = (1, . . . , 1); however, this minimum is at the
lowest point of a very flat and thin parabolic valley which is notoriously difficult for
first-order methods to traverse [39]. Because of the parabolic shape of this valley, the
problem is not globally coherent (there are rays emanating from x\ast along which f fails
to be nondecreasing) but an easy algebraic calculation in the spirit of Example 2.6
shows that x\ast is locally coherent.

For illustration purposes, we first focus on a low-dimensional example with d = 2
degrees of freedom and algorithmic parameters as in Figure 2. Despite the lack of
global coherence, the simulated trajectories of (SMD) quickly reach the Rosenbrock
valley and eventually converge to the minimum of f ; a typical such trajectory is shown
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(a) f(r, \theta ) = (3 + sin(5\theta ) + cos(3\theta ))r2(5/3 - r) in polar coordinates (0 \leq r \leq 1, 0 \leq \theta \leq 2\pi ).

(b) f(x1, x2) = x2
1x

2
2,  - 1 \leq x1, x2 \leq 1.

Fig. 2. Convergence of SMD in a coherent problem with a unique minimizer (top) and a weakly
coherent problem with a nonconvex minimum set (bottom). In both cases, the minimum set of f is
plotted in solid black.

in Figure 3. Subsequently, in Figure 4, we run a series of tests on the Rosenbrock
function for d = 103 and d = 104 degrees of freedom. Because the calculation of
the gradient becomes increasingly difficult as d grows large, we take the approach of
Example 2.1 and, at each iteration n = 1, 2, . . . of the algorithm, we randomly pick an
integer between 1 and d and calculate the gradient of fi(x) = 100(xi+1 - xi)

2+(1 - xi)
2.

In so doing, we obtain the plots of Figure 4 where, for statistical significance,
we report the findings of S = 100 sample realizations. For comparison purposes, we
also include in the figure the performance of the ergodic average \=Xn of Xn as defined
in (4.1). This sequence is the standard output of mirror descent/dual averaging
schemes in convex problems; however, in our nonconvex setting, this averaging offers
no tangible benefits. This is seen clearly in Figure 4, where the convergence speed of
\=Xn is considerably slower than that of the algorithm's last iterate.
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Fig. 3. Convergence of the SMD algorithm in the Rosenbrock test with d = 2 degrees of freedom.
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Fig. 4. Convergence speed of SMD in the Rosenbrock benchmark for d = 103 and d = 104

degrees of freedom (left and right, respectively). The lightly shaded envelope indicates the best and
worst realizations of the algorithm over S = 100 sample runs; the corresponding sample mean is
represented by a solid black line. For comparison purposes, we also plot the performance of the
ergodic average \=Xn =

\sum n
k=1 \gamma kXk

\big/ \sum n
k=1 \gamma k of Xn (dashed red line). Due to lack of convexity, the

ergodic average of Xn converges at a significantly slower rate.

Finally, in Figure 5, we examine the convergence rate of (SMD) for quadratic
objective functions of the form

f(x) =
1

2

d\sum 
i,j=1

Qijxixj +

d\sum 
i=1

bixi.(7.1)

When x is constrained to lie on the unit simplex of \BbbR d, the minimization of f is related
to the maximum weight clique problem [25]: this problem is well known to be NP-
hard, so fast convergence to local minima of f is essential in order to get reasonable
approximate solutions.

Using again the stochastic setup of Example 2.2, we ran both Algorithm 2 and its
greedy variant (6.13) for a general random quadratic objective of the form (7.1) with
d = 100 and randomly drawn Q and b. As can be seen in Figure 5, the lazy variant of
SGD converges within a finite number of iterations, whereas the greedy variant still
oscillates within the allotted time window. This behavior is explained by Theorem 6.7
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Fig. 5. Convergence of the lazy and greedy variants of SGD in a quadratic minimization problem
of the form (7.1) with d = 100. The lightly shaded area traces the best and worst realizations of the
algorithm over S = 100 sample runs; the corresponding sample mean is drawn as a solid black line.
In the dedicated runtime (n = 1000 iterations), the greedy variant still hasn't converged; by contrast,
even the worst realization of lazy SGD has converged within approximately 300 iterations.

and the discussion that follows: because the greedy variant essentially ``remembers""
only the last state, convergence within a finite number of iterations is not possible; by
contrast, the dual averaging that takes place in the lazy variant allows Xn to converge
in finite time to a sharp local minimum, despite all the noise.

8. Discussion. To conclude, we first note that our analysis can be extended to
the study of stochastic variational inequalities with possibly nonmonotone operators.
The notion of a variationally coherent problem still makes sense for a variational
inequality ``as is,"" and the Fenchel coupling can also be used to establish almost sure
convergence to the solution set of a variational inequality. That said, there are several
details that need to be adjusted along the way, so we leave this direction to future
work.

Finally, we should also mention that another merit of SMD is that, at least for
(strongly) convex optimization problems, the algorithm is amenable to asynchronous
parallelization. This is an increasingly desirable advantage, especially in the presence
of large-scale datasets that are characteristic of ``big data"" applications requiring the
computing power of a massive number of parallel processors. Although we do not
tackle this question in this paper, the techniques developed here can potentially be
leveraged to provide theoretical guarantees for certain nonconvex stochastic programs
when SMD is run asynchronously and in parallel.

Appendix A. Elements of martingale limit theory. In this appendix,
we state for completeness some basic results from martingale limit theory which we
use throughout our paper. The statements are adapted from [18], where we refer the
reader for detailed proofs.

We begin with a strong law of large numbers for martingale difference sequences.

Theorem A.1. Let Mn =
\sum n

k=1 dk be a martingale with respect to an underlying
stochastic basis (\Omega ,\scrF , (\scrF n)

\infty 
n=1,\BbbP ) and let (\tau n)

\infty 
n=1 be a nondecreasing sequence of

positive numbers with limn\rightarrow \infty \tau n = \infty . If
\sum \infty 

n=1 \tau 
 - p
n \BbbE [| dn| p | \scrF n - 1] < \infty for some

p \in [1, 2] (a.s.), we have

lim
n\rightarrow \infty 

Mn

\tau n
= 0 (a.s.).(A.1)

The second result we use is Doob's martingale convergence theorem.
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Theorem A.2. If Mn is a submartingale that is bounded in L1 (i.e., supn
\BbbE [| Mn| ] <\infty ), Mn converges almost surely to a random variable M with \BbbE [| M | ] <\infty .

The next result is also due to Doob and is known as Doob's maximal inequality.

Theorem A.3. Let Mn be a nonnegative submartingale and fix some \varepsilon > 0.
Then,

\BbbP (supn Mn \geq \epsilon ) \leq \BbbE [Mn]

\epsilon 
.(A.2)

Finally, a widely used variant of Doob's maximal inequality is the following.

Theorem A.4. With assumptions and notation as above, we have

\BbbP (supn| Mn| \geq \epsilon ) \leq \BbbE [M2
n]

\epsilon 2
.(A.3)

Appendix B. Technical proofs. In this appendix, we present the proofs that
were omitted from the main text. We begin with the core properties of the Fenchel
coupling.

Proof of Lemma 3.2. To prove the first claim, let x = Q(y) = argmaxx\prime \in \scrX \{ \langle y, x\prime \rangle  - 
h(x\prime )\} , so y \in \partial h(x) from standard results in convex analysis [37]. We thus get

F (p, y) = h(p) + h\ast (y) - \langle y, p\rangle = h(p) - h(x) - \langle y, p - x\rangle .(B.1)

Since y \in \partial h(x) and h is K-strongly convex, we also have

h(x) + \tau \langle y, p - x\rangle \leq h(x+ \tau (p - x)) \leq (1 - \tau )h(x) + \tau h(p) - 1
2K\tau (1 - \tau )\| x - p\| 2

(B.2)

for all \tau \in [0, 1], thereby leading to the bound

1
2K(1 - \tau )\| x - p\| 2 \leq h(p) - h(x) - \langle y, p - x\rangle = F (p, y).(B.3)

Our claim then follows by letting \tau \rightarrow 0+ in (B.3).
For our second claim, we start by citing a well-known duality principle for strongly

convex functions [38, Theorem 12.60]: If f : \BbbR d \rightarrow \BbbR \cup \{  - \infty ,+\infty \} is proper, lower
semicontinuous, and convex, its convex conjugate f\ast is \sigma -strongly convex if and only
if f is differentiable and satisfies

f(x\prime ) \leq f(x) + \langle \nabla f(x), x\prime  - x\rangle + 1

2\sigma 
\| x\prime  - x\| 2(B.4)

for all x, x\prime \in \BbbR d. In our case, if we extend h to all of \scrV by setting h \equiv +\infty 
outside \scrX , we have that h is K-strongly convex, lower semicontinuous, and proper,
so (h\ast )\ast = h [38, Theorem 11.1]. It is also easy to see that h\ast is proper, lower
semicontinuous, and convex (since it is a pointwise maximum of affine functions by
definition), so the K-strong convexity of h = (h\ast )\ast implies that h\ast is differentiable
and satisfies

h\ast (y\prime ) \leq h\ast (y) + \langle y\prime  - y,\nabla h\ast (y)\rangle + 1

2K
\| y\prime  - y\| 2\ast (B.5)

= h\ast (y) + \langle y\prime  - y,Q(y)\rangle + 1

2K
\| y\prime  - y\| 2\ast (B.6)
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for all y, y\prime \in \scrY , where the last equality follows from the fact that \nabla h\ast (y) = Q(y).
Therefore, substituting the preceding inequality in the definition of the Fenchel cou-
pling, we obtain

F (x, y\prime ) = h(x) + h\ast (y\prime ) - \langle y\prime , x\rangle 

\leq h(x) + h\ast (y) + \langle y\prime  - y,\nabla h\ast (y)\rangle + 1

2K
\| y\prime  - y\| 2\ast  - \langle y\prime , x\rangle 

= F (x, y) + \langle y\prime  - y,Q(y) - x\rangle + 1

2K
\| y\prime  - y\| 2\ast ,(B.7)

and our assertion follows.

We now turn to the recurrence properties of SMD.

Proof of Proposition 3.4. Our proof proceeds step by step, as discussed in sec-
tion 3.

Step 1: Martingale properties of Yn. By Assumption 2 and the fact that finiteness
of second moments implies finiteness of first moments, we get \BbbE [\| F (x;\omega n)\| \ast ] <\infty . We
then claim that Un = \nabla f(Xn) - \nabla F (Xn;\omega n) is an L2-bounded martingale difference
sequence with respect to the natural filtration of \omega n. Indeed, we have as follows:

1. Since Xn is \scrF n - 1-measurable and \omega n is i.i.d., we readily get

\BbbE [Un | \scrF n - 1] = \BbbE [\nabla f(Xn) - \nabla F (Xn;\omega n) | \scrF n - 1]

= \BbbE [\nabla f(Xn) - \nabla F (Xn;\omega n) | \omega 1, . . . , \omega n - 1]

= \nabla f(Xn) - \nabla f(Xn)

= 0.(B.8)

2. Furthermore, by Assumption 2, the L2 norm of U satisfies

\BbbE [\| Un\| 2\ast | \scrF n - 1] = \BbbE [\| \nabla f(Xn) - \nabla F (Xn;\omega n)\| 2\ast | \scrF n - 1]

\leq 2\BbbE [\| \nabla f(Xn)\| 2\ast | \scrF n - 1] + 2\BbbE [\| \nabla F (Xn;\omega n)\| 2\ast | \scrF n - 1]

\leq 2\| \nabla f(Xn)\| 2\ast + 2M2

= 2\| \BbbE [\nabla F (Xn;\omega )]\| 2\ast + 2M2

\leq 2\BbbE [\| \nabla F (Xn;\omega )\| 2\ast ] + 2M2

\leq \sigma 2,(B.9)

where we set \sigma 2 = 4M2, and we used the dominated convergence theorem to
interchange expectation and differentiation in the second line, and Jensen's
inequality in the penultimate one.

Step 2: Recurrence of \varepsilon -neighborhoods. We proceed to show that every \varepsilon -neigh-
borhood \BbbB (\scrX \ast , \varepsilon ) of \scrX \ast is recurrent under Xn. To do so, fix some \varepsilon > 0 and assume
ad absurdum that Xn enters \BbbB (\scrX \ast , \varepsilon ) only a finite number of times, so there exists
some finite n0 such that dist(\scrX \ast , Xn) \geq \varepsilon for all n \geq n0. Since \scrX \setminus \BbbB (\scrX \ast , \varepsilon ) is
compact, v(x) =  - \nabla f(x) is continuous in x; furthermore, letting x\ast be such that
\langle \nabla f(x), x  - x\ast \rangle = 0 only if x \in \scrX \ast (cf. Definition 2.1), it follows that there exists
some c \equiv c(\varepsilon ) > 0 such that

\langle v(x), x - x\ast \rangle \leq  - c < 0 for all x \in \scrX \setminus \BbbB (\scrX \ast , \varepsilon ).(B.10)
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To proceed, let R = maxx\in \scrX \| x\| and set \beta n = \gamma 2
n/(2K). Then, letting Fn = F (x\ast , Yn)

and \xi n = \langle Un, Xn  - x\ast \rangle , Lemma 3.2 yields

Fn+1 = F (x\ast , Yn+1) = F (x\ast , Yn + \gamma n\^vn)

\leq F (x\ast , Yn) + \gamma n\langle v(Xn) + Un, Xn  - x\ast \rangle + \beta n\| \^vn\| 2\ast 
= Fn + \gamma n\langle v(Xn), Xn  - x\ast \rangle + \gamma n\xi n + \beta n\| \^vn\| 2\ast 
\leq Fn  - \gamma nc+ \gamma n\xi n + \beta n\| \^vn\| 2\ast .(B.11)

Hence, letting \tau n =
\sum n

k=n0
\gamma k and telescoping from n0 to n, we get

Fn+1 \leq Fn0
 - c

n\sum 
k=n0

\gamma k +

n\sum 
k=n0

\gamma k\xi k +

n\sum 
k=n0

\beta k\| \^vk\| 2\ast 

= Fn0  - \tau n

\Biggl[ 
c - 

\sum n
k=n0

\gamma k\xi k

\tau n

\Biggr] 
+

n\sum 
k=n0

\beta k\| \^vk\| 2\ast .(B.12)

We now proceed to bound each term of (B.12). First, by construction, we have

\BbbE [\xi n | \scrF n - 1] = \BbbE [\langle Un, Xn  - x\ast \rangle | \scrF n - 1] = \langle \BbbE [Un | \scrF n - 1], Xn  - x\ast \rangle = 0,(B.13)

where we used the fact that Xn is \scrF n - 1-measurable. Also, Young's inequality gives

| \xi n| = | \langle Un, Xn  - x\ast \rangle | \leq \| Un\| \ast \| Xn  - x\ast \| \leq 2R\| Un\| \ast ,(B.14)

where, as before, R = maxx\in \scrX \| x\| . (B.9) then gives

\BbbE [\xi 2n | \scrF n - 1] \leq (2R)2 \BbbE [\| Un\| 2\ast | \scrF n - 1] \leq 4R2\sigma 2,(B.15)

implying in turn that \xi n is an L2-bounded martingale difference sequence. It then
follows that \xi n satisfies the summability condition

\infty \sum 
n=n0

\BbbE [| \gamma n\xi n| 2 | \scrF n - 1]

\tau 2n
\leq 4R2\sigma 2

\infty \sum 
n=n0

\gamma 2
n

\tau 2n
<\infty ,(B.16)

where the last inequality follows from the assumption that \gamma n is square-summable.
Thus, by the law of large numbers for martingale difference sequences (Theorem A.1),
we get \sum n

k=n0
\gamma k\xi k

\tau n
\rightarrow 0 as n\rightarrow \infty (a.s.),(B.17)

and, with
\sum \infty 

k=n0
\gamma k =\infty , we finally obtain

lim
n\rightarrow \infty 

\tau n

\Biggl[ 
c - 

\sum n
k=n0

\gamma k\xi k

\tau n

\Biggr] 
=\infty (a.s.).(B.18)

For the last term of (B.12), let Sn =
\sum n

k=n0
\beta k\| \^vk\| 2\ast , so Sn is \scrF n-measurable and

nondecrasing. In addition, we have

\BbbE [Sn] =

n\sum 
k=n0

\beta k \BbbE [\| \^vk\| 2\ast ] \leq M2
n\sum 

k=n0

\beta k <\infty ,(B.19)
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with the last step following from (B.9). This implies that Sn is an L1-bounded sub-
martingale so, by Doob's submartingale convergence theorem (Theorem A.2), Sn

converges almost surely to some random variable S\infty , i.e., the last term of (B.12) is
bounded. Hence, combining all of the above, we finally obtain

lim sup
n\rightarrow \infty 

Fn =  - \infty (a.s.),(B.20)

contradicting the positive-definiteness of the Fenchel coupling (cf. Lemma 3.2). We
thus conclude that Xn enters \BbbB (\scrX \ast , \varepsilon ) infinitely many times (a.s.), as claimed.

Step 3: Recurrence of Fenchel zones. Using the reciprocity of the Fenchel coupling
(Assumption 3), we show below that every Fenchel zone \BbbB F (\scrX \ast , \delta ) of \scrX \ast contains an
\varepsilon -neighborhood of \scrX \ast . Then, given that Xn enters \BbbB (\scrX \ast , \varepsilon ) infinitely often (per the
previous step), it will also enter \BbbB F (\scrX \ast , \delta ) infinitely often.

To establish this claim, assume instead that there is no \varepsilon -ball \BbbB (\scrX \ast , \varepsilon ) contained
in \BbbB F (\scrX \ast , \delta ). Then, for all k > 0 there exists some yk \in \scrY such that dist(\scrX \ast , Q(yk)) =
1/k but F (\scrX \ast , y\delta ) \geq \varepsilon . This produces a sequence (yk)

\infty 
k=1 such that dist(\scrX \ast , Q(yk))\rightarrow 

0 but F (\scrX \ast , yk) \geq \varepsilon . Since \scrX is compact and \scrX \ast is closed, we can assume without
loss of generality that Q(yk)\rightarrow p for some p \in \scrX \ast (at worst, we only need to descend
to a subsequence of yk). We thus get \varepsilon \leq F (\scrX \ast , yk) \leq F (p, yk). However, since
Q(yk) \rightarrow p, Assumption 3 gives F (p, yk) \rightarrow 0, a contradiction. We conclude that
\BbbB F (\scrX \ast , \delta ) contains an \varepsilon -neighborhood of \scrX \ast , completing our proof.
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