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In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired
average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave
shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-
off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex
optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in
milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating
optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model,
such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal
waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired
torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor
with a sinusoidal back-EME, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque
region and constant-power region.
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Introduction
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which has the effect of penalising high-frequency harmon-

We consider the problem of controlling an AC permanent
magnet synchronous motor (PMSM) by choosing phase
winding current waveforms that produce smooth output
torque. Traditionally, the problem is solved differently de-
pending on the type of motor: if the rotor magnets induce
an counter-electromotive force (back-EMF) in the phase
windings that is a sinusoidal function of rotor position (i.e.,
the motor has a sinusoidal back-EMF waveform), then si-
nusoidal current waveforms are used; if the induced back-
EMF is instead a trapezoidal function (i.e., the motor has a
trapezoidal back-EMF waveform), then rectangular current
waveforms are used. Both of these schemes produce smooth
output torque. For general back-EMF waveforms, however,
there may not exist simple formulas for expressing current
waveforms that produce smooth torque, especially when
other constraints, such as voltage limits, are taken into ac-
count. This paper gives a numerical method for generating
such waveforms.

In particular, we address the problem of choosing drive
current waveforms that achieve a desired average torque
while minimising a combination of resistive power loss and
root-mean-square (RMS) torque ripple. We consider mo-
tors with general back-EMF waveforms. We assume supply
voltage limits and phase current limits due to magnetic sat-
uration. We also include a simple eddy current loss model,

ics of the current waveforms. Because our formulation can
be applied to motors with arbitrary phase connections (in-
cluding delta, wye, and independently connected phases),
we can handle several fault conditions, (in 6 Section 6, we
demonstrate operation of a delta-wound, three-phase mo-
tor with a single open-phase fault). We also discuss simple
variations of our formulation, including alternative defini-
tions of torque ripple (e.g., as the range of the torque values,
or the mean absolute deviation), or maximum torque prob-
lems. We show that the proposed torque control problem,
and all proposed variations, are convex optimisation prob-
lems, and can therefore be quickly and reliably solved using
convex optimisation. We show how to use the alternating
direction method of multipliers (ADMM) to solve the re-
sulting optimisation problem, and we demonstrate that the
algorithm can be executed quickly, typically well under
one millisecond. Furthermore, the iterates of ADMM pro-
vide a very good approximation of the optimal waveforms,
even before convergence. Indeed, the first iteration of the
algorithm produces the optimal current waveforms when
voltage and current limits are ignored, and can typically be
computed in tens of microseconds, which is competitive
with evaluating some of the analytical expressions given in
the literature (see below). Within a few tens of iterations,
the iterates are typically within a few tenths of a per cent of
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the optimal values, and can be considered converged for all
practical purposes. The algorithm can also incorporate new
desired torque signals after each iteration, and new iterates
can be implemented immediately, which reduces the torque
response time to tens of microseconds on a standard pro-
cessor, or hundreds of microseconds on a low-cost ARM
processor, which is around the switching period of common
power electronic devices. The inverter bridge voltage wave-
forms that generate the optimal current waveforms are also
computed as a by-product of computing the optimal cur-
rent waveforms; these open-loop optimal bridge voltages
and current waveforms can be used in a closed-loop cur-
rent control scheme.

The ability to find the optimal current waveforms in real
time allows us to change the model parameters on the fly
(e.g., changing phase resistance with temperature, or updat-
ing the inverter bus voltage), or change the problem based
on operating requirements. For example, an electric vehicle
application may require maximising output torque at some
times, thus increasing the performance of the vehicle, and
high efficiency and low torque ripple at other times, thus
increasing the efficiency (and range) of the vehicle.

We give some numerical results for our method when
applied to a simple motor model. In particular, we give
the optimal waveforms for two motors, one with a si-
nusoidal back-EMEF, and one with a (nearly) trapezoidal
back-EME, both in the constant-torque and constant-power
regions. (The optimal drive currents are nonsinusoidal in
the constant-power region, even for motors with sinusoidal
back-EMF.) We additionally compare the performance of
sinusoidal and trapezoidal back-EMF waveforms in this re-
gion, and we find that, when driven with the optimal current
waveforms, the two types of motors perform similarly.

1.1 Related work

Convex optimisation:convex optimisation problems can
be solved efficiently and reliably using standard tech-
niques (Boyd & Vandenberghe, 2004). Recently, much
work has been devoted to solving moderately sized con-
vex optimisation problems quickly (i.e., in milliseconds
or microseconds), possibly on embedded platforms, which
enables convex-optimisation-based control policies to
be implemented at kilohertz rates (O’Donoghue,
Stathopoulos, & Boyd, 2013; Wang & Boyd, 2010). In addi-
tion, recent advances in automatic code generation for con-
vex optimisation (Chu, Parikh, Domahidi, & Boyd, 2013;
Mattingley & Boyd, 2010) can significantly reduce the cost
and complexity of developing and verifying an embedded
solver.

We provide an algorithm based on ADMM. Details
about ADMM can be found in Boyd, Parikh, Chu, Peleato,
and Eckstein (2011), Parikh and Boyd (2014). ADMM is
is particularly well suited for real-time optimal control be-
cause it typically converges to acceptable accuracy very

quickly, and because its simplicity allows for easily verifi-
able source code. Details about using ADMM for optimal
control can be found in O’Donoghue et al. (2013).

PMSM current waveform optimisation:significant work
has been devoted to finding optimal current waveforms
for motors with nonsinusoidal back-EMF waveform, and
several special cases have been solved, some analytically.
Simple characterisations of current waveforms that min-
imise power loss and produce smooth torque in the ab-
sence of other constraints are given in Le-Huy, Perret, and
Feuillet (1986), Hung and Ding (1992), Wu and Chapman
(2005). The authors of Chapman, Sudhoff, and Whitcomb
(1999) extend these results to include a trade-off between
RMS torque ripple and power loss by solving a linear least
squares problem. An RMS voltage limit is considered by
Hanselman (1994), who proposes offline solution of the re-
sulting quadratic program and implementation as a lookup
table. The authors of Aghili, Buehler, and Hollerbach (2001,
2003) instead introduce a current saturation limit, and ana-
lytically solve the Karush—Kuhn—Tucker (KKT) conditions
to find the optimal current waveforms that produce smooth
torque. Several of the aforementioned results can be ex-
tended to apply if one or more phases are in an open fault
condition; explicit derivation of the optimal waveforms in
this case can be found in Baudart, Matagne, Dehez, and
Labrique (2013) and references therein (which neglect volt-
age and current limits). The authors of Yang, Wang, Wu,
and Luh (2004) take a different approach, showing that
minimum power loss required to achieve a desired torque,
without regard for torque ripple, is attained when the current
waveform is proportional to the back-EMF waveform.

Field-oriented control:for a motor with sinusoidal back-
EMF waveforms and no voltage limits, sinusoidal cur-
rent waveforms minimise power loss while also produc-
ing no torque ripple. In this case, it is convenient to for-
mulate the control problem using Park’s transformation
into the d—q reference frame, which separates the current
producing component of the current waveform from the
field-weakening component, resulting in a field-oriented
control framework (Gabriel, Leonhard, & Nordby, 1980;
Hendershot & Miller, 1994),

Within this framework, two general techniques can be
used to minimise power loss in steady-state. In loss-model
control, a model of the power loss is used to determine
the sinusoidal currents that minimise power loss in steady-
state at a given operating point. Early work in this area
focused on finding analytical expressions for the optimal
current for simple loss models (Chau, Chan, & Liu, 2008;
Morimoto, Tong, Takeda, & Hirasa, 1994). More recent
approaches have addressed nonlinearities due to magnetic
saturation, by storing a lookup table of optimal d- and g-axis
current components (Lee, Nam, Choi, & Kwon, 2007), or
computing them in real time using Newton’s method (Jeong,
Sul, Hiti, and Rahman, 2006). Search control techniques
instead involve actively searching for the optimal current
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d- and g-axis current components by directly iterating on
the motor itself (Colby & Novotny, 1988; Vaez, John, &
Rahman, 1999).

Model predictive control:as an alternative to seeking
the optimal steady-state currents, model predictive con-
trol has recently been proposed to improve dynamic re-
sponse. Most formulations involve solving a convex opti-
misation problem to determine the inverter voltage signal,
which can either be done offline and implemented as a
lookup table, as in Wang, Chai, Yoo, Gan, and Ng (2014),
Mariethoz, Domahidi, and Morari (2009), Bolognani,
Kennel, Kuehl, and Paccagnella (2011), Bolognani, Bolog-
nani, Peretti, and Zigliotto (2009) or online in real time, as in
Stumper, Détlinger, and Kennel (2012). A different model
predictive control scheme is proposed in Geyer (2011), who
considers the discrete switching states of the inverter. Us-
ing various heuristic strategies, they are able to compute
a sequence of inverter switching states quickly enough for
embedded implementation.

1.2 Outline

In Section 2, we introduce our model of the PMSM. In
Section 3, we formally introduce the torque control prob-
lem, and we list several variations of the base problem. We
then explore the types of symmetry that a PMSM typically
exhibits, and we show how to use symmetry to reduce the
complexity of the torque control problem. In Section 4, we
demonstrate the solution of the torque control problem, us-
ing ADMM. In Section 5, we discuss how to implement
the solution in real time, possibly on an embedded pro-
cessor. In Section 6, we show the optimal waveforms for
an example motor, which we use to compare rectangular
and sinusoidal back-EMF waveforms, and to compare the
optimal waveforms with sinusoidal current waveforms.

2. Model

The model describes a three-phase PMSM, shown in
Figure 1. The rotor, which is nonconductive and contains
permanent magnets, has angular position 8 and angular ve-
locity w; we assume w is constant. The stator contains three
circuits, called phase windings, with currents i,, iy, and i,
and voltages v,, v, and v.. The phase currents induce eddy
currents in the stator iron; we consider induced eddy cur-
rents separately for each phase, which we call j,, jp, and j.
The motor is driven by a voltage-source, triple-half-bridge
inverter with bridge voltages vy, vy, and vy. The output
torque is t.

We will assume that i,, iy, ic, Va, Vb, Ve, Jar Jbsr Jc> VUs YV,
vw, and t are 2m-periodic functions of 6. We use a prime
(') to denote differentiation of these functions with respect
to 6. To lighten notation, we often drop explicit dependence
oné.

Figure 1. Schematic of permanent magnet synchronous motor.
The rotor has angular position . Symbols ® and © represent
the direction of axial windings. Different phase windings are in
different shades.

2.1 Dynamics
The circuit dynamics of the phase windings are

va = Riy + o(Lij, + Mij + Mi, + Mj; + k),
v = Riy + o(Mi; + Liy + Mig + M jy + ko), (1)
Ve = Ric + o(Mi}, + Mi| + Li, + M j. + k),

where R is the phase resistance, L is the phase self induc-
tance, M is the mutual inductance between phases, and M is
the mutual inductance between a phase and the correspond-
ing eddy current. The back-EMF waveforms £,, &y, and k.
are 2m-periodic functions of 6. The eddy current circuits
are modelled as RL (resistance—inductance) circuits, with
dynamics

0= Rjo+o(Lj] + Mi),
0 = Rjs + (L j, + Miy), 2
0 = Rj. + o(Lj. + Mi)),

where R and L are respectively the eddy circuit resistance
and self inductance.

2.2 Inverter

The inverter bridge voltages satisfy

loul < (1/2)Vae,  lovl = (1/2)Vae,  |owl| = (1/2) Ve,

3)

where V. is the constant DC bus voltage (Figure 2). The
relation between the bridge voltages and the phase voltages
depends on the winding connection, and is given below for
three common winding connections.
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Figure 2. Delta, wye, and independently driven phase connections.

e Delta connection:

Vg =Vu — Vv, U =Uv—Uw, Uc=DUlw—VU.

4)
e Wye connection:
Vg = Up =Vy —Vy, Up— U =UVy—Vw,
Ve — Uy = Vw — Uy, (5)

as well as Kirchoff’s current law for the centre node:

ia + iy +ic = 0. (6)

e Independent phases:

Va = vy, Vp = Vv, ve=vw. (7)

Other configurations are possible. For example, a six-
half-bridge inverter can arbitrarily assign voltages to each

side of the three phases (with each bridge voltage between
—(1/2)V4e and (1/2) V).

2.3 Magnetic saturation

We assume that the phase currents are maintained within
the following magnetic saturation limits:

lia] <™, lip] < i™, lic| < i™. ®)
2.4 Torque
The total output torque is
T = kaia + kol + kcic + Teog, )

where the cogging torque 7o is a 2 -periodic function of
6. The average torque over one cycle is

1 2w

T=— T df.
27 0

The RMS torque ripple is

1 27
TRMS = 1| 7— (t —7)* db,
2 0

and the relative torque ripple is

'RMS
T'RMS,rel = z

2.5 Power loss

The power loss is the average resistive loss from all phase
currents and eddy currents over one cycle:

1 [ ~
Pl = 5= | (RGE 3342 + RO + 2+ 2)) o
0

The relative power loss is

Ploss
Ploss,rel - —
Tw

and the efficiency is n = 1 — Pjoss ret. This assumes that
Tw > 0, 1.e., the mechanical output power is positive. When
the motor is used as a generator, or for regenerative braking,
the denominator can be replaced by its absolute value.

3. Torque control problem

3.1 Optimal torque control

The optimal torque control problem is to choose the phase
voltages, phase currents, and eddy currents to achieve a
desired average torque while minimising the average power
loss and torque ripple:

minimise  Piggs + )‘rl%MS
subjectto T = 79, (10)
Equations (1), (2), (3), (8), (9),

and one of (7), (4), or (5)—(6).

The parameters are the trade-off parameter A > 0, the circuit
parameters R, L, and M, the eddy circuit parameters R, L,
and M, the current and voltage limits i™* and V., the shaft
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speed w, the desired average torque 79, and the waveforms

ka, kv, and k.. The variables are the 2w -periodic functions
Ta, Ibs Icsjasr Jbsjcs Vas Vbs Ves VU, YV, Vw, and T. The constraints
include the dynamics, current, and voltage limits, torque—
current relation, and one set of winding constraints.

Problem (10) is an infinite-dimensional (convex)
quadratic program, since the variables to be determined are
(periodic) functions. Once we discretise the variables, it can
be (approximately) solved quickly and reliably using stan-
dard methods for convex optimisation (e.g., interior point;
see Boyd and Vandenberghe (2004) for details).

3.2 Variations
We list some variations of (10) that also result in convex
optimisation problems.

Power loss and torque ripple constraints:we can limit
the acceptable power loss and torque ripple by adding the
constraints

Pioss < Plglszx, rRMS = r]Izn&Xs~ (11)
Alternatively, we can use the relative values of power loss
or relative torque ripple in the objective or in (11).

Maximum torque: we can set up a maximum torque prob-
lem. To do this, we remove the T = 79 constraint. Then
instead of minimising the power loss and torque ripple, we
maximise T. Other constraints may be added; for example,
a power loss constraint can be used to obtain the maximum
sustainable torque subject to power loss limits.

Alternative ripple definitions: we can use other definitions
for the torque ripple, such as

Frange = SUpP T(0) — I%f 7(6)
0

or 1 27
rabsz—/ |t — 7| df.
21 0

These are both convex, nonquadratic functionals of 7.

Mitigation of harmonics: we can establish magnitude con-
straints or penalties on the magnitudes of specified har-
monics of the currents or torque (e.g., to avoid a known
mechanical resonance).

Open-phase fault: we can continue operation with one in-
operable phase winding by removing the relevant equations
and variables from the model.

3.3 Symmetry

Although the variables and parameters of (10) are fully de-
fined by their values over the interval [0, 277 ], we can use the
following assumptions to make this interval shorter, thus re-
ducing the complexity of a discretised version of (10). This

Figure 3. A rotor with pole symmetry (N, = 2). The magnetic

field generated by the permanent magnets is identical at 6 and
0+ m.

o/

exploitation of symmetry does not change the solution; it
merely results in a smaller discretised problem that can be
solved more quickly. For some asymmetric motors, these
assumptions may not hold; examples of this include mo-
tors intentionally designed without symmetry, or when a
winding in an otherwise symmetric motor has failed.

Pole symmetry: we assume the rotor has N, pole pairs (Fig-
ure 3), i.e., ky, kv, k, and tcog are 27w/Np-periodic. Con-
sequently, there is a solution of (10) in which the optimal
variables are also 27r/N,-periodic.

Half-wave symmetry:we further assume that ,, &y, k. and
Tcog are half-wave symmetric with period 277/N,, (e.g., ka(6)
= —ka(@ + m/N,)). This implies there exists a solution
of (10) in which the optimal variables are also half-wave
symmetric with period 277/Nj,.

Phase symmetry: we assume the stator windings are dis-
placed by 27/(3N,) radians from each other, so the back-
EMF waveform in the second and third phases are shifted
versions of the first:

2 2
ky(0) = ky <9 + m) , ke(0) =k, (9 — W) (12)

p p

and T is 27/(3N,)-periodic. This implies there exists
a solution of the original problem in which the optimal
variables are shifted versions of each other:

. . 2m . . 2
in(0) =1, (6’ + m) , i(0)=1, (9 — m) ,  (13)

ka (Vs/rad)

50 100 150 200 250 300 350
0 ()

Figure 4. Sinusoidal and trapezoidal back-EMF waveform for

the numerical example.
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with similar shift relations for the voltage and eddy current.
These assumptions, combined with (9) and (13), imply t is
27 /(3N,)-periodic.

Equivalent problem: the symmetry assumptions allow us to
form an equivalent problem with the same constraints and
objective as (10) in which the variables have domain [0,
/(3N;)]. We also add periodicity constraints of the form

i2(0) = —i (i> . in(0) = —i, (i> :
3N, 3N,

i2(0) = iy (%) ,
p

with similar constraints for the voltage and eddy currents,
and 7(0) = t(/(3N,)). The integrands in the definitions
of average torque, torque ripple, and power loss are each
7/(3Np)-periodic; to get equivalent definitions of these val-
ues over the appropriate domain, we can integrate over [0,
7/(3N,)] instead of [0, 277], and scale the result by 6./V,,.

Any set of optimal variables for the reduced problem
is the restriction to [0, 7/(3N,)] of some set of optimal
variables to the original problem. To reconstruct the values
of these variables over the rest of the interval [0, 2], we
can use the 27 /N,-periodicity and half-wave symmetry of
the variables, as well as the phase symmetry shift relations
(such as (13)).

4. Solution
4.1 Discretisation

After reducing the domain of the variables of (10), we dis-
cretise this interval into N + 1 grid points, 0, . . ., 0y, with
6o = 0 and 6 = 7/(3N,). All pointwise constraints must
hold at 0, ..., 6y_1, and the periodicity constraints must
hold at 6 and 6. Integration over the interval is replaced
by summation from 6 to 8 _ 1, with appropriate scaling.
Because the dynamics equations (1) and (2) are linear,
they can be discretised using an exact method, such as first-
order hold; however, for an embedded application, a faster
(but less accurate) discretisation method, such as forward
Euler, may be more practical. Based on our (informal) ob-
servations, this inaccuracy does not appear to significantly
degrade the quality of the solution.
Finite-dimensional quadratic program:after discretisation,
problem (10) can be expressed as

minimise  x” Px +¢q x +r
subject to Ax = b, (14)
|xi| <c¢i, i=1...n.

The variable x € R" is a vector containing the variables
of (10) at 6y...0y, and the parameters are the symmet-
ric positive-definite matrix P € R"*", as well as g € R”,
A e R™" beR" reR,andc; € RU {oo}. We note that

the parameter matrices P and A4 are sparse, which can be
exploited in a numerical solution.

4.2 Interior-point methods

Problem (14) can be solved using a generic interior-point
solver, which involves solving a sequence of linear sys-
tems of equations (around 15) of size (m + n). Using a
generic quadratic programming solver, the size of these lin-
ear systems scales by the cube of the number of grid points.
However, a method that exploits the sparse structure of the
problem can reduce this to be proportional to the number
of grid points. Several software packages are available that
can do this, and are capable of running on embedded plat-
forms (Chu et al., 2013; Mattingley & Boyd, 2012; Wang
& Boyd, 2010).

4.3 ADMM

In addition to interior-point methods, we propose to solve
(14) using ADMM. Starting from any x¥, z®, and y©,
the algorithm generates iterates xX&+D fork=0,1,...,
according to

24D = argmin (£(x) + (1/2)plx = yPI?)  (15)

7*+D — gat (2x(k+1) —y®), c) (16)
y(k+1) — y(k) + Z(k+1) _ x(k-‘rl)’ (17)
where ||-]| denotes the ¢, norm, p > 0 is an algorithm
parameter,
T T
_|x"Px+q'x Ax=0b
fx)= {oo otherwise,

and sat is the vector saturation function, i.e., the ith element
of sat(x, c) is

—Cj Xi < —Cj
(sat(x, ¢)), = qci Xi > (18)
X; otherwise.

Note that x* + D can be interpreted as a solution of a regu-
larised version of (14) with no inequality constraints (i.e.,
¢; = 00), and z* + 1 as a projection onto the set of points
satisfying the inequality constraints of (14).

Finding x * 1 that satisfies (15) can be done by solv-

ing
P+pl AT|[x*D]  [yb —g (19)
Aol w |7 b |
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Table 1. Average solve times in milliseconds.

Intel Xeon ARM processor
CVX 468.67 -
CVXGEN 39 229.8
ADMM (cold start) 0.12 3.94
ADMM (warm start) 0.07 2.71

for x* + D and p. Because each iteration of ADMM in-
volves solving (19) for a different value of z, it is con-
venient to store the coefficient matrix (the KKT matrix) in
factored form using a sparse LDL factorisation.

Convergence of x¥ to a solution of (14) is guaran-
teed (Boyd et al., 2011). In practice, however, it may be
beneficial to iterate over (15)—(17) continuously, updating
the (factorised) KK T matrix periodically to reflect the new
values of the parameters (in particular, w). This can be in-
terpreted as a warm start for a new instance of (14); because
the entries of the KKT matrix change little when updated,
we expect the iterates of the previous problem instance to
be nearly optimal for the new problem. We therefore can
always implement the waveforms contained in the most re-
cent current iterates immediately, because they reflect the
current values of all parameters and we expect that they
are always very close to optimality. (Indeed, even the first
iterate x* is the solution of a regularised version of (14)
without voltage or current limits.) In addition, because only
g and b in (19) depend on 79, we can update the desired
torque after every iteration without refactoring the KKT
matrix. Preliminary waveforms that reflect changes in 79
can therefore be implemented after a single linear system
solve.

4.4 Solve times

We compare the average solve times of ADMM against
two interior-point solvers using the parameter values of the
example in Section 6 (Table 2). We used N = 15 (i.e., 90
grid points per cycle).

All three algorithms were carried out on a Linux ma-

chine with a 3.4 GHz Intel Xeon E31270 processor. In addi-
tion, CVXGEN and ADMM were carried out a Raspberry
Pi, a $25 computer with a 700 Mhz ARM processor with
a floating point unit. Table 1 gives the average solve times
for all three algorithms over 1000 uniformly randomly se-
lected torque-speed pairs in the feasible operating region of
the motor.
CVX: CVX (Grant & Boyd, 2008, 2013) is a MATLAB-
based modelling language for convex optimisation. It con-
verts (14) into a second-order cone program, which is
solved using the interior-point solver SDPT3 (Toh, Todd,
& Tiitlineti, 1999; Tiitiincii, Toh, & Todd, 2003).

CVXGEN: CVXGEN (Mattingley & Boyd, 2012) is a code
generator for fast convex optimisation. It takes a high-level
description of a quadratic program and generates a cus-
tom interior-point solver, written in C, which is suitable
for embedded, real-time optimisation. For details on code
generation for real-time convex optimal control, see Mattin-
gley, Wang, and Boyd (2011), Mattingley and Boyd (2010).
CVXGEN was terminated once the duality gap was less
than 0.1.

ADMM: ADMM was implemented in C. The variables
Va, Vb, and v, were (analytically) eliminated, resulting in a
problem with 150 variables, 107 equality constraints, and
90 inequality constraints. Equation (19) was solved using
the LDL package provided in Davis (2005). The algorithm
was terminated once ||x® — z®|| ., was less than 0.1.

If a sequence of similar problem instances is to be
solved, we can accelerate convergence of each iteration
by initialising the iterates at the solution to the previous
problem (called warm starting). We provide solve times
for ADMM for both cold starting (iterates initialised to
zero) and warm starting (iterates initialised to the solution
of an identical problem, but with @ uniformly randomly
perturbed to a feasible value within 20%).

5. Implementation

Here we collect several ideas for implementing the solution
to (10).
Table lookup: any of the above solvers can be used to to
generate a lookup table of optimal waveforms indexed by
w and 79, This enables the optimal current waveforms to
be used on processors with limited computational capabil-
ity. Some simplifications may be helpful to reduce storage
requirements; for example, for motors with wye or indepen-
dent phase connections, neglecting eddy current, a single
current wave shape can be stored for any w and 79 such
that the inequality constraints of (10) are inactive. This wave
shape can be scaled to meet the torque requirement.
Real-time optimisation. our implementations of CVX-
GEN and ADMM were fast enough to compute the optimal
waveforms on an embedded system. This allows us to re-
compute the optimal waveforms after updating the model
parameters (e.g., after updating winding resistance with
temperature) or after changing the trade-off parameter A
based on performance requirements. We can also change
the problem entirely to one of the variations mentioned in
Section 3.2, such as a maximum-torque mode, or continued
operation after failure of a phase winding.
Feedback control: if the model is perfectly correct, using the
optimal bridge voltage waveforms as PWM signals for the
inverter will produce the resulting optimal current wave-
forms. In practice, a closed-loop controller is necessary to
ensure accurate tracking of the optimal waveforms For ex-
ample, a simple state-feedback controller would have the
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form
vy vy ia iy
w | =] vy | +K iy | — | iy s (20)
vw Uiy ic i

where we use the *x to denote the optimal (reference) val-
ues, and K € R*3 is a controller synthesised based on
the circuit dynamics (1). Note that the inclusion of the
optimal open-loop bridge voltages will improve dynamic
performance compared to a simple tracking controller. Ex-
tension to more complex controller architectures (e.g., PI
controllers) is beyond the scope of this paper.

6. Example

In this section, we demonstrate the optimal waveforms for
a numerical example. The values of all scalar model pa-
rameters are given in Table 2. The phase resistance, phase
inductance, and voltage limits are based on the first example
of Liu, Zhu, and Howe (2005). The eddy circuit parameters

100 200 300

0()

Table 2. Motor parameters.

Parameter Value Unit
R 0.466 Q
L 3.19 mH
M —1.31 mH
R 4.6 Q
L 1.1 mH
M 1.0 mH
Vie 70 \Y%
jmax 10 A
N, 1 -

were adjusted heuristically to produce reasonably smooth
waveforms. Because the effects of the eddy circuit dynam-
ics are fully described using only two parameters, we arbi-
trarily set M = 1 mH. Cogging torque is neglected. The mo-
tor described in Liu et al. (2005) has a sinusoidal back-EMF
waveform with RMS value of 0.72 V/s. For comparison,
we will also consider an empirically determined trapezoidal

100 200 300

0.351
E
0.3r
&
~
0.25 : : :
0 100 200 300

0()

Figure 5. (Colour online) The optimal current and voltage waveforms for the both sinusoidal and trapezoidal back-EMF waveforms, for
79 = (0.3 Nm and A = 2 kW/(Nm)?. The left and right figures show @ = 300 rad/s and @ = 400 rad/s, respectively, and the blue and
green lines correspond to the sinusoidal and trapezoidal back-EMF waveforms, respectively.
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Figure 6. (Colour online) The optimal waveforms for the sinu-
soidal back-EMEF, for w = 400 rad/s, and 7% = 0.3 Nm, for three
values of A, with the optimal sinusoidal currents shown for com-
parison. The blue, green, and red lines give correspond to 1 = 0

kW/(Nm)?, A = 2 kW/(Nm)?, and A — oo, respectively, and the
cyan line corresponds to the sinusoidal current.

back-EMF waveform (obtained from Park, Park, Lee, and
Harashima (2000)) with the same RMS value as the sinu-
soidal back-EMF waveform. Both back-EMF waveforms
are shown in Figure 4.

6.1 Sinusoidal vs. rectangular back-EMF

We demonstrate the solution of (10) for both the sinusoidal
and the trapezoidal back-EMF waveforms for 79 = 0.3
Nm. In Figure 5, the optimal waveforms for w = 300 rad/s,
which is below the rated speed of the motor, are shown in
Figure 5. We first note that the optimal current waveforms
for the sinusoidal back-EMF are sinusoidal, verifying the
classical result that sinusoidal currents simultaneously min-
imise power loss and achieve smooth torque.

The optimal waveforms for the trapezoidal motor are
more subtle. Because the constraints are inactive, (10) can

0
0.02 0.03 0.04 0.05 0.06 0.07 0.08

Boss,rel (%)

Figure 7. (Colour online) The achievable relative power loss and
relative torque ripple for @ = 400 rad/s and 79 = 0.3 Nm, for
both back-EMF waveforms (sinusoidal in blue and trapezoidal
in green). The circles correspond to the waveforms shown in
Figures 5 and 6, and the x corresponds to the optimal sinusoidal
waveforms.

be solved in exactly one iteration of ADMM with p set to
zero. Also, if eddy current is neglected, the optimal current
waveforms are independent of w. (This is not the case for
delta-connected motors, in which the back-EMF can in-
duce circulating current which cannot be controlled by the
inverter.)

We also compare the optimal waveforms at w = 400
rad/s, which is above rated speed of the motor. In this case,
the optimal current waveforms are no longer sinusoidal, for
either back-EMF waveform.

6.2 Optimal vs. sinusoidal current waveforms

In the last section, we saw that sinusoidal current waveforms
are not optimal in the constant power region for all values
of A, even with a sinusoidal back-EMF waveform. Here,
we show that, for @ = 400 rad/s and 79 = 0.3 Nm, there
is no value of A for which sinusoidal current waveforms
are optimal. Figure 6 shows the optimal waveforms for A
= 0 kW/(Nm)?, A = 2 kW/(Nm)?, and as . — co. As ex-
pected, we find that larger values of A result in lower torque
ripple, but require greater phase advance and a greater am-
plitude current waveform, resulting in greater power loss.
We also show the optimal sinusoidal currents for compar-
ison, which also can be found using convex optimisation,
by solving a special case of the harmonic mitigation prob-
lem of Section 3.2 (because sinusoidal current waveforms
always produce a smooth torque output, the choice of A is
irrelevant). Note that the sinusoidal current waveforms have
noticeably higher peak value than any of the other wave-
forms. When compared with the optimal waveform for A
— 00, the sinusoidal waveform has a greater magnitude for
all 6, which immediately indicates higher power loss.

By varying A, we can characterise the entire trade-off
curve between power loss and torque ripple (shown in Fig-
ure 7). Any point on this curve is optimal for some positive
value of A, and the points corresponding to the waveforms
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Figure 8. The minimum-ripple optimal current and voltage

waveforms for @ = 650 rad/s, 7% = 0.3 Nm), for a delta-
connected motor with a single open-phase fault.

of Figures 5 and 6 are shown. The point corresponding to
the optimal sinusoidal current waveforms does not lie on
the curve, indicating that they are not optimal for any posi-
tive A. Indeed, by using the optimal waveforms at this point,
we can increase efficiency by several per cent, depending
on our tolerance for torque ripple.

We also show the curve corresponding to the optimal
waveforms for the trapezoidal back-EMEF, which in this case
strictly outperforms the sinusoidal back-EMF, assuming op-
timal waveforms are used.

6.3 Open-phase fault

We demonstrate the ability of a delta-connected motor to
operate if one winding has failed in open circuit, and we find
that this is possible, even with active voltage constraints.
Note that in this case, only the first of the three symmetry
assumptions (pole symmetry) holds. In Figure 8, we show
the optimal waveforms for @ = 650 rad/s and 79 = 0.3
Nm), taking 1 — oo, thus generating smooth torque.

7. Conclusion

In this paper, we pose torque control of brushless permanent
magnet motors as an optimal control problem. In this prob-
lem, we minimise a (user-defined) combination of power
loss and torque ripple while achieving a desired average
torque and respecting bridge voltage and phase current lim-
its (arising from saturation). The resulting problem (or one
of the proposed variations) is convex, and can therefore be
solved quickly and reliably. We give an algorithm (ADMM)
which is fast enough to be implemented in real time (0.4
us/solve), possibly on embedded platforms, and we give
some practical recommendations to ensure a fast response
(tens of microseconds) to changes in the desired torque.

We conclude by noting that for many classes of AC
motors, (e.g., induction machines and switched reluctance
machines), a similar torque control problem would be a non-
convex optimisation problem (due to nonlinear dynamics or
a nonlinear relation between torque and current). Noncon-
vex optimisation problems are hard to solve in general, and
ADMM is not gauranteed to converge for these problems.
We note, however, that for many nonconvex optimisation
problems, ADMM appears to work well in practice (see
Boyd et al. (2011) for details).
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