
Optimization Methods & Software, 2017
http://dx.doi.org/10.1080/10556788.2017.1304548

A general system for heuristic minimization of convex functions
over non-convex sets

S. Diamond∗, R. Takapoui and S. Boyd

Departments of CS and EE, Stanford University, Stanford, CA, USA

(Received 17 May 2016; accepted 6 March 2017)

We describe general heuristics to approximately solve a wide variety of problems with convex objective
and decision variables from a non-convex set. The heuristics, which employ convex relaxations, convex
restrictions, local neighbour search methods, and the alternating direction method of multipliers, require
the solution of a modest number of convex problems, and are meant to apply to general problems, without
much tuning. We describe an implementation of these methods in a package called NCVX, as an exten-
sion of CVXPY, a Python package for formulating and solving convex optimization problems. We study
several examples of well known non-convex problems, and show that our general purpose heuristics are
effective in finding approximate solutions to a wide variety of problems.

Keywords: non-convex optimization; convex approximations; heuristics; alternating direction method
of multipliers; modelling software

AMS Subject Classification: 90C59; 90C25; 90C26

1. Introduction

1.1 The problem

We consider the optimization problem

minimize f0(x, z)

subject to fi(x, z) ≤ 0, i = 1, . . . ,m

Ax+ Bz = c

z ∈ Z ,

(1)

where x ∈ Rn and z ∈ Rq are the decision variables, A ∈ Rp×n, B ∈ Rp×q, c ∈ Rp are problem
data, and Z ⊆ Rq is closed. We assume that the objective and inequality constraint functions
f0, . . . , fm : Rn × Rq→ R are jointly convex in x and z. When the set Z is convex, (1) is a
convex optimization problem, but we are interested here in the case where Z is not convex.
Roughly speaking, the problem (1) is a convex optimization problem, with some additional non-
convex constraints, z ∈ Z . We can think of x as the collection of decision variables that appear
only in convex constraints, and z as the decision variables that are directly constrained to lie in

*Corresponding author. Email: diamond@cs.stanford.edu

© 2017 Informa UK Limited, trading as Taylor & Francis Group

http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2017.1304548&domain=pdf
mailto:diamond@cs.stanford.edu

2 S. Diamond et al.

the (generally) non-convex set Z . The set Z is often a Cartesian product, Z = Z1 × · · ·× Zk ,
where Zi ⊂ Rqi are sets that are simple to describe, for example, Zi = {0, 1}. We denote the opti-
mal value of the problem (1) as p⋆, with the usual conventions that p⋆ = +∞ if the problem is
infeasible, and p⋆ = −∞ if the problem is unbounded below.

1.2 Special cases

Mixed integer convex optimization. When Z = {0, 1}q, the problem (1) is a general mixed
integer convex program, that is, a convex optimization problem in which some variables are con-
strained to be Boolean. (‘Mixed Boolean’ would be a more accurate name for such a problem,
but ‘mixed integer’ is commonly used.) It follows that the problem (1) is NP-hard; it includes as
a special case, for example, the general Boolean satisfaction problem.

Cardinality constrained convex optimization. As another broad special case of (1), consider the
case Z = {z ∈ Rq | card(z) ≤ k, ∥z∥∞ ≤ M }, where card(z) is the number of non-zero elements
of z, and k and M are given. We call this the general cardinality-constrained convex problem. It
arises in many interesting applications, such as regressor selection.

Other special cases. As we will see in Section 6, many (hard) problems can be formulated
in the form (1). More examples include regressor selection, 3-SAT, circle packing, the travelling
salesman problem (TSP), factor analysis modelling, inexact graph isomorphism, and many more.

1.3 Convex relaxation

Convex relaxation of a set. For bounded sets Z there usually is a manageable full or partial
description of the convex hull of Z . By this we mean a (modest-sized) set of convex inequality
and linear equality constraints that hold for every z ∈ Z:

z ∈ Z =⇒ hi(z) ≤ 0, i = 1, . . . , s, Fz = g.

We will assume that these relaxation constraints are included in the convex constraints of (1).
Adding these relaxation constraints to the original problem yields an equivalent problem (since
the added constraints are redundant), but can improve the convergence of any method, global or
heuristic. By tractable, we mean that the number of added constraints is modest, and in particular,
polynomial in q.
For example, when Z = {0, 1}q, we have the inequalities 0 ≤ zi ≤ 1, i = 1, . . . , q. (These

inequalities define the convex hull of Z , that is, all other convex inequalities that hold for all
z ∈ Z are implied by them.) When

Z = {z ∈ Rq | card(z) ≤ k, ∥z∥∞ ≤ M },

we have the convex inequalities

∥z∥1 ≤ kM , ∥z∥∞ ≤ M .

(These inequalities define the convex hull of Z .) For general bounded Z the inequality ∥z∥∞ ≤
M will always be a convex relaxation for some value ofM.

Optimization Methods & Software 3

Relaxed problem. If we remove the non-convex constraint z ∈ Z , we get a convex relaxation
of the original problem:

minimize f0(x, z)

subject to fi(x, z) ≤ 0, i = 1, . . . ,m

Ax+ Bz = c.
(2)

(Recall that convex equalities and inequalities known to hold for z ∈ Z have been incorporated
in the convex constraints.) The relaxed problem is convex; its optimal value is a lower bound on
the optimal value p⋆ of (1). A solution (x∗, z∗) to problem (2) need not satisfy z∗ ∈ Z , but if it
does, the pair (x∗, z∗) is optimal for (1).

1.4 Projections and approximate projections

Our methods will make use of tractable projection, or tractable approximate projection, onto the
set Z . The usual Euclidean projection onto Z will be denoted ". (It need not be unique when
Z is not convex.) By approximate projection, we mean any function "̂ : Rq→ Z that satisfies
"̂(z) = z for z ∈ Z . A useful approximate projection "̂(z) will also approximately minimize
∥u− z∥22 over u ∈ Z , but since all the algorithms we present are heuristics, we do not formalize
this requirement. We use approximate projections when computing an exact projection onto the
set Z is too expensive.
For example, when Z = {0, 1}q, exact projection is given by rounding the entries to {0, 1}. As

a less trivial example, consider the cardinality-constrained problem. The projection of z onto Z
is given by

("(z))i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M zi > M , i ∈ I,
−M zi < −M , i ∈ I,
zi |zi| ≤ M , i ∈ I,
0 i ̸∈ I,

where I ⊆ {1, . . . , q} is a set of indices of k largest values of |zi|. We will describe many
projections, and some approximate projections, in Section 4.

1.5 Residual and merit functions

For any (x, z) with z ∈ Z , we define the constraint residual as

r(x, z) =
m∑

i=1
(fi(x, z))+ + ∥Ax+ Bz− c∥1,

where (u)+ = max{u, 0} denotes the positive part; (x, z) is feasible if and only if r(x, z) = 0. Note
that r(x, z) is a convex function of (x, z). We define the merit function of a pair (x, z) as

η(x, z) = f0(x, z) + λr(x, z),

where λ > 0 is a parameter. The merit function is also a convex function of (x, z).
When Z is convex and the problem is feasible, minimizing η(x, z) for large enough λ yields

a solution of the original problem (1) (that is, the residual is a so-called exact penalty function);
when the problem is not feasible, it tends to find approximate solutions that satisfy many of the
constraints [23,27,38].

4 S. Diamond et al.

We will use the merit function to judge candidate approximate solutions (x, z) with z ∈ Z; that
is, we take a pair with lower merit function value to be a better approximate solution than one
with higher merit function value. For some problems (for example, unconstrained problems) it
is easy to find feasible points, so all candidate points will be feasible. The merit function then
reduces to the objective value. At the other extreme, for feasibility problems the objective is zero,
and the goal is to find a feasible point. In this case the merit function reduces to λr(x, z), that is,
a positive multiple of the residual function.

1.6 Solution methods

In this section we describe various methods for solving the problem (1), either exactly (globally)
or approximately.

Global methods. Depending on the set Z , the problem (1) can be solved globally by a variety
of algorithms, including (or mixing) branch-and-bound [10,54,62], branch-and-cut [64,80,82],
semidefinite hierarchies [76], or even direct enumeration when Z is a finite set. In each iteration
of these methods, a convex optimization problem derived from (1) is solved, with Z removed,
and (possibly) additional variables and convex constraints added. While for many applications
these methods are effective, they are generally thought to have high worst-case complexities and
indeed can be very slow for some problems.

Local solution methods and heuristics. A local method for (1) solves a modest number of con-
vex problems, in an attempt to find a good approximate solution, that is, a pair (x, z) with z ∈ Z
and a low value of the merit function η(x, z). For a feasibility problem, we might hope to find
a solution; and if not, find one with a small constraint residual. For a general problem, we can
hope to find a feasible point with low objective value, ideally near the lower bound on p⋆ from
the relaxed problem. If we cannot find any feasible points, we can settle for a pair (x, z) with
z ∈ Z and low merit function value. All of these methods are heuristics, in the sense that they
cannot in general be guaranteed to find an optimal, or even good, or even feasible, point in only
a modest number of iterations.
There are of course many heuristics for the general problem (1) and for many of its special

cases. For example, any global optimization method can be stopped after some modest number of
iterations; we then take the best point found (in terms of the merit function) as our approximate
solution. (We will discuss some local search methods, including neighbour search and polishing,
in Section 2.)

1.7 Our approach

The purpose of this paper is to describe a general system for heuristic solution of (1), based
on solving a modest number of convex problems derived from (1). By heuristic, we mean that
the algorithm need not find an optimal point, or indeed, even a feasible point, even when one
exists. We would hope that for many feasible problem instances from some application, the
algorithm does find a feasible point, and one with objective not too far from the optimal value.
The disadvantage of a heuristic over a global method is clear and simple: it need not find an
optimal point. The advantage of a heuristic is that it can be (and often is) dramatically faster to
carry out than a global method. Moreover there are many applications where a heuristic method
for (1) is sufficient because the difference between a globally optimal solution and a solution that
is only close to optimal is not significant in practice.

Optimization Methods & Software 5

ADMM. One of the heuristic methods described in this paper is based on the alternating direc-
tions method of multipliers (ADMM), an operator splitting algorithm originally devised to solve
convex optimization problems (see, e.g. [8,25] for comprehensive tutorials on ADMM). We call
this heuristic non-convex alternating directions method of multipliers (NC-ADMM). ADMM
was introduced in the mid-1970s [30,35]. More recently, ADMM has found applications in a
variety of distributed settings in machine learning such as model fitting, resource allocation, and
classification (see, e.g. [4,61,72,74,88,89,92]). The idea of using ADMM as a general purpose
heuristic to solve non-convex problems was mentioned in [8, Ch. 9] and was further explored
in [20]. Consensus ADMM has been used for non-convex quadratically constrained quadratic
programs in [48]. In [91], ADMM has been applied to non-negative matrix factorization with
missing values. ADMM also has been used for real and complex polynomial optimization mod-
els in [49], for constrained tensor factorization in [57], and for optimal power flow in [26]: all
non-convex problems. ADMM can be viewed as a version of the method of multipliers [5,40,68],
where a Gauss–Seidel pass over x and z is used instead of the usual joint minimization. There
is a long history of using the method of multipliers to (attempt to) solve non-convex problems
[12,13,44,46,56,66,90]. Instead of basing our heuristic on ADMM, which is Douglas–Rachford
splitting [24] applied to the dual problem, we could also have used Spingarn’s method [78],
which is Douglas–Rachford splitting applied directly to the primal problem. For non-convex
problems the two approaches could yield different results.

Our contribution. Our main contribution is to identify a small number of concepts and meth-
ods for heuristics for non-convex problems that can be applied across a very wide variety of
problems. The only essential one is a projection, or even just an approximate projection, onto the
non-convex sets that appear in the problem. The others, which can dramatically improve the per-
formance of the heuristic, are to identify a convex relaxation for each non-convex set, a convex
restriction at a general point in each non-convex set, and a method to identify or list neighbours
of a given point (in a discrete non-convex set). We have implemented a general purpose system
that uses just these four methods and handles a variety of different problems. Our implemen-
tation is readily extensible; the user only needs to implement these four methods for any new
non-convex set to be added.

Outline. The paper has the following structure. In Section 2 we discuss local search methods
and describe how they can be used as solution improvement methods. This will enable us to study
simple but sophisticated methods such as relax–round–polish and iterative neighbour search. In
Section 3 we present a heuristic for problem (1) based on ADMM, which makes use of the solu-
tion improvement methods in Section 2. In Section 4 we catalog a variety of non-convex sets for
which Euclidean projection or approximate projection is easily evaluated and, when applicable,
we discuss relaxations, restrictions, and distance functions that define the set of neighbours for
a given point. In Section 5 we discuss an implementation of our general system for heuristic
solution NCVX, as an extension of CVXPY [22], a Python package for formulating and solv-
ing convex optimization problems. The object-oriented features of CVXPY make the extension
particularly simple to implement. Finally, in Section 6 we demonstrate the performance of our
methods on several example problems.

2. Local improvement methods

In this section we describe some simple general local search methods. These methods take a
point z ∈ Z and by performing a local search on z they find a candidate pair (x̂, ẑ), with ẑ ∈ Z
and a lower merit function. We will see that for many applications using these methods with a

6 S. Diamond et al.

good initialization will result in an approximate solution. We will also see how we can use these
methods to improve solution candidates from other heuristics, hence we refer to these methods
as solution improvement.

2.1 Polishing

Convex restriction. For non-discrete Z , the idea of a convex restriction at a point is useful
for local search methods. A convex restriction at a point z ∈ Z is a convex set Z rstr(z) that
satisfies z ∈ Z rstr(z) ⊆ Z . The trivial restriction given by Z rstr(z) = {z} is valid for all Z . When
Z is discrete, for example Z = {0, 1}q, the trivial restriction is the only restriction. In other
cases we can have interesting non-trivial restrictions. For example, withZ = {z ∈ Rq | card(z) ≤
k, ∥z∥∞ ≤ M }, we can take as restriction Z rstr(z̃) the set of vectors z with the same sparsity
pattern as z̃, and ∥z∥∞ ≤ M .

Polishing. Given any point z̃ ∈ Z , we can replace the constraint z ∈ Z with z ∈ Z rstr(z̃) to get
the convex problem

minimize η(x, z),

subject to z ∈ Z rstr(z̃),
(3)

with variables x,z. (When the restriction Z rstr(z̃) is the trivial one, that is, a singleton, this is
equivalent to fixing z = z̃ and minimizing over x.) We call this problem the convex restriction
of (1) at the point z̃. The restricted problem is convex, and its optimal value is an upper bound
on p⋆ assuming λ is sufficiently large in η(x, z) = f0(x, z) + λr(x, z) to ensure r(x, z) = 0.
As a simple example of polishing consider the mixed integer convex problem. The only restric-

tion is the trivial one, so the polishing problem for a given Boolean vector z̃ simply fixes the
values of the Boolean variables and solves the convex problem over the remaining variables,
that is, x. For the cardinality-constrained convex problem, polishing fixes the sparsity pattern of
z and solves the resulting convex problem over z and x.
For problems with non-trivial restrictions, we can solve the polishing problem repeatedly until

convergence. In other words we can use the output of the polishing problem as an initial point
for another polishing problem and keep iterating until the merit function stops improving. This
technique is called iterated polishing and described in Algorithm 1.

Algorithm 1 Iterated polishing
1: Input: (x̃, z̃)
2: do
3: (xold, zold)← (x̃, z̃).
4: Find (x̃, z̃) by solving the polishing problem with restriction z ∈ Z rstr(zold).
5: while η(x̃, z̃) < η(xold, zold)
6: return (x̃, z̃).

If there exists a point x̃ such that (x̃, z̃) is feasible, the restricted problem is feasible too. The
restricted problem need not be feasible in general, but if it is, with solution (x̂, ẑ), then the
pair (x̂, ẑ) is feasible for the original problem (1) and satisfies f0(x̂, ẑ) ≤ f0(x̃, z̃) for any x̃ for
which (x̃, z̃) is feasible. So polishing can take a point z̃ ∈ Z (or a pair (x̃, z̃)) and produce another
pair (x̂, ẑ) with a possibly better objective value.

Optimization Methods & Software 7

2.2 Relax–round–polish

With the simple tools described so far (i.e. relaxation, polishing, and projection) we can cre-
ate several heuristics for approximately solving the problem (1). A basic version solves the
relaxation, projects the relaxed value of z onto Z , and then iteratively polishes the result.

Algorithm 2 Relax–round–polish heuristic
1: Solve the convex relaxation (2) to obtain (xrlx, zrlx).
2: zrnd← "(zrlx).
3: Use Algorithm 1 on (xrlx, zrnd) to get (x̂, ẑ).

Note that in the first step we also obtain a lower bound on the optimal value p⋆; in the polishing
step we obtain an upper bound and a feasible pair (x̂, ẑ) that achieves the upper bound provided
that polishing is successful. The best outcome is for these bounds to be equal, which means that
we have found a (global) solution of (1) (for this problem instance). But relax–round–polish can
fail; for example, it can fail to find a feasible point even though one exists.
Many variations on relax–round–polish are possible. We can introduce randomization by

replacing the round step with

zrnd = "(zrlx + w),

where w is a random vector. We can repeat this heuristic with N different random instances of w.
For each of N samples of w, we polish, giving us a set of N candidate approximate solutions. We
then take as our final approximate solution the best among these N candidates, that is, the one
with least merit function.

2.3 Neighbour search

Neighbours. When Z is discrete, convex restrictions are not useful for local search. Instead we
use the concept of neighbours of a point z ∈ Z as a discrete analogue to a restriction. As with a
restriction, we do local search over the set of neighbours. Neighbours are defined in terms of a
distance function Zdist : Z × Z → Z+ ∪ {+∞}. The set of neighbours of a point z ∈ Z within
distance D ∈ Z+, denoted Zngbr(z,D), is given by Zngbr(z, k) = {Zdist(y, z) ≤ D | y ∈ Z}. We
select a distance function and distance D such that the size of Zngbr(z,D) is computationally
tractable for all z ∈ Z . For non-discrete Z , we use the trivial distance function

Zdist(z, y) =
{
0 z = y,
+∞ z ̸= y,

for which Zngbr(z,D) = {z} for all z and D.
For example, for the set of Boolean vectors in Rn we use Hamming distance, the number

of entries in which two Boolean vectors differ. Hence the neighbours of a Boolean vector z
within distance D are the set of vectors that differ from z in up to D components. We define the
distance between two permutation matrices as the minimum number of swaps of adjacent rows
and columns necessary to transform the first matrix into the second. With this distance metric,
neighbours of a permutation matrix Z within distance D are the set of permutation matrices
generated by swapping any two adjacent rows or columns in Z up to D times. We define distance

8 S. Diamond et al.

in terms of swaps of adjacent rows and columns rather than swaps of arbitrary rows and columns
to reduce the number of neighbours.
For Cartesian products of discrete sets we use the sum of distances. In this case, for z =

(z1, z2, . . . , zq) ∈ Z = Z1 × Z2 × · · ·× Zq, neighbours of z within distance D are points of the
form (z̃1, z̃2, . . . , z̃q) where

∑q
i=1Zdist

i (z̃i, zi) ≤ D.

Basic neighbour search. We introduced polishing as a tool that can find a pair (x̂, ẑ) given an
input z̃ ∈ Z by solving a sequence of convex problems. In basic neighbour search we solve the
polishing problem for z̃ and all neighbours of z̃ (within distance D) and return the pair (x∗, z∗)
with the smallest merit function value. In practice, we can sample from Zngbr(z̃,D) instead of
iterating over all points in Zngbr(z̃,D) if |Zngbr(z̃,D)| is large.

Algorithm 3 Basic neighbour search
1: Input: z̃
2: Initialize (xbest, zbest) = ∅, ηbest =∞.
3: for ẑ ∈ Zngbr(z̃,D) do
4: Find (x∗, z∗), by solving the polishing problem (3), with constraint z ∈ Z rstr(ẑ).
5: if η(x∗, z∗) < ηbest then
6: (xbest, zbest)← (x∗, z∗), ηbest← η(x∗, z∗).
7: end if
8: end for
9: return (xbest, zbest).

Iterated neighbour search. As with polishing, we can apply basic neighbour search repeatedly
until convergence. In other words we can feed the output of Algorithm 3 back into Algorithm 3
until the merit function stops improving. The technique is called iterated neighbour search and
described in Algorithm 4. Notice that for non-discrete sets where Zngbr(z,D) = {z} for all z and
D, this algorithm reduces to iterated polishing.

Algorithm 4 Iterated neighbour search
1: Input: (x̃, z̃)
2: do
3: (xold, zold)← (x̃, z̃).
4: Use Algorithm 3 on zold to get (x̃, z̃).
5: while η(x̃, z̃) < η(xold, zold)
6: return (x̃, z̃).

3. NC-ADMM

We already can use the simple tools described in the previous section as heuristics to find
approximate solutions to problem (1). In this section, we describe the alternating direction
method of multipliers (ADMM) as a mechanism to generate candidate points z̃ to carry out local
search methods such as iterated neighbour search. We call this method non-convex ADMM, or
NC-ADMM.

Optimization Methods & Software 9

3.1 ADMM

Define φ : Rq→ R ∪ {−∞,+∞} such that φ(z) is the best objective value of problem (1) after
fixing z. In other words,

φ(z) = inf
x

{f0(x, z) | fi(x, z) ≤ 0, i = 1, . . . ,m, Ax+ Bz = c}.

Notice that φ(z) can be +∞ or −∞ in case the problem is not feasible for this particular value
of z, or problem (2) is unbounded below after fixing z. The function φ is convex, since it is the
partial minimization of a convex function over a convex set [9, §3.4.4]. It is defined over all
points z ∈ Rq, but we are interested in finding its minimum value over the non-convex set Z . In
other words, problem (1) can be formulated as

minimize φ(z),

subject to z ∈ Z .
(4)

As discussed in [8, Chapter 9], ADMM can be used as a heuristic to solve non-convex
constrained problems. ADMM has the form

wk+1 := argminz(φ(z) + (ρ/2)∥z− zk + uk∥22)

zk+1 := "(wk+1 + uk)

uk+1 := uk + wk+1 − zk+1,

(5)

where ρ > 0 is an algorithm parameter, k is the iteration counter, and " denotes Euclidean
projection onto Z (which need not be unique when Z is not convex).
The initial values u0 and z0 are additional algorithm parameters. We always set u0 = 0 and

draw z0 randomly from a normal distributionN (0, σ 2I), where σ > 0 is an algorithm parameter.

3.2 Algorithm subroutines

Convex proximal step. Carrying out the first step of the algorithm, that is, evaluating the
proximal operator of φ, involves solving the convex optimization problem

minimize f0(x, z) + (ρ/2)∥z− zk + uk∥22
subject to fi(x, z) ≤ 0, i = 1, . . . ,m,

Ax+ Bz = c,

(6)

over the variables x ∈ Rn and z ∈ Rq. This is the original problem (1), with the non-convex
constraint z ∈ Z removed, and an additional convex quadratic term involving z added to the
objective. We let (xk+1,wk+1) denote a solution of (6). If the problem (6) is infeasible, then so
is the original problem (1); should this happen, we can terminate the algorithm with the certain
conclusion that (1) is infeasible.

Projection. The (non-convex) projection step consists of finding a closest point in Z to
wk+1 + uk . If more than one point has the smallest distance, we can choose one of the mini-
mizers arbitrarily. In cases where the projection onto Z is too costly, we replace projection with
approximate projection.

10 S. Diamond et al.

Dual update. The iterate uk ∈ Rq can be interpreted as a scaled dual variable, or as the running
sum of the error values wk − zk .

3.3 Discussion

Convergence. When Z is convex (and a solution of (1) exists), this algorithm is guaranteed
to converge to a solution, in the sense that f0(xk+1,wk+1) converges to the optimal value of the
problem (1), and wk+1 − zk+1→ 0, that is, wk+1→ Z . See [8, §3] and the references therein
for a more technical description and details. But in the general case, when Z is not convex, the
algorithm is not guaranteed to converge, and even when it does, it need not be to a global, or even
local, minimum. Some recent progress has been made on understanding convergence of ADMM
in the non-convex case [56].

Parameters. Another difference with the convex case is that the convergence and the quality
of solution depends on ρ, whereas for convex problems this algorithm is guaranteed to converge
to the optimal value regardless of the choice of ρ. In other words, in the convex case the choice
of parameter ρ only affects the speed of the convergence, while in the non-convex case the
choice of ρ can have a critical role in the quality of approximate solution, as well as the speed of
convergence.
The optimal parameter selection for ADMM is still an active research area in the convex case;

even less is known about it in the non-convex case. In [31] the optimal parameter selection for
convex quadratic problems is discussed. In a more general setting, Giselsson discusses the opti-
mal parameter selection for ADMM for strongly convex functions in [32–34]. The dependence
of global and local convergence properties of ADMM on parameter choice has been studied
in [6,45].

Initialization. In the convex case the choice of initial point z0 affects the number of iterations
to find a solution, but not the quality of the solution. Unsurprisingly, the non-convex case differs
in that the choice of z0 has a major effect on the quality of the approximate solution. As with the
choice of ρ, the initialization in the non-convex case is currently an active area of research; see,
for example, [48,56,81]. A reasonable generic method is to draw initial points randomly from
N (0, σ 2I) (assuming reasonable scaling of the original problem).

3.4 Solution improvement

Now we describe two techniques to obtain better solutions after carrying out ADMM. The first
technique relies on iterated neighbour search and the second one uses multiple restarts with
random initial points in order to increase the chance of obtaining a better solution.

Iterated neighbour search. After each iteration, we can carry out iterated neighbour search (as
described in Section 2.3) with Zngbr(zk+1,D) to obtain (x̂k+1, ẑk+1). We will return the pair with
the smallest merit function as the output of the algorithm. The distance D is a parameter that can
be increased so that the neighbour search considers more points.

Multiple restarts. We choose the initial value z0 from a normal distribution N (0, σ 2I). We can
run the algorithm multiple times from different initial points to increase the chance of finding a
feasible point with a smaller objective value.

Optimization Methods & Software 11

3.5 Overall algorithm

The following is a summary of the algorithm with solution improvement.

Algorithm 5 NC-ADMM heuristic
1: Initialize u0 = 0, (xbest, zbest) = ∅, ηbest =∞.
2: for algorithm repeats 1, 2, . . . ,M do
3: Initialize z0 ∼ N (0, σ 2I), k = 0.
4: do
5: (xk+1,wk+1)← argminz(φ(z) + (ρ/2)∥z− zk + uk∥22).
6: zk+1← "(wk+1 + uk).
7: uk+1← uk + wk+1 − zk+1.
8: Use Algorithm 4 on (xk+1, zk+1) to get the improved iterate (x̂, ẑ).
9: if η(x̂, ẑ) < ηbest then
10: (xbest, zbest)← (x̂, ẑ), ηbest = η(x̂, ẑ).
11: end if
12: k← k + 1.
13: while k ≤ N and (x̂, ẑ) has not repeated P times in a row.
14: end for
15: return xbest, zbest.

Convergence, stopping criteria, and optimality. As described in Section 3.3, ADMM need not
converge for arbitrary non-convex Z . The output of our heuristic is not the direct output of
ADMM, however, but the output of ADMM after local search. In Algorithm 5, ADMM may be
viewed as a procedure for generating sample points, which we run through Algorithm 4 to get
different local optima. Our heuristic may therefore be useful even on problems where ADMM
fails to converge. We terminate Algorithm 5 when local search returns the same point P times
in a row, where P is a parameter. Given the lack of convergence guarantees for ADMM with
non-convex Z , the only formal notion of optimality provided by our heuristic is that the solution
is optimal among all points considered by the local search method.

4. Projections onto non-convex sets

In this section we catalog various non-convex sets with their implied convex constraints, which
will be included in the convex constraints of problem (1). We also provide a Euclidean projection
(or approximate projection) " for these sets. Also, when applicable, we introduce a non-trivial
restriction and distance function.

4.1 Subsets of R

Booleans. For Z = {0, 1}, a convex relaxation (in fact, the convex hull of Z) is [0, 1]. Projec-
tion is simple rounding: "(z) = 0 for z ≤ 1

2 , and "(z) = 1 for z > 1
2 . (z = 1

2 can be mapped to
either point.) Moreover, Zdist(y, z) = |y− z| for y, z ∈ Z .

Finite sets. If Z has M elements, the convex hull of Z is the interval from the smallest to the
largest element. We can project onto Z with no more than log2M comparisons. For y, z ∈ Z , the
distance function is given by Zdist(y, z) = |[y, z] ∩ Z|− 1.

12 S. Diamond et al.

4.2 Subsets of Rn

Boolean vectors with fixed cardinality. LetZ = {z ∈ {0, 1}n | card(z) = k}. Any z ∈ Z satisfies
0 ≤ z ≤ 1 and 1Tz = k. We can project z ∈ Rn onto Z by setting the k entries of z with largest
value to one and the remaining entries to zero. For y, z ∈ Z , the distance Zdist(y, z) is defined
as the minimum number of swaps of entries needed to transform y into z, or half the Hamming
distance.

Vectors with bounded cardinality. Let Z = {x ∈ [−M ,M]n | card(x) ≤ k}, where M > 0 and
k ∈ Z+. (Vectors z ∈ Z are called k-sparse.) Any point z ∈ Z satisfies−M ≤ z ≤ M and−Mk ≤
1Tz ≤ Mk. The projection "(z) is found as follows

("(z))i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M zi > M , i ∈ I,
−M zi < −M , i ∈ I,
zi |zi| ≤ M , i ∈ I,
0 i ̸∈ I,

where I ⊆ {1, . . . , n} is a set of indices of k largest values of |zi|. A restriction of Z at z ∈ Z is
the set of all points in [−M ,M]n that have the same sparsity pattern as z.

Quadratic sets. Let Sn+ and Sn++ denote the set of n× n symmetric positive semidefinite and
symmetric positive definite matrices, respectively. Consider the set

Z = {z ∈ Rn | α ≤ zTAz+ 2bTz ≤ β},

where A ∈ Sn++, b ∈ Rn, and β ≥ α ≥ −bTA−1b. We assume α ≥ −bTA−1b because
zTAz+ 2bTz ≥ −bTA−1b for all z ∈ Rn. Any point z ∈ Z satisfies the convex inequality
zTAz+ 2bTz ≤ β.
We can find the projection onto Z as follows. If zTAz+ 2bTz > β, it suffices to solve

minimize ∥x− z∥22,

subject to xTAx+ 2bTx ≤ β,
(7)

and if zTAz+ 2bTz < α, it suffices to solve

minimize ∥x− z∥22
subject to xTAx+ 2bTx ≥ α.

(8)

(If α ≤ zTAz+ 2bTz ≤ β, clearly "(z) = z.) The first problem is a convex quadratically con-
strained quadratic program and the second problem can be solved by solving a simple semidefi-
nite program as described in [9, Appendix B]. Furthermore, there is a more efficient way to find
the projection by finding the roots of a single-variable polynomial of degree 2p+ 1, where p is
the number of distinct eigenvalues of A [42,48]. Note that the projection can be easily found
even if A is not positive definite; we assume A ∈ Sn++ only to make Z bounded and have a useful
convex relaxation.
A restriction of Z at z ∈ Z is the set

Z rstr(z) =
{
x ∈ Rn

∣∣∣∣
xTAz+ bT(x+ z) + bTA−1b√

zTAz+ 2bTz+ bTA−1b
≥

√
α + bTA−1b, xTAx+ 2bTx ≤ β

}
.

Recall that zTAz+ 2bTz+ bTA−1b ≥ 0 for all z ∈ Rn and we assume α ≥ −bTA−1b, so Z rstr(z)
is always well defined.

Optimization Methods & Software 13

Annulus and sphere. Consider the set

Z = {z ∈ Rn | r ≤ ∥z∥2 ≤ R},

where R ≥ r.
Any point z ∈ Z satisfies ∥z∥2 ≤ R. We can project z ∈ Rn \ {0} onto Z by the following

scaling

"(z) =

⎧
⎪⎨

⎪⎩

rz/∥z∥2 if ∥z∥2 < r,
z if z ∈ Z ,
Rz/∥z∥2 if ∥z∥2 > R.

If z=0, any point with Euclidean norm r is a valid projection.
A restriction of Z at z ∈ Z is the set

Z rstr(z) = {x ∈ Rn | xTz ≥ r∥z∥2, ∥x∥2 ≤ R}.

Notice that if r=R, then Z is a sphere and the restriction will be a singleton.

4.3 Subsets of Rm×n

Remember that the projection of a point X ∈ Rm×n on a set Z ⊂ Rm×n is a point Z ∈ Z such that
the Frobenius norm ∥X − Z∥F is minimized. As always, if there is more than one point Z that
minimizes ∥X − Z∥F, we accept any of them.

Matrices with bounded singular values and orthogonal matrices. Consider the set of m× n
matrices whose singular values lie between 1 and α

Z = {Z ∈ Rm×n | I ≼ ZTZ ≼ α2I},

where α ≥ 1, and A ≼ B means B− A ∈ Sn+ . Any point Z ∈ Z satisfies ∥Z∥2 ≤ α.
If Z = U*VT is the singular value decomposition of Z with singular values (σz)min{m,n} ≤

· · · ≤ (σz)1 and X ∈ Z with singular values (σx)min{m,n} ≤ · · · ≤ (σx)1, according to the von
Neumann trace inequality [87] we will have

Tr(ZTX) ≤
min{m,n}∑

i=1
(σz)i(σx)i.

Hence

∥Z − X∥2F ≥
min{m,n}∑

i=1
((σz)i − (σx)i)

2,

with equality when X = Udiag(σx)VT. This inequality implies that "(Z) = U*̃VT, where *̃ is
a diagonal matrix and *̃ii is the projection of*ii on the interval [1,α]. When Z=0, the projection
"(Z) is any matrix.
Given Z = U*VT ∈ Z , we have the following restriction [7]

Z rstr(Z) = {X ∈ Rm×n | ∥X∥2 ≤ α, VTX TU + UTXV ≽ 2I}.

(Notice that X ∈ Z rstr(Z) satisfies X TX ≽ I + (X − UVT)T(X − UVT) ≽ I .)
There are several noteworthy special cases. When α = 1 and m=n we have the set of orthog-

onal matrices. In this case, the restriction will be a singleton. When n=1, the set Z is equivalent
to the annulus {z ∈ Rm | 1 ≤ ∥z∥2 ≤ α}.

14 S. Diamond et al.

Matrices with bounded rank. Let Z = {Z ∈ Rm×n | Rank(Z) ≤ k, ∥Z∥2 ≤ M }. Any point Z ∈
Z satisfies ∥Z∥2 ≤ M and ∥Z∥∗ ≤ Mk, where ∥ · ∥∗ denotes the trace norm. If Z = U*VT is the
singular value decomposition of Z, we will have "(Z) = U*̃VT, where *̃ is a diagonal matrix
with *̃ii = min{*ii,M } for i = 1, . . . k, and *̃ii = 0 otherwise.
Given a point Z ∈ Z , we can write the singular value decomposition of Z as Z = U*VT with

U ∈ Rm×k , * ∈ Rr×r and V ∈ Rn×k . A restriction of Z at Z is

Z rstr(Z) = {U*̃VT | *̃ ∈ Rr×r}.

Assignment and permutation matrices. Assignment matrices are Boolean matrices with exactly
one non-zero element in each column and at most one non-zero element in each row. (They rep-
resent an assignment of the columns to the rows.) In other words, the set of assignment matrices
on {0, 1}m×n, where m ≥ n, satisfy

n∑

j=1
Zij ≤ 1, i = 1, . . . ,m,

m∑

i=1
Zij = 1, j = 1, . . . , n.

These two sets of inequalities, along with 0 ≤ Zij ≤ 1 are the implied convex inequalities. When
m=n, this set becomes the set of permutation matrices, which we denote by Pn.
Projecting Z ∈ Rm×n (with m ≥ n) onto the set of assignment matrices involves choosing an

entry from each column of Z such that no two chosen entries are from the same row and the
sum of chosen entries is maximized. Assuming that the entries of Z are the weights of edges in
a bipartite graph, the projection onto the set of assignment matrices will be equivalent to finding
a maximum-weight matching in a bipartite graph. The Hungarian method [52] is a well-known
polynomial time algorithm to find the maximum weight matching, and hence also the projection
onto assignment matrices.
For Y ,Z ∈ Z , the distance Zdist(Y ,Z) is defined as the minimum number of swaps of adja-

cent rows and columns necessary to transform Y into Z. We define distance in terms of swaps
of adjacent rows and columns rather than arbitrary rows and columns to reduce the number
of neighbours. For example, the restriction that swaps must be of adjacent rows and columns
reduces |Zngbr(Z, 1)| from O(mn) to O(m+ n) for Z ∈ Z .

Hamiltonian cycles. A Hamiltonian cycle is a cycle in a graph that visits every node exactly
once. Every Hamiltonian cycle in a complete graph can be represented by its adjacency matrix,
for example ⎡

⎢⎢⎣

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎤

⎥⎥⎦

represents a Hamiltonian cycle that visits nodes (3, 2, 4, 1) sequentially. Let Hn be the set of
n× n matrices that represent a Hamiltonian cycle.
Every point Z ∈ Hn satisfies 0 ≤ Zij ≤ 1 for i, j = 1, . . . , n, and Z = ZT, (1/2)Z1 = 1, and

2I− Z + 4
11T

n
≽ 2

(
1− cos 2π

n

)
I,

where I denotes the identity matrix. In order to see why the last inequality holds, it is enough to
note that 2I− Z is the Laplacian of the cycle represented by Z [2,59]. It can be shown that the

Optimization Methods & Software 15

smallest eigenvalue of 2I− Z is zero (which corresponds to the eigenvector 1), and the second
smallest eigenvalue of 2I− Z is 2(1− cos 2πn). Hence all eigenvalues of 2I− Z + 4(11T/n)must
be no smaller than 2(1− cos(2π/n)).
We are not aware of a polynomial time algorithm to find the projection of a given real n× n

matrix ontoHn. We can find an approximate projection of Z by the following greedy algorithm:
construct a graph with n vertices where the edge between i and j is weighted by zij. Start with the
edge with largest weight and at each step, among all the edges that do not create a cycle, choose
the edge with the largest weight (except for the last step where a cycle is created).
For Y ,Z ∈ Hn, the distance Zdist(Y ,Z) is defined as the minimum number of adjacent nodes

that must be swapped to transform Y into Z. Swapping adjacent nodes i and j means replacing
Y with P(i,j)YPT(i,j) where Yij = 1 and P(i,j) is a permutation matrix that swaps nodes i and j and
leaves other nodes unchanged. As with assignment matrices, we define distance in terms of swaps
of adjacent nodes rather than arbitrary nodes to reduce the number of neighbours.

4.4 Combinations of sets

Cartesian product. Let Z = Z1 × · · ·× Zk ⊂ Rn, where Z1, . . . ,Zk are closed sets with
known projections (or approximate projections). A convex relaxation of Z is the Cartesian
product Z rlx

1 × · · ·× Z rlx
k , where Z rlx

i is the set described by the convex relaxation of Zi. The
projection of z ∈ Rn onto Z is ("1(z1), . . . ,"k(zk)), where"i denotes the projection onto Zi for
i = 1, . . . , k.
A restriction of Z at a point z = (z1, z2, . . . , zk) ∈ Z is the Cartesian product Z rstr(z) =

Z rstr
1 (z1)× · · ·× Z rstr

k (zk). For y = (y1, y2, . . . , yk) ∈ Z and z = (z1, z2, . . . , zk) ∈ Z , the distance
function is given by Zdist(y, z) =

∑k
i=1Zdist

i (yi, zi).

5. Implementation

We have implemented the NCVX Python package for modelling problems of the form (1) and
applying the NC-ADMM heuristic, along with the relax–round–polish and relax methods. The
NCVX package is an extension of CVXPY [22]. The problem objective and convex constraints
are expressed using standard CVXPY semantics. Non-convex constraints are expressed implic-
itly by creating a variable constrained to lie in one of the sets described in Section 4. For example,
the code snippet

x = Boolean()

creates a variable x ∈ R with the implicit non-convex constraint x ∈ {0, 1}. The convex relax-
ation, in this case x ∈ [0, 1], is also implicit in the variable definition. The source code for NCVX
is available at https://github.com/cvxgrp/ncvx.

5.1 Variable constructors

The NCVX package provides the following functions for creating variables with implicit non-
convex constraints, along with many others not listed:

• Boolean(n) creates a variable x ∈ Rn with the implicit constraint x ∈ {0, 1}n.
• Integer(n, M) creates a variable x ∈ Rn with the implicit constraints x ∈ Zn and
∥x∥∞ ≤ ⌊M⌋.

https://github.com/cvxgrp/ncvx

16 S. Diamond et al.

• Card(n, k, M) creates a variable x ∈ Rn with the implicit constraints that at most k entries
are non-zero and ∥x∥∞ ≤ M .

• Choose(n, k) creates a variable x ∈ Rn with the implicit constraints that x ∈ {0, 1}n and
has exactly k non-zero entries.

• Rank(m, n, k, M) creates a variable X ∈ Rm×n with the implicit constraints Rank(X) ≤
k and ∥X∥2 ≤ M .

• Assign(m, n) creates a variable X ∈ Rm×n with the implicit constraint that X is an
assignment matrix.

• Permute(n) creates a variable X ∈ Rn×n with the implicit constraint that X is a permutation
matrix.

• Cycle(n) creates a variable X ∈ Rn×n with the implicit constraint that X is the adjacency
matrix of a Hamiltonian cycle.

• Annulus(n,r,R) creates a variable x ∈ Rn with the implicit constraint r ≤ ∥x∥2 ≤ R.
• Sphere(n, r) creates a variable x ∈ Rn with the implicit constraint ∥x∥2 = r.

5.2 Variable methods

Additionally, each variable created by the functions in Section 5.1 supports the following
methods:

• variable.relax() returns a list of convex constraints that represent a convex relaxation
of the non-convex set Z , to which the variable belongs.

• variable.project(z) returns the Euclidean (or approximate) projection of z onto the
non-convex set Z , to which the variable belongs.

• variable.restrict(z) returns a list of convex constraints describing the convex
restriction Z rstr(z) at z of the non-convex set Z , to which the variable belongs.

• variable.neighbours(z, D) returns a list of neighbours Zngbr(z,D) of z contained in
the non-convex set Z , to which the variable belongs.

Users can add support for additional non-convex sets by providing functions that implement
these four methods.

5.3 Constructing and solving problems

To construct a problem of the form (1), the user creates variables z1, . . . , zk with the implicit
constraints z1 ∈ Z1, . . . , zk ∈ Zk , where Z1, . . . ,Zk are non-convex sets, using the functions
described in Section 5.1. The variable z in problem (1) corresponds to the vector (z1, . . . , zk). The
components of the variable x, the objective, and the constraints are constructed using standard
CVXPY syntax.
Once the user has constructed a problem object, they can apply the following solve methods:

• problem.solve(method="relax") solves the convex relaxation of the problem.
• problem.solve(method="relax-round-polish") applies the relax–round–
polish heuristic. Additional arguments can be used to specify the parameters N, D, σ , and λ.
By default the parameter values are N =5, D=1, σ = 1, and λ = 104. When N > 1, the first
sample w1 ∈ Rq is always 0. Subsequent samples are drawn i.i.d. from N(0, σ 2I). Neighbour
search looks at all neighbours within distance D.

• problem.solve(method="nc-admm") applies the NC-ADMM heuristic. Additional
arguments can be used to specify the number of starting points, the number of iterations the
algorithm is run from each starting point, and the values of the parameters ρ, D, σ , and λ. By

Optimization Methods & Software 17

default the algorithm is run from 5 starting points for 50 iterations, the value of ρ is drawn
uniformly from [0, 1], and the other parameter values are D=1, σ = 1, and λ = 104. The first
starting point is always z0 = 0 and subsequent starting points are drawn i.i.d. fromN (0, σ 2I).
Neighbour search looks at all neighbours within distance D.

The relax–round–polish and NC-ADMMmethods record the best point found (xbest, zbest) accord-
ing to the merit function. The methods return the objective value f0(xbest, zbest) and the residual
r(xbest, zbest), and set the value field of each variable to the appropriate segment of xbest and
zbest.
For example, consider the regressor selection problem, which we will discuss in Section 6.1.

This problem can be formulated as

minimize ∥Ax− b∥22
subject to card(x) ≤ k, ∥x∥∞ ≤ M ,

(9)

with decision variable x ∈ Rn and problem data A ∈ Rm×n, b ∈ Rm, M > 0, and k ∈ Z+. The
following code attempts to approximately solve this problem using our heuristic.

x = Card(n,k,M)
prob = Problem(Minimize(sum_squares(A*x-b)))
objective, residual = prob.solve(method="nc-admm")

The first line constructs a variable x ∈ Rn with the implicit constraints that at most k entries
are non-zero, ∥x∥∞ ≤ M , and ∥x∥1 ≤ kM . The second line creates a minimization problem with
objective ∥Ax− b∥22 and no constraints. The last line applies the NC-ADMM heuristic to the
problem and returns the objective value and residual of the best point found.

5.4 Limitations

Our implementation is designed to be simple and to generalize to as many problems as possi-
ble. As a result, the implementation has several limitations in terms of computational efficiency
and exploiting problem specific structure. For example, no work is cached across solves of con-
vex subproblems. Caching factorizations or warm starting would improve performance when
the convex solver supports these features. The implementation runs NC-ADMM from different
initial values in parallel, but a more sophisticated implementation would use finer grained par-
allelism. Neighbour search and polishing can be made more efficient than the general purpose
approach in our implementation by exploiting problem specific structure. For example, if the
variable z is a Boolean vector, that is, Z ∈ {0, 1}q, then any neighbour z̃ ∈ Z rstr(z, 1) differs from
z in only two entries. The change in the merit function η(x, z̃)− η(x, z) can be computed effi-
ciently given η(x, z), accelerating neighbour search. Polishing can also be accelerated by taking
advantage of the structure of the convex restriction. For instance, the restriction of the cardinality
constraint Z = {z ∈ Rq | card(z) ≤ k, ∥z∥∞ ≤ M } fixes the sparsity pattern, which reduces the
number of free entries of z from q to k. Our implementation imposes the restriction by adding
convex constraints to the problem, but a more efficient implementation would replace z with a
k-dimensional variable.
For several of the examples in Section 6, we implemented optimized versions of the NC-

ADMM algorithm that remedy the limitations of our general purpose implementation. Even our
problem specific implementations could be improved further by better exploiting parallelism and
applying low-level code optimization, but the implementations are fast enough to compete with
optimized general purpose mixed integer solvers like Gurobi [37].

18 S. Diamond et al.

6. Examples

In this section we apply the NC-ADMM heuristic to a wide variety of hard problems, that is,
that generally cannot be solved in polynomial time. Extensive research has been done on spe-
cialized algorithms for each of the problems discussed in this section. Our intention is not to
seek better performance than these specialized algorithms, but rather to show that our general
purpose heuristic can yield decent results with minimal tuning. The advantage of our heuristic
is that it can be applied to problems that no one has studied before, not that it outperforms the
state-of-the-art on well-studied problems.
Unless otherwise specified, the algorithm parameters are the defaults described in Section 5. In

particular, we use random initialization for all examples. For most problems a well chosen prob-
lem specific initialization will improve the results of our method; see, for example [48,56,81].
We use random initialization, however, because it better demonstrates that our heuristic can be
effective with minimal tuning. Whenever possible, we compare our heuristic to Gurobi [37], a
commercial global optimization solver. All runtimes reported are on a laptop with a four-core
2.3GHz Intel Core i7 processor.

6.1 Regressor selection

We consider the problem of approximating a vector b with a linear combination of at most k
columns of A with bounded coefficients. This problem can be formulated as

minimize ∥Ax− b∥22
subject to card(x) ≤ k, ∥x∥∞ ≤ M ,

(10)

with decision variable x ∈ Rn and problem data A ∈ Rm×n, b ∈ Rm, k ∈ Z+, and M >0. Lasso
(least absolute shrinkage and selection operator) is a well-known heuristic for solving this
problem by adding ℓ1 regularization and minimizing ∥Ax− b∥22 + λ∥x∥1. The value of λ is
chosen as the smallest value for which card(x) ≤ k (see [29, §3.4] and [9, §6.3]). The non-
convex set from Section 4 in problem (10) is the set of vectors with bounded cardinality
Z = {x ∈ [−M ,M]n | card(x) ≤ k}.

Problem instances. We first consider a family of random problem instances. We generated
the matrix A ∈ Rm×2m with i.i.d. N (0, 1) entries, and chose b = Ax̂+ v, where x̂ was drawn
uniformly at random from the set of vectors satisfying card(x̂) ≤ ⌊m/5⌋ and ∥x∥∞ ≤ 1, and
v ∈ Rm was a noise vector drawn fromN (0, σ 2I). We set σ 2 = ∥Ax̂∥2/(400m) so that the signal-
to-noise ratio was near 20. For each value of m, we generated 40 instances of the problem as
described above. We solved the instances for k = ⌊m/5⌋.
In order to examine this method on a real data set, we also used data from the University of

California, Irvine (UCI) Machine Learning repository [28] to study the murder rate (per 100K
people) of m=2215 communities in the United States. Similar to [83], we had n=101 attributes
measured in each community, and our goal was to predict the murder rate as a linear function
of only k attributes. To find a good prediction model one would use cross validation analysis in
order to choose k; but we limited ourselves to the problem of finding 2 ≤ k ≤ 20 regressors that
minimize ∥Ax− b∥22.

Results. Figure 1 compares the average sum of squares error for the x∗ values found by the
Lasso heuristic, relax–round–polish, and NC-ADMM for the randomly generated instances. For
Lasso, we solved the problem for 100 values of λ and then solved the polishing problem after

Optimization Methods & Software 19

Figure 1. The average error of solutions found by Lasso, relax–round–polish, and NC-ADMM for 40 random instances
of the regressor selection problem.

Figure 2. The best value found by NC-ADMM (usually done in 35milliseconds) and Gurobi after 10, 100, and 1000 s.

fixing the sparsity pattern suggested by Lasso. For all m, the objective values found by the NC-
ADMM heuristic were on average better than those found by the Lasso and relax–round–polish
heuristics.
For our second problem (murder rate), we used our NC-ADMM heuristic and Gurobi to solve

the problem. Our tailored implementation of NC-ADMM never took more than 40 milliseconds
to run. The implementation is extremely efficient because the dominant computation is a single
factorization of the matrix ATA+ ρI. We use only one restart and hence only one value of ρ.
Figure 2 shows the value found by NC-ADMM as well as the best value found by Gurobi after 10,
100, and 1000 s. For all k, the objective value found by NC-ADMM after only 40 milliseconds
was better than those found by Gurobi after 10 or 100 s and comparable to those found after
1000 s. (Of course, Gurobi will eventually find the global optimal point, and therefore match or
beat the point found by NC-ADMM.)

6.2 3-satisfiability

Given Boolean variables x1, . . . , xn, a literal is either a variable or the negation of a variable, for
example x1 and ¬x2. A clause is disjunction of literals (or a single literal), for example (¬x1 ∨

20 S. Diamond et al.

x2 ∨ ¬x3). Finally a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses
(or a single clause), for example (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2). Determining the satisfiability
of a formula in CNF where each clause is limited to at most three literals is called 3-satisfiability
or simply the 3-SAT problem. It is known that 3-SAT is NP-complete, hence we do not expect to
be able to solve 3-SAT in general using our heuristic. A 3-SAT problem can be formulated as the
following

minimize 0,

subject to Az ≤ b,
z ∈ {0, 1}n,

(11)

where entries of A ∈ Rm×n are given by

aij =

⎧
⎪⎨

⎪⎩

−1 if clause icontains xj,
1 if clause icontains¬xj,
0 otherwise,

and the entries of b are given by

bi = (number of negated literals in clause i)− 1.

The non-convex set from Section 4 in problem (11) is the set of Boolean vectors Z = {0, 1}n.

Problem instances. We generated 3-SAT problems with varying numbers of clauses and vari-
ables randomly as in [58,60]. As discussed in [16], there is a threshold around 4.25 clauses per
variable when problems transition from being feasible to being infeasible. Problems near this
threshold are generally found to be hard satisfiability problems. The SATLIB uniform random-
3-SAT benchmark is constructed by the same method [47]. We generated 10 instances for each
choice of number of clauses m and variables n, verifying that each instance is feasible using
Gurobi [37].

Results. We ran the NC-ADMM heuristic on each instance, with 10 restarts and 100 iterations,
and ρ = 10. Figure 3 shows the fraction of instances solved correctly with NC-ADMM for each
choice of number of clauses m and variables n. We see that using this heuristic, satisfying assign-
ments can be found consistently for up to 3.2 constraints per variable, at which point success
starts to decrease. Problems in the gray region in Figure 3 were not tested since they are infea-
sible with high probability. We also tried the relax–round–polish heuristic, but it often failed to
solve problems with more than 50 clauses.
For all instances, the runtime of the NC-ADMM heuristic with the parameters we chose was

greater than the time it took Gurobi to find a solution. A specialized SAT solver would of course
be even faster. We include the example nonetheless because it shows that the NC-ADMM heuris-
tic can be effective for feasibility problems, even though the algorithm is not guaranteed to find
a feasible point.

6.3 Circle packing

In the circle packing problem we are interested in finding the smallest square in which we
can place n non-overlapping circles with radii r1, . . . , rn [36]. This problem has been studied
extensively [11,14,79] and a database of densest known packings (with all ri equal) for different

Optimization Methods & Software 21

Figure 3. The fraction of the 10 3-SAT instances generated for each choice of number of clauses m and variables n for
which NC-ADMM found a satisfying assignment. No instances were generated for (n, m) in the gray region.

numbers of circles can be found in [77]. Variants of the problem arise in industrial packing and
computer aided design [41]. The problem can be formulated as

minimize l

subject to ri1 ≤ xi ≤ (l − ri)1, i = 1, . . . , n

xi − xj = zij, i = 1, . . . , n− 1, j = i+ 1, . . . , n

2
n∑

k=1
ri ≥ ∥zij∥2 ≥ ri + rj, i = 1, . . . , n− 1, j = i+ 1, . . . , n,

(12)

where x1, . . . , xn ∈ R2 are variables representing the circle centres and z12, z13, . . . , zn−1,n ∈ R2
are additional variables representing the offset between pairs (xi, xj). The non-convex set from
Section 4 in problem (12) are the annuli

Zij =
{

zij ∈ R2 | ri + rj ≤ ∥zij∥2 ≤ 2
n∑

k=1
ri

}

,

for i = 1, . . . , n− 1 and j = i+ 1, . . . , n.

Problem instances. We generated problems with different numbers of circles n, but with equal
radii r1, . . . , rn. Problem instances of this form are quite difficult to solve globally. The densest
possible packing is unknown for most n>36 [77].

Results. We ran the relax–round–polish heuristic for problems with n = 1, . . . , 100. The heuris-
tic is essentially equivalent to well-known methods like the convex-concave procedure and the
majorization–minimization algorithm [58]. We observed that NC-ADMM is no more effective
than relax–round–polish. Figure 4 shows the relative radius r1/l of the packing found by our
heuristic in comparison to the best packing known. Figure 5 shows the packing found by our
heuristic for n= 41. The obtained packing covers 78.68% of the area of the bounding square,
which is close to the densest known packing, which covers 79.27% of the area.

22 S. Diamond et al.

Figure 4. The relative radius r1/l for the densest known packing and the packing found with the relax–round–polish
heuristic for n = 1, . . . , 100.

Figure 5. The packing for n= 41 circles with equal radii found with the relax–round–polish heuristic.

6.4 Travelling salesman problem

In the TSP, we wish to find the minimum weight Hamiltonian cycle in a weighted graph. A
Hamiltonian cycle is a path that starts and ends on the same vertex and visits each other vertex in
the graph exactly once. Let G be a graph with n vertices and D ∈ Sn be the (weighted) adjacency
matrix, that is, the real number dij denotes the distance between i and j. We can formulate the
TSP problem for G as follows

minimize (1/2)Tr(DTZ),

subject to Z ∈ Hn,
(13)

where Z is the decision variable [18,43,51,53]. The non-convex set from Section 4 in prob-
lem (13) is the set of Hamiltonian cycles Z = Hn.

Optimization Methods & Software 23

Figure 6. The average cost of the TSP solutions found by relax–round–polish, NC-ADMM, and Gurobi with a time
cutoff equal to the runtime of NC-ADMM.

Problem instances. We generated problems with different numbers of vertices n by sampling n
points from the uniform distribution on [−1, 1]2. We set dij to be the Euclidean distance between
points i and j. For each value of n, we generated 10 instances of the problem according to the
above procedure.

Results. Figure 6 shows the average cost of the solutions found by relax–round–polish, NC-
ADMM, and Gurobi with a time cutoff. We implemented an optimized version of NC-ADMM
for the TSP problem. We ran NC-ADMMwith 4 restarts and 25 iterations. We ran Gurobi on the
standard MILP formulation of the TSP [65, §13] and gave it a time cutoff equal to the runtime
of our NC-ADMM implementation. We ignored instances where Gurobi failed to find a feasible
point within the runtime.

As n increases, the average cost of the solutions found by NC-ADMM goes below that of
Gurobi with a time cutoff. Of course a specialized TSP solver like Concorde [3] could solve
all the problem instances to global optimality within the runtime of NC-ADMM. We emphasize
again, however, that our goal is not to outperform specialized solvers on every problem class,
but simply for NCVX to compare favourably with other general purpose non-convex solvers.

6.5 Factor analysis model

The factor analysis problem decomposes a matrix as a sum of a low-rank and a diagonal matrix
and has been studied extensively (e.g. [63,70]). It is also known as the Frisch scheme in the
system identification literature [19,50]. The problem is the following

minimize ∥* −*lr − D∥2F
subject to D = diag(d), d ≥ 0

*lr ≽ 0

Rank(*lr) ≤ k,

(14)

where *lr ∈ Sn+ and diagonal matrix D ∈ Rn×n with non-negative diagonal entries are the deci-
sion variables, and * ∈ Sn+ and k ∈ Z+ are problem data. One well-known heuristic for solving

24 S. Diamond et al.

Figure 7. The average difference between the objective value found by the nuclear norm, relax–round–polish, and
NC-ADMM heuristics and the best objective value found by any of the heuristics for instances of the factor analysis
problem constructed from daily stock returns.

this problem is adding ∥ · ∥∗, or nuclear norm, regularization and minimizing ∥* −*lr − D∥2F +
λ∥*lr∥∗ [70,85]. The value of λ is chosen as the smallest value possible such that Rank(*lr) ≤ k.
Since*lr is positive semidefinite, ∥*lr∥∗ = Tr(*lr). The non-convex set from Section 4 for prob-
lem (14) is the set of matrices with bounded rank Z = {*lr ∈ Sn+ | Rank(*lr) ≤ k}. Unlike in
Section 4, we constrain *lr to be positive semidefinite but impose no bound on the norm ∥*lr∥2.

Problem instances. We constructed instances of the factor analysis problem using daily returns
from stocks in the July 2016 S&P 500 over 2014 and 2015. There is a long history in finance
of decomposing the covariance of stock returns into low-rank and diagonal components [67,75].
We varied the number of stocks used n, the rank k, and the month of returns history considered.
For each choice of n, k, and month, we generated an instance of problem (14) by setting * to be
the covariance matrix of the daily per cent returns over that month for the first n S&P 500 stocks,
ordered alphabetically by NYSE ticker.

Results. We ran NC-ADMM, relax–round–polish, and the nuclear norm heuristic on each prob-
lem instance. For the nuclear norm heuristic, we solved the problem for 1000 values of λ and
then polished the solution *̂lr. In the polishing problem we replaced the rank constraint in
problem (14) with the convex restriction *lr ∈ {Q1:k*̃QT1:k | *̃ ∈ Sk+}, where *̂ = Q-QT is the
eigendecomposition of *̂lr and Q1:k is the first k columns of Q.
The *lr and d values found by the three methods were always feasible solutions to prob-

lem (14). For each problem instance and each method, we took the value of the objective
∥* −*lr − D∥2F obtained by the method and subtracted the smallest objective value obtained
by any method, pbest. Figure 7 shows the average ∥* −*lr − D∥2F − pbest across all 24 months
of returns data, for a given n and k. NC-ADMM always gave the best objective value on average
(though not for each specific problem instance). The performance of relax–round–polish rela-
tive to NC-ADMM increased as k increased, while the relative performance of the nuclear norm
heuristic decreased as k increased.

6.6 Inexact graph isomorphism

Two (undirected) graphs are isomorphic if we can permute the vertices of one so it is the same
as the other (i.e. the same pairs of vertices are connected by edges). If we describe them by their

Optimization Methods & Software 25

adjacency matrices A and B, isomorphism is equivalent to the existence of a permutation matrix
Z ∈ Rn×n such that ZAZT = B, or equivalently ZA=BZ.
Since in practical applications isomorphic graphs might be contaminated by noise, the inexact

graph isomorphism problem is usually stated [1,17,84], in which we want to find a permuta-
tion matrix Z such that the disagreement ∥ZAZT − B∥2F between the transformed matrix and the
target matrix is minimized. Solving inexact graph isomorphism problems is of interest in pat-
tern recognition [15,69], computer vision [71], shape analysis [39,73], image and video indexing
[55], and neuroscience [86]. In many of the aforementioned fields graphs are used to repre-
sent geometric structures, and ∥ZAZT − B∥2F can be interpreted as the strength of geometric
deformation.
Since ∥ZAZT − B∥2F = ∥ZA− BZ∥2F for any permutation matrix Z, the inexact graph isomor-

phism problem can be formulated as

minimize ∥ZA− BZ∥2F
subject to Z ∈ Pn.

(15)

If the optimal value of this problem is zero, it means that A and B are isomorphic. Otherwise,
the solution of this problem minimizes the disagreement of ZAZT and B in the Frobenius norm
sense. The non-convex set from Section 4 in problem (15) is the the set of permutation matrices
Z = Pn.

Problem instances. It can be shown that if A and B are isomorphic and A has distinct eigenval-
ues and all eigenvectors v of A satisfy 1Tv ̸= 0, then the relaxed problem has a unique solution
which is the permutation matrix that relates A and B [1]. Hence in our first experiment, in order
to generate harder problems, we generated the matrix A such that it violated these conditions.
In particular, we constructed A for the Peterson graph (3-regular with 10 vertices), icosahedral
graph (5-regular with 12 vertices), Ramsey graph (8-regular with 17 vertices), dodecahedral
graph (3-regular with 20 vertices), and the Tutte-Coxeter graph (3-regular with 30 vertices). For
each example we randomly permuted the vertices to obtain two isomorphic graphs.
We also used random graphs from the SIVALab data set [21] in our second experiment.

These are Erdos–Renyi graphs that have been used for benchmarking different graph isomor-
phism algorithms. We ran our NCVX heuristic and Gurobi on 100 problems of size n=20,
40,60,80.

Results. We implemented a faster version of NC-ADMM that caches work between convex
solves. We ran our implementation with 25 iterations, 2 restarts, and no neighbour search. For all
of our examples in the first experiment NC-ADMM was able to find the permutation relating the
two graphs. It is interesting to notice that running the algorithm multiple times can find different
solutions if there is more than one permutation relating the two graphs.
We compared NC-ADMMwith Gurobi on random example in our second experiment. We ran

Gurobi with a time limit of 300 seconds. Whenever Gurobi found a permutation matrix that gave
an objective value of 0 it immediately returned the solution since the lower bound 0 was evident.
NC-ADMM found a permutation solution for 97 out of 100 examples.
Figure 8 shows the runtime performance of the two methods. Each point shows how long

NC-ADMM or Gurobi ran on a particular problem instance. Points with time component of
300 s indicate instances that Gurobi was unable to find a solution within the time limit. The
goal of this comparison is to test the performance of generic methods on the graph isomor-
phism problem; tailored methods for this problem are significantly faster than both of these
methods.

26 S. Diamond et al.

Figure 8. Time comparison of Gurobi and NC-ADMM on random graph isomorphism problems. Each point shows
how long NC-ADMM or Gurobi ran on a particular problem instance.

7. Conclusion

We have discussed the relax–round–polish and NC-ADMM heuristics and demonstrated their
performance on many different problems with convex objectives and decision variables from a
non-convex set. Our heuristics are easy to extend to additional problems because they rely on a
simple mathematical interface for non-convex sets. We need only know a method for (approxi-
mate) projection onto the set. We do not require but benefit from knowing a convex relaxation
of the set, a convex restriction at any point in the set, and the neighbours of any point in the
set under some discrete distance metric. Adapting our heuristics to any particular problem is
straightforward, and we have fully automated the process in the NCVX package.
We do not claim that our heuristics give state-of-the-art results for any particular problem.

Rather, the purpose of our heuristics is to give a fast and reasonable solution with minimal tuning
for a wide variety of problems. Our heuristics also take advantage of the tremendous progress in
technology for solving general convex optimization problems, which makes it practical to treat
solving a convex problem as a black box.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under
Grant No. [DGE-114747] and by the DARPA XDATA and SIMPLEX programs.

References

[1] Y. Aflalo, A. Bronstein, and R. Kimmel, On convex relaxation of graph isomorphism, Proc. Natl. Acad. Sci. USA
112 (2015), pp. 2942–2947.

[2] W. Anderson and T. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985),
pp. 141–145.

[3] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, Concorde TSP solver, preprint (2006). Available at http://www.
math.uwaterloo.ca/tsp/concorde.html.

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html

Optimization Methods & Software 27

[4] N. Aybat, S. Zarmehri, and S. Kumara, An ADMM algorithm for clustering partially observed networks,
Proceedings of the SIAM International Conference on Data Mining, 2015.

[5] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, 2014.
[6] D. Boley, Local linear convergence of the alternating direction method of multipliers on quadratic or linear

programs, SIAM J. Optim. 23 (2013), pp. 2183–2207.
[7] S. Boyd, M. Hast, and K. Astrom, MIMO PID tuning via iterated LMI restriction, Internat. J. Robust Nonlinear

Control 26 (2015), pp. 1718–1731.
[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the

alternating direction method of multipliers, Found. Trends Mach. Learn. 3 (2011), pp. 1–122.
[9] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
[10] P. Brucker, B. Jurisch, and B. Sievers, A branch and bound algorithm for the job-shop scheduling problem, Discrete

Appl. Math. 49 (1994), pp. 107–127.
[11] I. Castillo, F. Kampas, and J. Pintér, Solving circle packing problems by global optimization: Numerical results and

industrial applications, European J. Oper. Res. 191 (2008), pp. 786–802.
[12] R. Chartrand, Nonconvex splitting for regularized low-rank + sparse decomposition, IEEE Trans. Signal Process.

60 (2012), pp. 5810–5819.
[13] R. Chartrand and B. Wohlberg, A nonconvex ADMM algorithm for group sparsity with sparse groups, Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 6009–6013.
[14] C. Collins and K. Stephenson, A circle packing algorithm, Comput. Geom. 25 (2003), pp. 233–256.
[15] D. Conte, P. Foggia, C. Sansone, and M. Vento, Thirty years of graph matching in pattern recognition, Int. J. Pattern

Recognit. Artif. Intell. 18 (2004), pp. 265–298.
[16] J. Crawford and L. Auton, Experimental results on the crossover point in random 3-SAT, Artif. Intell. 81 (1996),

pp. 31–57.
[17] A. Cross, R. Wilson, and E. Hancock, Inexact graph matching using genetic search, Pattern Recognit. 30 (1997),

pp. 953–970.
[18] G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a large-scale traveling-salesman problem, J. Oper. Res. Soc.

Am. 2 (1954), pp. 393–410.
[19] J. David and B. De Moor, The opposite of analytic centering for solving minimum rank problems in control and

identification, Proceedings of the IEEE Conference on Decision and Control, 1993, pp. 2901–2902.
[20] N. Derbinsky, J. Bento, V. Elser, and J. Yedidia, An improved three-weight message-passing algorithm, preprint

(2013), arXiv preprint arXiv:1305.1961.
[21] M. De Santo, P. Foggia, C. Sansone, and M. Vento, A large database of graphs and its use for benchmarking graph

isomorphism algorithms, Pattern Recognit. Lett. 24 (2003), pp. 1067–1079.
[22] S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, J. Mach. Learn.

Res. 17 (2016), pp. 1–5.
[23] G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization, SIAM J. Control Optim. 27 (1989),

pp. 1333–1360.
[24] J. Eckstein and D. Bertsekas, On the Douglas–Rachford splitting method and the proximal point algorithm for

maximal monotone operators, Math. Program. 55 (1992), pp. 293–318.
[25] J. Eckstein and W. Yao, Understanding the convergence of the alternating direction method of multipliers:

Theoretical and computational perspectives, Pac. J. Optim. 11 (2015), pp. 619–644.
[26] T. Erseghe, Distributed optimal power flow using ADMM, IEEE Trans. Power Syst. 29 (2014), pp. 2370–2380.
[27] R. Fletcher, An exact penalty function for nonlinear programming with inequalities, Math. Program. 5 (1973),

pp. 129–150.
[28] A. Frank and A. Asuncion, University of California, Irvine machine learning repository, preprint (2010). Available

at http://archive.ics.uci.edu/ml.
[29] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning, Vol. 1, Springer, New York, 2001.
[30] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element

approximation, Comput. Math. Appl. 2 (1976), pp. 17–40.
[31] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, Optimal parameter selection for the alternating

direction method of multipliers (ADMM): Quadratic problems, IEEE Trans. Automat. Control 60 (2015),
pp. 644–658.

[32] P. Giselsson and S. Boyd, Diagonal scaling in Douglas–Rachford splitting and ADMM, Proceedings of the IEEE
Conference on Decision and Control, 2014, pp. 5033–5039.

[33] P. Giselsson and S. Boyd, Monotonicity and restart in fast gradient methods, Proceedings of the IEEE Conference
on Decision and Control, 2014, pp. 5058–5063.

[34] P. Giselsson and S. Boyd, Preconditioning in fast dual gradient methods, Proceedings of the IEEE Conference on
Decision and Control, 2014, pp. 5040–5045.

[35] R. Glowinski and A. Marroco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-
dualité d’une classe de problèmes de dirichlet non linéaires, Revue française d’automatique, informatique,
recherche opérationnelle. Analyse numérique 9 (1975), pp. 41–76.

[36] M. Goldberg, The packing of equal circles in a square, Math. Mag. 43 (1970), pp. 24–30.
[37] Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual, preprint (2015). Available at http://www.gurobi.

com.
[38] S. Han and O. Mangasarian, Exact penalty functions in nonlinear programming, Math. Program. 17 (1979),

pp. 251–269.

http://archive.ics.uci.edu/ml
http://www.gurobi.com
http://www.gurobi.com

28 S. Diamond et al.

[39] L. He, C. Han, and W. Wee, Object recognition and recovery by skeleton graph matching, Proceedings of the IEEE
International Conference on Multimedia and Expo, 2006, pp. 993–996.

[40] M. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969), pp. 303–320.
[41] M. Hifi and R. M’Hallah, A literature review on circle and sphere packing problems: Models and methodologies,

Adv. Oper. Res. 2009 (2009), pp. 1–22.
[42] H. Hmam,Quadratic optimization with one quadratic equality constraint, Tech. Rep., ElectronicWarfare and Radar

Division, Defence Science and Technology Organisation (DSTO), Australia, 2010.
[43] K. Hoffman, M. Padberg, and G. Rinaldi, Traveling salesman problem, in Encyclopedia of Operations Research

and Management Science, Saul I. Gass and Michael C. Fu, eds., Springer, New York, 2013, pp. 1573–1578.
[44] M. Hong, A distributed, asynchronous and incremental algorithm for nonconvex optimization: An ADMM

approach, preprint (2014). Available at https://arxiv.org/abs/1412.6058.
[45] M. Hong and Z. Luo, On the linear convergence of the alternating direction method of multipliers, Math. Program.

162 (2017), pp. 165–199.
[46] M. Hong, Z. Luo, and M. Razaviyayn, Convergence analysis of alternating direction method of multipliers for a

family of nonconvex problems, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, 2015, pp. 3836–3840.

[47] H. Hoos, SATLIB — benchmark problems, preprint (2016). Available at http://www.cs.ubc.ca/∼ hoos/SATLIB/
benchm.html.

[48] K. Huang and N. Sidiropoulos, Consensus-ADMM for general quadratically constrained quadratic programming,
IEEE Trans. Signal Process. 64 (2016), pp. 5297–5310.

[49] B. Jiang, S. Ma, and S. Zhang, Alternating direction method of multipliers for real and complex polynomial
optimization models, Optimization 63 (2014), pp. 883–898.

[50] R. Kalman, Identification of noisy systems, Russian Math. Surveys 40 (1985), pp. 25–42.
[51] J. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc.

7 (1956), pp. 48–50.
[52] H. Kuhn, The Hungarian method for the assignment problem, Nav. Res. Logist. 52 (2005), pp. 7–21.
[53] E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys, The Traveling Salesman Problem: A Guided Tour of

Combinatorial Optimization, Wiley, Chichester, 1985.
[54] E. Lawler and D. Wood, Branch-and-bound methods: A survey, Oper. Res. 14 (1966), pp. 699–719.
[55] J. Lee, A graph-based approach for modeling and indexing video data, Proceedings of the IEEE International

Symposium on Multimedia, 2006, pp. 348–355.
[56] G. Li and T. Pong, Global convergence of splitting methods for nonconvex composite optimization, SIAM J. Optim.

25 (2015), pp. 2434–2460.
[57] A. Liavas and N. Sidiropoulos, Parallel algorithms for constrained tensor factorization via alternating direction

method of multipliers, IEEE Trans. Signal Process. 63 (2015), pp. 5450–5463.
[58] T. Lipp and S. Boyd, Variations and extension of the convex–concave procedure, Optim. Eng. (2014), pp. 1–25.
[59] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197 (1994), pp. 143–176.
[60] D. Mitchell, B. Selman, and H. Levesque, Hard and easy distributions of SAT problems, Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 92, 1992, pp. 459–465.
[61] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, Basis pursuit in sensor networks, Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, 2011, pp. 2916–2919.
[62] P. Narendra and K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. Comput.

100 (1977), pp. 917–922.
[63] L. Ning, T. Georgiou, T. Tryphon, A. Tannenbaum, and S. Boyd, Linear models based on noisy data and the Frisch

scheme, SIAM Rev. 57 (2015), pp. 167–197.
[64] M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling

salesman problems, SIAM Rev. 33 (1991), pp. 60–100.
[65] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover, Mineola, NY,

1998.
[66] Z. Peng, J. Chen, and W. Zhu, A proximal alternating direction method of multipliers for a minimization problem

with nonconvex constraints, J. Global Optim. (2015), pp. 1–18.
[67] A. Perold, Large-scale portfolio optimization, Manag. Sci. 30 (1984), pp. 1143–1160.
[68] M. Powell, Algorithms for nonlinear constraints that use Lagrangian functions, Math. Program. 14 (1978),

pp. 224–248.
[69] J. Rocha and T. Pavlidis, A shape analysis model with applications to a character recognition system, IEEE Trans.

Pattern Anal. Mach. Intell. 16 (1994), pp. 393–404.
[70] J. Saunderson, V. Chandrasekaran, P. Parrilo, and A. Willsky, Diagonal and low-rank matrix decompositions,

correlation matrices, and ellipsoid fitting, SIAM J. Matrix Anal. Appl. 33 (2012), pp. 1395–1416.
[71] C. Schellewald, S. Roth, and C. Schnörr, Evaluation of convex optimization techniques for the weighted graph-

matching problem in computer vision, in Pattern Recognition, B. Radig and S. Florczyk, eds., Springer, Berlin,
2001, pp. 361–368.

[72] L. Schizas, A. Ribeiro, and G. Giannakis,Consensus in ad hocWSNs with noisy links—part I: Distributed estimation
of deterministic signals, IEEE Trans. Signal Process. 56 (2008), pp. 350–364.

[73] T. Sebastian, P. Klein, and B. Kimia, Recognition of shapes by editing their shock graphs, IEEE Trans. Pattern
Anal. Mach. Intell. 26 (2004), pp. 550–571.

https://arxiv.org/abs/1412.6058
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Optimization Methods & Software 29

[74] H. Sedghi, A. Anandkumar, and E. Jonckheere, Multi-step stochastic ADMM in high dimensions: Applications to
sparse optimization and matrix decomposition, in Advances in Neural Information Processing Systems, Z. Ghahra-
mani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, Curran Associates, Red Hook, NY, 2014,
pp. 2771–2779.

[75] W. Sharpe, Portfolio Theory and Capital Markets, McGraw-Hill, New York, 1970.
[76] H. Sherali and W. Adams, A hierarchy of relaxations between the continuous and convex hull representations for

zero-one programming problems, SIAM J. Discrete Math. 3 (1990), pp. 411–430.
[77] E. Specht, Packomania, preprint (2013). Available at http://www.packomania.com/.
[78] J. Spingarn, Applications of the method of partial inverses to convex programming: Decomposition, Math. Program.

32 (1985), pp. 199–223.
[79] K. Stephenson, Introduction to Circle Packing: The Theory of Discrete Analytic Functions, Cambridge University

Press, Cambridge, 2005.
[80] R. Stubbs and S. Mehrotra, A branch-and-cut method for 0-1 mixed convex programming, Math. Program.

86 (1999), pp. 515–532.
[81] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad, A simple effective heuristic for embedded mixed-integer

quadratic programming, Proceedings of the American Control Conference, 2016, pp. 5620–5625.
[82] M. Tawarmalani and N. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Math. Program.

103 (2005), pp. 225–249.
[83] R. Tibshirani, Lecture notes in modern regression, preprint (2013). Available at http://www.stat.cmu.edu/∼ ryantibs/

datamining/lectures/17-modr 2.pdf.
[84] S. Umeyama, An eigendecomposition approach to weighted graph matching problems, IEEE Trans. Pattern Anal.

Mach. Intell. 10 (1988), pp. 695–703.
[85] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev. 38 (1996), pp. 49–95.
[86] J. Vogelstein, J. Conroy, L. Podrazik, S. Kratzer, E. Harley, D. Fishkind, R. Vogelstein, and C. Priebe, Fast

approximate quadratic programming for graph matching, PLOS ONE 10 (2015), pp. 1–17.
[87] J. Von Neumann, Some matrix inequalities and metrization of metric space, Tomsk Univ. Rev. 1 (1937),

pp. 286–296.
[88] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, An ADMM algorithm for a class of total variation regularized

estimation problems, IFAC Proc. Vol. 45 (2012), pp. 83–88.
[89] D. Wang, H. Lu, and M. Yang, Online object tracking with sparse prototypes, IEEE Trans. Image Process.

22 (2013), pp. 314–325.
[90] F. Wang, Z. Xu, and H. Xu, Convergence of Bregman alternating direction method with multipliers for nonconvex

composite problems, preprint (2014), arXiv preprint arXiv:1410.8625v3.
[91] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, An alternating direction algorithm for matrix completion with nonnegative

factors, Front. Math Sci. China 7 (2012), pp. 365–384.
[92] R. Zhang and J. Kwok, Asynchronous distributed ADMM for consensus optimization, Proceedings of the

International Conference on Machine Learning, 2014, pp. 1701–1709.

http://www.packomania.com/

	1. Introduction
	1.1. The problem
	1.2. Special cases
	1.3. Convex relaxation
	1.4. Projections and approximate projections
	1.5. Residual and merit functions
	1.6. Solution methods
	1.7. Our approach

	2. Local improvement methods
	2.1. Polishing
	2.2. Relax--round--polish
	2.3. Neighbour search

	3. NC-ADMM
	3.1. ADMM
	3.2. Algorithm subroutines
	3.3. Discussion
	3.4. Solution improvement
	3.5. Overall algorithm

	4. Projections onto non-convex sets
	4.1. Subsets of R
	4.2. Subsets of Rn
	4.3. Subsets of Rmn
	4.4. Combinations of sets

	5. Implementation
	5.1. Variable constructors
	5.2. Variable methods
	5.3. Constructing and solving problems
	5.4. Limitations

	6. Examples
	6.1. Regressor selection
	6.2. 3-satisfiability
	6.3. Circle packing
	6.4. Travelling salesman problem
	6.5. Factor analysis model
	6.6. Inexact graph isomorphism

	7. Conclusion
	Disclosure statement
	Funding

