
A New Architecture for
Optimization Modeling Frameworks

Matt Wytock, Steven Diamond, Felix Heide, Stephen Boyd
Department of Electrical Engineering

Stanford University

{mwytock, diamond, fheide, boyd}@stanford.edu

Abstract—We propose a new architecture for optimiza-
tion modeling frameworks in which solvers are expressed as
computation graphs in a framework like TensorFlow rather
than as standalone programs built on a low-level linear
algebra interface. Our new architecture makes it easy for
modeling frameworks to support high performance com-
putational platforms like GPUs and distributed clusters, as
well as to generate solvers specialized to individual prob-
lems. Our approach is particularly well adapted to first-
order and indirect optimization algorithms. We introduce
cvxflow, an open-source convex optimization modeling
framework in Python based on the ideas in this paper, and
show that it outperforms the state of the art.

I. INTRODUCTION

Optimization offers a principled approach to solving

problems in a wide variety of application domains, such

as machine learning, statistics, control, signal and image

processing, networking, engineering design, finance, and

many others [1]. Instead of designing specialized algo-

rithms for each individual problem, the user describes

the problem as the minimization of a cost function and

the optimal solution with minimal cost is found by the

optimization method.
The wealth of applications for this methodology has

driven the development of several high-level modeling

languages. These languages provide a separation of con-

cerns between the development of mathematical models

and the implementation of numerical routines to opti-

mize these models. This is especially useful for rapidly

prototyping new applications, allowing practitioners to

easily experiment with different cost functions and con-

straints by writing expressions that closely mimic the

mathematical optimization problem. Prominent examples

of modeling languages and frameworks include AMPL

[2], YALMIP [3], and CVX [4], as well as several tied

closely to particular solvers, such as CPLEX’s ILOG [5]

and MathProg from GLPK [6].
Despite the popularity of these modeling frameworks,

support for modern large-scale computational environ-

ments such as GPUs and distributed clusters is virtually

nonexistent. In part, this is due to fundamental challenges

in scaling interior point methods, which have historically

been the basis for solvers of most modeling frameworks,

as these methods require solving sparse linear systems

to high accuracy and as such do not benefit greatly

from GPU implementation. In addition, distributing such

methods beyond a single machine typically requires

high bandwidth interconnects such as those available

exclusively in HPC environments.

However, there are also highly practical reasons for the

lack of support for new environments: mature solvers of-

ten require several years to develop and writing entirely

new implementations of low-level numerical routines

specialized to each environment is unappealing. Tradi-

tionally, a degree of platform independence has been

provided by implementing on top of low-level linear al-

gebra libraries (e.g., BLAS, LAPACK, and SuiteSparse),

but as we discuss in this paper, this architecture is often

insufficient, especially for large problems. In addition,

such libraries do not handle memory management and

data transfer between GPU and CPU or between multiple

machines.

The solution that we explore is a new architecture

for optimization modeling frameworks based on solvers

represented as computation graphs. This architecture

is well-suited for solving large optimization problems

by taking advantage of problem-specific structure. In

particular, the computation graph abstraction naturally

represents the composition of structured linear operators

which can be significantly more efficient than the stan-

dard sparse or dense matrix representation. We develop

such a method in this paper and demonstrate that it

outperforms the existing state of the art for solving large

convex optimization problems, a GPU-enabled version of

SCS [7], which itself is one of the few GPU-optimized

solvers available, POGS [8] being another example.

A secondary, but not insignificant, benefit of this ap-

2016 6th Workshop on Python for High-Performance and Scientific Computing

978-1-5090-5220-2/16 $31.00 © 2016 IEEE

DOI 10.1109/PyHPC.2016.5

36

2016 6th Workshop on Python for High-Performance and Scientific Computing

978-1-5090-5220-2/16 $31.00 © 2016 IEEE

DOI 10.1109/PyHPC.2016.5

36

proach is automatic support for a wide variety of compu-

tational environments (CPU, GPU, distributed clusters,

etc.), leveraging the considerable momentum and engi-

neering effort of existing computation graph frameworks

from the deep learning community. A potential drawback

of our approach is that the runtime system must support

the necessary mathematical operations to implement nu-

merical optimization algorithms. For first-order and in-

direct solvers, the many frameworks developed for deep

learning, such as TensorFlow [9], Theano [10], [11],

Caffe [12], and Torch [13], provide all the necessary

functionality. The frameworks have only limited support,

however, for the sparse matrix factorization routines used

by direct solvers. Thus, given the computation graph

implementations available at this time, our architecture

tends to favor first-order and indirect methods as opposed

to interior point methods.

The outline of the paper is as follows. In §II, we

review the traditional architecture for optimization mod-

eling frameworks and discuss its shortcomings. In §III,
we explore prior work that addressed the shortcomings

of the traditional architecture. In §IV, we describe the

new architecture we propose and the computation graph

abstraction the architecture is based on. In §V, we

present cvxflow, an open-source implementation of

the ideas in this paper, and numerical results comparing

cvxflow with the state of the art.

II. TRADITIONAL ARCHITECTURE

The traditional architecture for optimization modeling

frameworks dates back to AMPL [2] and GAMS [14] in

the 1980s. In this architecture, solving an optimization

problem is divided into a three step process, shown in

Fig. 1. The process begins with a high-level description

of the optimization problem expressed in a modeling

language. The first step is canonicalization, in which the

problem is transformed through symbolic manipulation

into an equivalent problem in a standard form. The

second step is matrix stuffing, in which the symbolic

representation of the standard form is instantiated so

that linear operators are represented by sparse matrices.

Often canonicalization and matrix stuffing are combined

into a single step. The final step is to call a solver with

the sparse matrix representation of the standard form as

input and return the solver output as the solution.

The ecosystem of modeling frameworks for convex

optimization is an illustrative example of the traditional

architecture. Convex optimization modeling languages

are built around the principles of disciplined convex

programming, a set of rules for constructing optimization

problems that make it easy to verify problem convexity.

Problem

Standard form

Sparse matrices

Solution

Canonicalization

Matrix stuffing

Solver

Fig. 1: The traditional architecture for optimization modeling
frameworks.

Implementations include CVX [4] and YALMIP [3]

in MATLAB, CVXPY [15] in Python, Convex.jl [16]

in Julia, and the standalone compilers CVXGEN [17]

and QCML [18]. We discuss each component of the

traditional architecture in the concrete case of convex

modeling frameworks.

A. Canonicalization

The standard form for convex optimization problems

is a cone program, an optimization problem of the form

minimize cTx
subject to Ax+ b ∈ K, (1)

where x ∈ Rn is the optimization variable; A ∈ Rm×n,

b ∈ Rm, and c ∈ Rn are constants; and K is a nonempty

closed convex cone [19]. Convex optimization modeling

frameworks symbolically convert problems into cone

programs via epigraph transformations [20].

B. Matrix stuffing

In solvers and other software that use the cone pro-

gram standard form as an input format for problems, c
and b are represented by arrays and A is represented by

a standard sparse matrix format, such as column com-

pressed storage. Matrix stuffing generates a sparse matrix

3737

representation of A from the symbolic representation

generated through canonicalization [21]. Solvers use a

sparse matrix representation of A because they generally

use algorithms and libraries that exploit sparsity.

C. Solver

A wide variety of solver implementations have been

developed for problems in the cone program standard

form. Many solvers are written in pure C, including

MOSEK [22], SDPA [23], ECOS [24], and SCS [7].

Other solvers are written in higher level languages,

such as SeDuMi [25] and SDPT3 [26] in MATLAB

and CVXOPT [27] in Python. The solvers rely heavily

on low-level linear algebra interfaces like BLAS and

LAPACK [28] for basic operations and libraries like

SuiteSparse [29] for sparse matrix factorization. Existing

cone solvers are almost exclusively restricted to CPU

implementations; an exception is SCS which provides

GPU support using the cuBLAS library [30].

D. Drawbacks

The traditional approach to optimization modeling

frameworks has been enormously successful, allowing

modeling languages and solver implementations to be

developed independently in the programming languages

best suited to their function. The conventional solver

implementation is based on interior point methods, for

which the dominant computational effort is solving a

sparse linear system. Such a solver can be ported rel-

atively easily to new platforms provided the necessary

linear algebra libraries (BLAS, LAPACK, SuiteSparse,

etc.) are available.

However, many optimization problems of interest are

too large to be solved with interior point methods and,

more generally, any method that requires a direct solu-

tion to a linear system involving the A matrix of the cone

program standard form (1). In some problem domains

the memory requirements even for sparse A matrices

can be prohibitive (e.g., 2D convolution in large-scale

image reconstruction), while at the same time efficient

procedural evaluations of the matrix-vector computations

with A and AT exist (e.g., FFT-based convolution).

A possible solution is a first-order method, such as

SCS [7], which only requires solving linear systems to

moderate accuracy. This approach can be implemented

with either a direct or indirect method for the linear

solver subroutine. In the case of a direct solver, the

computational cost can be amortized by caching the

factorization of the A matrix leading to iterations that

are significantly faster than interior point methods. In

the indirect case, a matrix-free method such as conjugate

gradient is used, requiring only matrix-vector computa-

tions with A and AT . In the traditional architecture, these

computations are simply implemented with sparse ma-

trix multiplies, but the proposed graph-based approach

enables taking advantage of specialized linear operator

implementations, as we will discuss in detail in the next

section.

III. ALTERNATIVE APPROACHES

Prior work has explored alternative approaches to

bypassing the limitations of the traditional architecture

for optimization modeling frameworks, with a focus on

scaling to larger problem sizes. There are two main

lines of work that are precursors to the graph-based

architecture proposed in this paper: the first replaces

the sparse matrix representation of the standard form

generated by matrix stuffing with a more general rep-

resentation, and the second explores new standard forms

based on functions with efficient proximal operators.

In this section, we review these approaches, providing

motivation for our general graph-based framework.

A. Abstract linear operators

In solving many convex optimization problems, the

majority of computational time is spent in evaluating

linear operators. While the sparse matrix representation

of cone programs is fully general, it does not provide

the most efficient implementation for many types of

linear functions. Matrix-free CVXPY replaces traditional

sparse matrix representation of the cone program stan-

dard form (1) with a computation graph based represen-

tation. The computation graph representation allows the

modeling layer to encode information about structured

linear operators in the optimization problem that solvers

can exploit [21]. The matrix-free CVXPY implementa-

tion includes a custom runtime system for computation

graphs, as opposed to the cvxflow implementation

presented in this paper, which is built on TensorFlow.

B. Proximal standard forms

Another line of work explores solvers based on func-

tions with efficient proximal operators. Epsilon [31]

introduces the standard form

minimize
∑N

i=1 fi(Aix), (2)

where x ∈ Rn is the optimization variable, Ai ∈ Rmi×n

are linear operators, and fi are functions with efficient

proximal operators [32]. Epsilon exploits the flexibility

of the standard form (2) to rewrite the problem so it

can be solved efficiently by a variant of the alternating

direction method of multipliers (ADMM) [33]. Along

3838

similar lines, POGS [8] introduces a slightly different

standard form, again based on functions with efficient

proximal operators, and includes a highly efficient GPU

implementation of an ADMM-based algorithm.

The ProxImaL modeling framework also targets the

standard form (2), but supports a variety of solver

algorithms and applies problem rewritings specialized

to optimization problems in imaging [34]. ProxImaL

moves towards platform independence by generating

solver implementations using Halide [35]. Halide is a

language and compiler that allows for platform indepen-

dent abstraction of individual mathematical operations,

but not of full algorithms composed of many operations

inside control logic.

These new proximal standard forms are not nec-

essarily incompatible with the traditional architecture

based on sparse matrices. However, as opposed to cone

solvers and in particular interior point methods, the

implementation of algorithms operating on the proximal

standard forms is less reliant on sparse linear algebra

and thus there is less benefit from building on existing

sparse linear algebra libraries. These approaches instead

require a library of proximal operator implementations

which can benefit greatly from being built on a high-

level framework such as Halide or TensorFlow, providing

platform independence and a highly optimized runtime

system.

IV. GRAPH-BASED ARCHITECTURE

In this section, we propose a new graph-based ar-

chitecture for optimization modeling frameworks. Our

architecture divides the process of solving an optimiza-

tion problem into three steps, shown in Fig. 2. As

with the traditional architecture we begin with a high-

level problem description which is canonicalized to a

standard form. The solver generation step produces a

computation graph representing the solver algorithm,

which is executed by the runtime system to produce a

solution.

The key difference from the traditional architecture is

that the graph-based approach directly generates com-

putation graphs representing the numerical algorithms

for solving problems rather than representing all prob-

lems with sparse matrices. The first benefit of this

approach is support for abstract linear operators with

highly efficient implementations, such as convolution,

Kronecker products, and others. The second benefit is

a closer connection between canonicalization and solver

generation, which can now both be implemented in the

same high-level language and even in a single library.

Problem

Standard form

Computation graph

Solution

Canonicalization

Solver generation

Runtime execution

Fig. 2: The proposed graph-based architecture for optimization
modeling frameworks.

This more easily allows for supporting different stan-

dard forms that incorporate problem-specific structure.

Finally, the new architecture severs the link between the

solver implementation and computing platform, allowing

solvers to take advantage of new computing platforms

simply by changing the target of the computation graph

runtime system.

We next explain the central abstraction, computa-

tion graphs, and describe how such graphs representing

solvers are generated.

A. Computation graphs

A computation graph is a directed acyclic graph

(DAG) where each vertex represents a mathematical

operation and each edge represents data transfer. Input

vertices have no incoming edges, while output vertices

have no outgoing edges. A vertex is evaluated by

applying its operation to the data on the vertex and

broadcasting the result on its outgoing edges. The overall

graph is evaluated by loading data onto the input vertices,

evaluating the vertices in topological order, and reading

the results off the output vertices.

For example, Fig. 3 shows a computation graph for

the function f(x, y) = x2 + 2x + y. The input vertices

represent the variables x and y. The output vertex rep-

3939

x

(·)2 2(·)

y

+

Fig. 3: A computation graph for f(x, y) = x2 + 2x+ y.

resent the top level sum. The internal vertices represent

the operations z → z2 and z → 2z.

Given a computation graph to evaluate a function,

computation graphs for evaluating the function’s gradient

or adjoint (for linear functions) can be obtained through

simple graph transformations [36], [21]. Function, gra-

dient, and adjoint evaluations are the key operations in

first-order and indirect solvers and are even sufficient to

precondition a problem [37].

Computation graphs are a useful intermediate rep-

resentation for solvers because they abstract away the

platform-specific details of both computation and mem-

ory management. These details are handled by a com-

putation graph runtime system, which has platform-

specific code to execute each mathematical operation

and to pass data from one operation to the next. By

contrast, a solver built on the traditional abstraction of

a low-level linear algebra interface must implement its

own platform-specific logic for mathematical operations

not expressible as linear functions and for memory

management.

B. Solver generation

The solver generation step produces a computation

graph representing a numerical algorithm for solving

an optimization problem. Graph generation is naturally

implemented in a high-level functional programming

style with modular functions that produce computation

graphs implementing numerical algorithms or subrou-

tines. Typically, these functions take as inputs individual

nodes or in some cases are naturally parameterized by

graph generator functions.

As a concrete example, the Python code snippet for

generating a TensorFlow graph representing the conju-

gate gradient method for the linear system Ax = b is

shown below.

def cg_solve(A, b, x_init, tol=1e-8):
delta = tol*norm(b)

def body(x, k, r_norm_sq, r, p):
Ap = A(p)
alpha = r_norm_sq / dot(p, Ap)
x = x + alpha*p
r = r - alpha*Ap
r_norm_sq_prev = r_norm_sq
r_norm_sq = dot(r,r)
beta = r_norm_sq / r_norm_sq_prev
p = r + beta*p
return (x, k+1, r_norm_sq, r, p)

def cond(x, k, r_norm_sq, r, p):
return tf.sqrt(r_norm_sq) > delta

r = b - A(x_init)
loop_vars = (

x_init, tf.constant(0),
dot(r, r), r, r)

return tf.while_loop(
cond, body, loop_vars)[:3]

In this example, the function cg_solve is param-

eterized by the the linear operator A, and vector b
with initial starting point, vector x_init. The inputs

b and x_init are computation graph nodes and A
is a single-argument function such that A(x) produces

the computation graph representing the linear operator

applied to an arbitrary vector x. Implemented in this

fashion, the conjugate gradient method can be applied

to any linear operator expressed as a computation graph.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples of

solving convex optimization problems in our proposed

architecture. As solving linear systems forms the basis

for convex methods, we first present results for an

indirect linear solver with various linear operators. Using

this indirect linear solver as a subroutine, we then

implement a version of SCS [7] in the computation graph

framework and compare with the native version of SCS

implemented in C. We present results for both CPU and

GPU environments; all experiments are run on a 32-core

Intel Xeon 2.2GHz processor and an nVidia Titan X GPU

with 12GB of RAM.

Our implementation builds on CVXPY [15], a con-

vex optimization modeling framework in Python. Using

this framework, convex optimization problems can be

expressed with minimal code and are automatically con-

verted into the standard conic form (1). As an example,

4040

the nonnegative deconvolution problem we consider in

Section V-C is written as the following Python code.

from cvxpy import *
x = Variable(n)
f = norm(conv(c, x) - b, 2)
prob = Problem(Minimize(f), [x >= 0])

Here c and b are previously-defined problem inputs and

n is the size of the optimization variable. Our imple-

mentation differs from the existing CVXPY functionality

in that instead of solving problems by constructing

sparse matrices and calling numerical routines written

in C, we build a computation graph, as described in

Section IV, and evaluate with TensorFlow. Ultimately,

this implementation achieves faster running times than

existing methods—for example, on the large nonnega-

tive deconvolution example, our implementation takes

roughly 1/10th the time of SCS running on GPU, the

existing state-of-the-art method for solving large convex

problems to moderate accuracy.

Concurrent with the publication of this paper, we are

releasing the cvxflow Python library; it is available at

http://github.com/cvxgrp/cvxflow

and includes the code for all of the examples in this

section. The implementation is general and solves any

problem modeled with CVXPY using TensorFlow.

A. Regularized least squares

We begin with solving linear systems using the conju-

gate gradient method (CG) [38]. CG is matrix-free which

makes it a natural fit for linear systems represented as a

graph, allowing for specialized implementations of each

linear operator including those that are inefficient to

represent as sparse matrices such as convolution, Kro-

necker products, and others. In terms of the graph-based

architecture shown in Fig. 2, the standard form in this

example is a linear system and the solver generation step

generates a graph representing the conjugate gradient

method.

In particular, we consider the regularized least squares

problem

minimize (1/2)‖Ax− b‖22 + λ‖x‖22 (3)

where x ∈ Rn is the optimization variable, the linear

map A : Rn → Rm and vector b ∈ Rm are problem

data, and λ > 0 is the regularization parameter. This

problem has the solution

x� = (λI +ATA)−1AT b, (4)

which can be computed by solving a linear system.

dense matrix sparse matrix convolution
variables n 3000 3000 3000
nonzeros in A 18000000 180000 4095000

spsolve
solve time 255 secs 28 secs 41 secs
memory usage 2.2 GB 1.06 GB 1.5 GB
objective 5.97× 10−1 5.97× 10−1 7.68× 10−1

CG TensorFlow
solve time, CPU 3.0 secs 0.9 secs 2.9 secs
solve time, GPU 2.0 secs 0.7 secs 1.0 secs
graph build time 0.4 secs 0.1 secs 0.1 secs
memory usage 1.8 GB 755 MB 946 MB
objective 5.97× 101 5.97× 10−1 7.68× 10−1

CG iterations 49 49 71

TABLE I: Results for regularized least squares.

It is often the case that A takes the form of a sparse

or dense matrix; for example, in a statistical problem

each row of A may represent an observation of multiple

variables weighted by x in order to predict the response

variable. However, A can also be an abstract linear

operator; for example, a convolution with a vector c,
written as Ax = c ∗ x. We present results for each of

these examples: a sparse matrix, a dense matrix, and

convolution.

In the matrix examples, entries are sampled from

N (0, 1) with 1% nonzero in the sparse case. For con-

volution, we apply the Gaussian kernel with standard

deviation n/10. In all cases, the response variable is

formed by b = Ax̂ + v where v has entries sampled

from N (0, 0.012) and x̂ from N (0, 1). The conjugate

gradient method is run until the residual satisfies ‖(λI+
ATA)xk −AT b‖2 ≤ 10−8‖AT b‖2.

Table I shows the results for these experiments,

demonstrating that conjugate gradient on Tensor-

Flow is significantly faster than the baseline method,

scipy.sparse.spsolve. This is a somewhat weak

baseline as spsolve does not run on GPU and is not

well-suited for dense matrices. Nonetheless, this com-

parison highlights the difference in architecture exploited

by TensorFlow which can take advantage of dedicated

implementations for the linear operators leading to sig-

nificantly faster solve times.

B. Lasso

Next we solve a convex problem with SCS [7]. In

this case, the canonicalization step produces a problem

in the standard cone form (1) and solver generation

produces a graph implementing the SCS iterations. In

essence, the algorithm iterates between projections onto

a linear subspace and a convex cone; the former is

done through solving a linear system with a computation

4141

dense matrix sparse matrix convolution
variables n 6001 6001 6001
constraints m 12002 12002 12001
nonzeros in A 18012002 1812002 4107002

SCS native
solve time, CPU 29 secs 3.4 secs 6.4 secs
solve time, GPU 27 secs 3.8 secs 7.6 secs
matrix build time 13 secs 1.4 secs 2.8 secs
memory usage 3.1 GB 663 MB 927 MB
objective 3.36× 101 3.19× 101 2.02× 100

SCS iterations 40 40 60
avg. CG iterations 2.66 2.71 2.72

SCS TensorFlow
solve time, CPU 23 secs 25 secs 24 secs
solve time, GPU 9.9 secs 7.1 secs 5.3 secs
graph build time 1.8 secs 2.0 secs 0.8 secs
memory usage 8.7 GB 4.6 GB 1.2 GB
objective 3.36× 101 3.19× 101 2.02× 100

SCS iterations 60 40 180
avg. CG iterations 3.35 3.55 1.93

TABLE II: Results for lasso.

graph representing the CG method as in the previous

section. The SCS method is appealing in this context

as it works well with approximate solutions to linear

systems, such as those produced by CG.

We consider the lasso problem

minimize (1/2)‖Ax− b‖22 + λ‖x‖1, (5)

where the regularization term ‖x‖1 replaces the ‖x‖22 in

the regularized least squares problem from the previous

section. This problem is convex but no longer has a

closed-form solution.

To generate problem instances, we construct example

linear operators A as in the previous section. We set

the regularization parameter to λ = 0.1‖AT b‖∞ where

‖AT b‖∞ is the smallest value of λ such that the solution

is zero.

Table II compares the TensorFlow version of SCS

to the native implementation and demonstrates that in

the dense matrix and convolution cases, the solve time

on GPU is faster with TensorFlow. This highlights the

benefit of the computation graph, taking advantage of

specialized implementations for dense matrix multiplica-

tion and convolution. In contrast, when the input linear

operator A is a sparse matrix, native SCS is faster.

C. Nonnegative deconvolution

As a final example further illustrating the benefit of

abstract linear operators, we consider the nonnegative

deconvolution problem

minimize ‖c ∗ x− b‖2
subject to x ≥ 0

(6)

small medium large
variables n 101 1001 10001
constraints m 300 3000 30000
nonzeros in A 9401 816001 69220001

SCS native
solve time, CPU 0.1 secs 2.2 secs 260 secs
solve time, GPU 2.0 secs 2.0 secs 105 secs
matrix build time 0.01 secs 0.6 secs 52 secs
memory usage 360 MB 470 MB 10.4 GB
objective 1.38× 100 4.57× 100 1.41× 101

SCS iterations 380 100 160
avg. CG iterations 8.44 2.95 3.01

SCS TensorFlow
solve time, CPU 3.4 secs 5.7 secs 88 secs
solve time, GPU 5.7 secs 3.2 secs 13 secs
graph build time 0.8 secs 0.8 secs 0.9 secs
memory usage 895 MB 984 MB 1.3 GB
objective 1.38× 100 4.57× 100 1.41× 101

SCS iterations 480 100 160
avg. CG iterations 2.75 2.00 2.00

TABLE III: Results for nonnegative deconvolution.

where x ∈ Rn is the optimization variable, and c ∈ Rn,

b ∈ R2n−1 are problem data. As in the previous example,

the canonicalization step transforms the problem to the

standard form (1) and solver generation produces a

computation graph for the SCS algorithm.

We generate problem instances by taking c to be

the Gaussian kernel with standard deviation n/10 and

convolving it with a sparse signal x̂ with 5 nonzero

entries sampled uniformly from [0, n/10]. We set the

response b = c ∗ x̂+ v with v ∼ N (0, 0.012).
Table III shows that on large problem sizes, the SCS

TensorFlow implementation performs significantly better

than the native implementation, requiring 13 seconds as

compared to 105 seconds. This difference is largely due

to differences in architecture, as the matrix-based SCS

requires a considerable amount of time (52 seconds)

to simply construct the sparse matrix representing the

convolution operator. As many linear operators benefit

from from specialized implementations (see e.g., [39],

[40], [41], [42]), one could easily demonstrate an even

more significant gap between the proposed architecture

and existing methods simply by choosing more egregious

examples that highlight this difference.

ACKNOWLEDGMENTS

This material is based upon work supported by the

National Science Foundation Graduate Research Fellow-

ship under Grant No. DGE-114747 and by the DARPA

XDATA program.

4242

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[2] R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling
Language for Mathematical Programming. Cengage Learning,
2002.

[3] J. Lofberg, “YALMIP: A toolbox for modeling and optimization
in MATLAB,” in Proceedings of the IEEE International Sym-
posium on Computed Aided Control Systems Design, 2004, pp.
294–289.

[4] M. Grant and S. Boyd, “CVX: MATLAB software for disciplined
convex programming, version 2.1,” http://cvxr.com/cvx, Mar.
2014.

[5] ILOG CPLEX 11.0 Users manual, ILOG, Inc., 2007.
[6] A. Makhorin, “Modeling language GNU MathProg,” Relatório

Técnico, Moscow Aviation Institute, 2000.
[7] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic

optimization via operator splitting and homogeneous self-dual
embedding,” Journal of Optimization Theory and Applications,
vol. 169, no. 3, pp. 1042–1068, 2016.

[8] C. Fougner and S. Boyd, “Parameter selection and pre-
conditioning for a graph form solver,” arXiv preprint
arXiv:1503.08366, 2015.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous systems,” Preprint, 2016.

[10] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio,
“Theano: a CPU and GPU math expression compiler,” in Pro-
ceedings of the Python for Scientific Computing Conference, Jun.
2010.

[11] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: new features
and speed improvements,” in Deep Learning and Unsupervised
Feature Learning, Neural Information Processing Systems Work-
shop, 2012.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” Preprint, 2014.

[13] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A
MATLAB-like environment for machine learning,” in BigLearn,
Neural Information Processing Systems Workshop, 2011.

[14] A. Brooke, D. Kendrick, A. Meeraus, and R. Rosenthal, GAMS:
A user’s guide. Course Technology, 1988.

[15] S. Diamond and S. Boyd, “CVXPY: A Python-embedded mod-
eling language for convex optimization,” Journal of Machine
Learning Research, vol. 17, no. 83, pp. 1–5, 2016.

[16] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and
S. Boyd, “Convex optimization in Julia,” in Proceedings of
the Workshop for High Performance Technical Computing in
Dynamic Languages, 2014, pp. 18–28.

[17] J. Mattingley and S. Boyd, “CVXGEN: A code generator for
embedded convex optimization,” Optimization and Engineering,
vol. 13, no. 1, pp. 1–27, 2012.

[18] E. Chu, N. Parikh, A. Domahidi, and S. Boyd, “Code generation
for embedded second-order cone programming,” in Proceedings
of the European Control Conference, 2013, pp. 1547–1552.

[19] Y. Nesterov and A. Nemirovsky, “Conic formulation of a convex
programming problem and duality,” Optimization Methods and
Software, vol. 1, no. 2, pp. 95–115, 1992.

[20] M. Grant and S. Boyd, “Graph implementations for nonsmooth
convex programs,” in Recent Advances in Learning and Control,
ser. Lecture Notes in Control and Information Sciences, V. Blon-
del, S. Boyd, and H. Kimura, Eds. Springer, 2008, pp. 95–110.

[21] S. Diamond and S. Boyd, “Matrix-free convex optimization
modeling,” in Optimization and Its Applications in Control and
Data Sciences, ser. Springer Optimization and Its Applications,
B. Goldengorin, Ed. Springer, 2016, vol. 115, pp. 221–264.

[22] MOSEK optimization software, version 7, https://mosek.com/,
Mosek ApS, Jan. 2015.

[23] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi,
K. Nakata, and M. Nakata, “Latest developments in the sdpa
family for solving large-scale sdps,” in Handbook on semidefinite,
conic and polynomial optimization. Springer, 2012, pp. 687–
713.

[24] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver
for embedded systems,” in Proceedings of the European Control
Conference, 2013, pp. 3071–3076.

[25] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones,” Optimization
Methods and Software, vol. 11, no. 1-4, pp. 625–653,
1999. [Online]. Available: http://www.tandfonline.com/doi/abs/
10.1080/10556789908805766

[26] K.-C. Toh, M. Todd, and R. Tütüncü, “SDPT3 — a MATLAB
software package for semidefinite programming, version 4.0,”
Optimization Methods and Software, vol. 11, pp. 545–581, 1999.

[27] M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: Python
software for convex optimization, version 1.1,” http://cvxopt.org/,
May 2015.

[28] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic linear
algebra subprograms for Fortran usage,” ACM Transactions on
Mathematical Software (TOMS), vol. 5, no. 3, pp. 308–323, 1979.

[29] T. Davis, “SuiteSparse: A suite of sparse matrix software,
version 4.5.3,” http://faculty.cse.tamu.edu/davis/suitesparse.html,
Oct. 2016.

[30] cuBLAS library, NVIDIA Corporation, 2008.
[31] M. Wytock, P. Wang, and J. Kolter, “Convex program-

ming with fast proximal and linear operators,” arXiv preprint
arXiv:1511.04815, 2015.

[32] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends
Optim., vol. 1, no. 3, pp. 123–231, 2014.

[33] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[34] F. Heide, S. Diamond, M. Nießner, J. Ragan-Kelley, W. Heidrich,
and G. Wetzstein, “ProxImaL: Efficient image optimization using
proximal algorithms,” ACM Trans. Graph., vol. 35, no. 4, pp.
84:1–84:15, Jul. 2016.

[35] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing
pipelines,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser.
PLDI ’13. New York, NY, USA: ACM, 2013, pp. 519–530.

[36] A. Griewank, “On automatic differentiation,” in Mathematical
Programming: Recent Developments and Applications, M. Iri and
K. Tanabe, Eds. Tokyo: Kluwer Academic, 1989, pp. 83–108.

[37] S. Diamond and S. Boyd, “Stochastic matrix-free equilibration,”
To Appear in Journal of Optimization Theory and Applications,
2016.

[38] M. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” J. Res. N.B.S., vol. 49, no. 6, pp. 409–
436, 1952.

[39] G. Hennenfent, F. Herrmann, R. Saab, O. Yilmaz, and C. Pajean,
“SPOT: A linear operator toolbox, version 1.2,” http://www.cs.
ubc.ca/labs/scl/spot/index.html, Mar. 2014.

4343

[40] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear
matrix inequalities in system and control theory. SIAM, 1994,
vol. 15.

[41] L. Vandenberghe and S. Boyd, “A primal-dual potential reduction
method for problems involving matrix inequalities,” Mathemati-
cal Programming, vol. 69, no. 1-3, pp. 205–236, 1995.

[42] S. Diamond and S. Boyd, “Convex optimization with abstract
linear operators,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2015, pp. 675–683.

4444

