International Journal of Control
Vol. xx, No. xx, xx 2012, 1-23

RESEARCH ARTICLE

Nonconvex Model Predictive Control for Commercial Refrigeration

Tobias Gybel Hovgaard®?* Lars F.S. Larsen®, John Bagterp Jorgensen®, and Stephen Boyd®

@ Vestas Technology RED, DK-8200 Aarhus N, Denmark; *DTU Informatics, Technical University of
Denmark, DK-2800 Lyngby, Denmark; € Information Systems Laboratory, Department of Electrical
Engineering, Stanford University, 94305 Stanford, USA

(Submitted June 2012, Accepted October 2012)

We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units
that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose
cooling capacity to each unit and a common evaporation temperature. The goal is to minimize the total energy
cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a
variation on model predictive control to achieve this goal. When the right variables are used, the dynamics
of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the
temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential
convex optimization method, which typically converges in fewer than 5 or so iterations. We employ a fast
convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in
real-time.

We demonstrate our method on a realistic model, with a full year simulation and 15 minute time periods,
using historical electricity prices and weather data, as well as random variations in thermal load. These simu-
lations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control
system. Perhaps more important, we see that the method exhibits sophisticated response to real-time varia-
tions in electricity prices. This demand response is critical to help balance real-time uncertainties in generation
capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.

Keywords: Energy management, Optimization methods, Predictive Control, Nonlinear control systems,
Smart grids.

1 Introduction

To obtain an increasing amount of electricity from intermittent energy sources such as solar
and wind, we must not only control the production of electricity, but also the consumption, in
an efficient, flexible and proactive manner. In, e.g., Finn et al. (2011) facilitation of wind gen-
erated electricity by price optimized thermal storage was described. In contrast to the current
centralized power generation system, the electricity grid will be a network of many independent
power generators. The smart grid will be the future intelligent electricity grid that incorporates
all these. The Danish transmission system operator (T'SO) has the following definition of smart
grids which we adopt in this work: “Intelligent electrical systems that can integrate the behav-
ior and actions of all connected users—those who produce, those who consume and those who
do both—to provide a sustainable, economical and reliable electricity supply efficiently” (En-
erginet.dk 2011). Different means of utilizing demand response in a smart grid setting have been
investigated in an increasing number of publications, e.g., Andersson et al. (2010), Han et al.
(2010), Saele and Grande (2011), Molina-Garcia et al. (2011), for plug-in electric vehicles and
heat pumps. Kirschen (2003) investigated demand response and price elasticity and Pina et al.
(2012) analyzed different demand side management strategies.
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In Denmark around 4500 supermarkets consume more than 550,000 MWh annually. This
corresponds roughly to 2% of the entire electricity consumption in the country. Refrigerated
goods constitute a large capacity in which energy can be stored in the form of 'coldness’. The
thermostat (hysteresis) control policy most commonly used today does not exploit this and a
large potential for energy and cost reductions exists. Preliminary investigations have been carried
out in Larsen et al. (2007), Hovgaard et al. (2010).

We propose an economic optimizing model predictive controller, economic MPC, to address
this for a commercial refrigeration system. Predictive control—also known as receding horizon
control—for constrained systems has emerged during the last 30 years as one of the most suc-
cessful methodologies to control industrial processes (Qin and Badgwell 2003) and is increasingly
being considered to control both refrigeration and power systems (Sarabia et al. 2008, Edlund
et al. 2011, Blarke and Dotzauer 2011). MPC based on optimizing economic objectives has only
recently emerged as a general methodology with efficient numerical implementations and prov-
able stability properties (Rawlings and Amrit 2009, Diehl et al. 2011, Angeli et al. 2011) and is
now considered for smart grid related problems too, (Hindi et al. 2012, Halvgaard et al. 2012).
We have previously demonstrated the capability of economic MPC in, e.g., Hovgaard et al. (2010,
2011, 2012) to minimize the total cost of energy for a commercial refrigeration system while en-
abling it to participate in demand response schemes. Economic MPC has the ability to choose
the optimal cooling strategy from predictions of the disturbances such as load, efficiency, and
price of electricity. This is achieved by utilizing the thermal capacity to shift the consumption
in time, while keeping the temperatures within certain bounds. We choose these bounds so that
they have no consequences for food quality and safety. Van Harmelen (2001), Bush and Wolf
(2009), Oldewurtel et al. (2010) also described the use of load shifting capabilities to reduce total
energy consumption. For other reviews of the use of thermal storage and for the importance of
MPC in demand response schemes see, e.g., Camacho et al. (2011), Arteconi et al. (2012).

An underlying challenge in applying MPC to vapor compression refrigeration systems is that
the classical thermodynamics models are quite complex, and include many nonlinearities, such as
temperature-dependent efficiencies. One approach, called nonlinear MPC (NMPC), is to accept
the optimization problem to be solved as nonlinear and nonconvex, and use generic nonlinear
optimization methods, such as sequential quadratic programming (SQP) (Boggs and Tolle 1995).
This is the approach taken in Hovgaard et al. (2012), which used ACADO (Houska et al. 2010),
a generic nonlinear optimal control code, to solve the optimization problems. NMPC is widely
used in the chemical process industry (see, e.g., Biegler (2009)) but in general it requires special
attention to ensure (local) convergence, and the computational complexity can be prohibitively
high.

Our method differs from NMPC in the following ways. First, our formulation (choice of vari-
ables) results in an optimization problem with linear constraints, but an objective function that
is nonconvex. Instead of a generic SQP (or other) method, we use a sequential convex pro-
gramming (SCP) method, in which the objective is approximated by a convex function in each
iteration; the equality and inequality constraints, which are convex, are preserved, giving us
the speed and reliability of solvers for convex optimization (Boyd and Vandenberghe 2004). Our
method, like SQP, involves the solution of a sequence of (convex) quadratic programs (QPs), but
differs very much in how the QPs are formed. In SQP, an approximation to the Lagrangian of the
problem is used; the linearization required in each step can end up dominating the computation
(Dinh et al. 2011). In our SCP method, the convexification step needed in each iteration is quite
straightforward. Unlike SQP, our method does not exhibit terminal quadratic convergence, but
since our method converges in practice in just a handful of iterations, this does not seem to be
an issue, at least in this application. We use the tool CVXGEN (Mattingley and Boyd 2012)
to generate fast custom solvers for the QPs that arise in our method, achieving solution times
measured in milliseconds.

We describe the method in detail, and report careful numerical simulations on a realistic su-
permarket refrigeration system. For prediction of outdoor temperatures and real-time electricity
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prices we build models using three years of historical data. With 15-minute sample time and
a prediction horizon of 48 steps CVXGEN transforms the original optimization problem into a
standard form QP with 573 variables and 1248 constraints, which can be solved by the custom
solver in a couple of milliseconds. This extreme speed allows us to carry out a simulation for a
full year with 15-minute increments in around 4 minutes on a single-core processor. The results
are quite interesting. Immediately we see cost savings on the order of 30%. We see that MPC
does pre-cooling, i.e., cools to a lower-than-normal temperature (without leaving the acceptable
temperature range) to reduce cooling needed at times with higher electricity prices. By scatter
plotting electricity price and energy consumption, we show that our MPC controller exhibits a
sophisticated form of demand response to prices, reducing consumption when the prices are high
and pre-cooling when prices are low, while maintaining temperatures within the required range.

1.1  Prior work

Leducq et al. (2006) used NMPC with an iterative routine to optimize the coefficient of perfor-
mance (COP) for a refrigeration plant while maintaining a fixed cooling capacity. Since the focus
was not on load-shifting, a quadratic cost function was used to track the cooling capacity. As
the cooling capacity was not a decision variable the problem became convex in the cost function.
Still due to the computational burden, the prediction horizon was limited to 3—4 sample periods.
Elliott and Rasmussen (2008) controlled a multi-evaporator refrigeration system with MPC that
tracked energy efficient set-points. By optimizing only over the cooling capacity from each evap-
orator and using a PI controller based on the most loaded unit for controlling the evaporation
temperature, the optimization problem rendered convex and linear. But this strategy completely
disregarded these two variables’ interdependency on the system efficiency. As we will see in this
study, the multivariate problem has to be taken into account. A sequential NMPC approach was
also used in Sonntag et al. (2008) to minimize the compressor switching. Even though compu-
tational complexity is not reported directly, the authors state that “the approach does not yield
satisfactory results for larger systems due to the combinatorial growth of the search space.”

Predictive control and optimization for energy cost reductions in vapor compression cycles
have been investigated for building temperature regulation too. Ma et al. (2012) considered
time of use pricing in that context. The problem was formulated as a linear program (LP) but
no specific details were given on how the power consumption was approximated. Oldewurtel
et al. (2010), Ma et al. (2012a,b) all used weather predictions to optimize the energy efficiency.
In the first, the cost reduced to a linear function while stochastic disturbances were handled by
affine disturbance feedback. In the latter two, power consumption was implemented as a 5-D
lookup and a move-blocking strategy was used to reduce computational burden. An average
computational time of 20 minutes was reported.

SQP is a well known method used for NMPC and, e.g., Ma and Borrelli (2012) applied a
tailored SQP algorithm to building temperature regulation. However, the energy consumption
model was a static function of the load on the air-side and again the control decisions’ influence
on the COP was lost. 10-13 seconds’ computation times on a 3 GHz dual-core processor were
reported. In Oldewurtel et al. (2012) the studies from Oldewurtel et al. (2010) were extended
and a sequential LP algorithm was used to deal with a bilinear cost. No computational times
were reported in this study.

The need for computationally efficient optimization in MPC applied to systems with either
fast sampling or limited computational resources are considered in an increasing number of
publications. In Diehl et al. (2002) a direct multiple shooting method was presented, capable of
solving an NMPC problem with 42 differential states and 122 algebraic states over 20 control
intervals in 10 s and in Wang and Boyd (2010) a quadratic MPC problem with 12 states, 3
controls, and a horizon of 30 intervals was solved in 5 ms using warm-starting. Another approach
to real-time MPC is the explicit methods as reported in, e.g., Zeilinger et al. (2008) where the
technique was used in combination with online optimization for solving QPs under restrictions
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on the computational time. Grancharova et al. (2007) gives an extension to explicit NMPC.
However, it was reported that it is troublesome to ensure stability if the problem is nonconvex,
and in addition, the explicit methods are not suitable for larger problems due to extremely large
state-spaces. Approaches to parallel implementation of MPC algorithms for real-time execution
were shown in, e.g., Jerez et al. (2011) where a problem with 32 states, 16 inputs and 10 control
intervals was solved in 344 ms on an FPGA. For further reviews of numerical methods for solution
of real-time optimal control problems in NMPC see, e.g., Diehl et al. (2009).

Embedded convex optimization applications have recently become more available to non-
experts by the introduction of the automatic code generator CVXGEN (Mattingley and Boyd
2012). Remarkable speed-ups achieved using tailored QP-solvers exported from CVXGEN have
been reported in, e.g., Kraning et al. (2011), Mattingley et al. (2011). In a recent report
(O’Donoghue et al. 2012) a splitting technique to a generic linear-convex optimal control problem
is introduced and computation times faster than what is obtained by CVXGEN are reported.
This suggests that our method could speed up even further.

1.2 OQutline

In §2 we describe the dynamic models used for the commercial multi-zone refrigeration system.
We define variables and constraints and briefly describe the control policy most commonly used
in commercial refrigeration today. In §3 we establish an MPC controller for the system and give
details on the proposed iterative optimization scheme. We describe the method for obtaining a
convex approximate objective function and how to solve this using CVXGEN. We demonstrate
the method by simulation of a case study for which we describe the scenario, along with very
simple predictors in §4. Following this, the results of the numerical examples appear. We simulate
the system for a full year and report on computation time, convergence, cost savings, and demand
response behavior. In §5 we give concluding remarks.

2 Commercial refrigeration

In this section we describe the dynamic model of a commercial multi-zone refrigeration sys-
tem. Such systems can include supermarkets, warehouses, or air-conditioning. We describe the
thermodynamics, the constraints of the system and the function reflecting the economic cost of
operating the plant.

2.1 Model

The model describes a system with multiple cold rooms in which a certain temperature for the
stored foodstuff has to be maintained. We describe the temperature dynamics and the energy
cost of the system using SI units throughout: energy flows and power consumption are in Watts,
temperatures are in degrees centigrade, pressures are in Pascal, enthalpies are in J/kg, and
instantaneous electricity prices are in EUR/W. This fixes the units of all quantities used.

The refrigeration system considered utilizes a vapor compression cycle in which a refrigerant
circulates in a closed loop consisting of a compressor, an expansion valve and two heat exchang-
ers, an evaporator in the cold storage room, as well as a condenser/gas cooler located in the
surroundings. When the refrigerant evaporates, it absorbs heat from the cold reservoir which is
rejected to the hot reservoir. To sustain these heat transfers, the evaporation temperature T, (t)
(given by the pressure P,(t)) has to be lower than the temperature in the cold reservoir Ty, (¢)
and the condensation temperature has to be higher than the temperature at the hot reservoir
T.(t). Low pressure refrigerant, with the pressure P.(t), from the outlet of the evaporator is
compressed in the compressors to a high pressure P.(t) at the inlet to the condenser to increase
the saturation temperature. In these expressions ¢ denotes time. To lighten notation, we will
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drop the time argument (¢) in time-dependent functions in the sequel.

The setup is sketched in Fig. 1, with one cold storage room and one frost room connected to the
system. Usually, several cold storage rooms, e.g., display cases, connect to a common compressor
rack and condensing unit. Because of this, the individual display cases see the same evaporation
temperature, but each unit has its own inlet valve for individual temperature control.

2.2 Temperature dynamics

We use a first principles model and describe the dynamics in the cold room by simple energy
balances. The temperature of the foodstuff is denoted by Ti.0a(t) and satisfies the differential
equation,

deood

T . ood—air> 1
7 Qtood (1)

MfoodCp,food

where Qfood,air (t) is the energy flow from the air in the cold room to the foodstuff, m,oq is the
(assumed constant) mass of food, and ¢}, fo0a is the constant specific heat capacity of the food.
The temperature of the air in the cold room Ty, () satisfies the differential equation,

dTy; ) . )
maircp,air% = Qload - Qfood—air - Qe: (2)
where Q(t) is the applied cooling capacity (energy absorbed in the evaporator), Qioad(t) is heat
load from the surroundings to the air, m,;, is the constant mass of air, and cp, i, is the constant
specific heat capacity of the air. We describe the heat flows using Newton’s law of cooling,

Qfoodfair - kfoodfair(Tair - Tfood)a
Qload = kamb—cr (Tamb - Tair) + Qdista

Qe = kevap (Tair - Te)a

where £ is the constant overall heat transfer coefficient between two media, Thmp(t) is the tem-
perature of the ambient air which puts the heat load on the refrigeration system, and Qqist (%) is
a disturbance to the load (e.g., an injection of heat into the cold room).

2.3 Energy cost

The energy used by the compressor, denoted Wc(t), dominates the power consumption in the
system. It can be expressed by the mass flow of refrigerant myes(t) and the change in energy
content. We describe energy content by the enthalpy of the refrigerant at the inlet and at
the outlet of the compressor (hi.(t) and hec(t), respectively). These enthalpies are refrigerant-
dependent functions of T, and P. (or equivalently, outdoor temperature T,) as denoted in (3).
They are computed using, e.g., the software package REFEQNS (Skovrup 2000), which models
the thermodynamical properties of different refrigerants. We describe W, as

Myef (hoc(Tca Pc) - hic(Tc))
nis(Pc/Pe)(l - nheat)

where the isentropic efficiency 7;5() is a function mapping the pressure ratio over the compressor
into compression efficiency and Mheat is a constant heat loss (in per cent) from the compressor.
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Figure 1. Schematic layout of basic refrigeration system.

The mass flow is determined as the ratio between cooling capacity and change of enthalpy over
the evaporator (hoe(t) — hic(t)):

Qe
hoe(Te) - hie(Pc)

Myef =

The efficiency function 7;s can be found in several ways. We used data from first principles
thermodynamic calculations to fit a model of the form

1.5 3 —1.5
Mis(a) = ¢1 + coa + cga® 4+ cpa” + csa” 7,

where ¢y, ..., c5 are constant parameters. We found this approximation to be accurate within
1%. Fig. 2 shows 75 versus the pressure ratio a = P,/ P,.

Another compressor sits between the frost evaporator and the suction side of the other com-
pressors, as seen in Fig. 1. This compressor decreases the evaporation temperature for the frost
part of the system to a lower level. We can describe the work in the frost compressor by identical
equations but the pressure at its outlet is determined by the evaporation temperature for the
cooling part. The mass flow through the frost compressor adds to the flow through the cooling
compressors. We use the subscript F' to denote variables related to the frost part.

We describe the instantaneous energy cost of operating the system by multiplying power
consumption by the real-time electricity price pei(t). The energy cost C' over the period [T, Tanal
is

Ttinal . .
C= Del (WC + WCF) dt. (4)
To

For later reference we express (4) using the coefficients of performance, COP, (ncop(t) and

ncop,r(t) respectively),
Ttinal 1 ) 1 )
C = / Del ( Qe + er) dt.
To Nlcop NCoP,F
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Figure 2. Isentropic efficiency of the compressor as a function of the pressure ratio Pc/Pe.
ncor(t) and ncop,r(t) are complicated functions of the outdoor temperature and of the control-

lable variables Qe and T,. For any given values of these variables we can, however, compute the
coefficients of performance using the steps outlined in Algorithm 1.

Algorithm 1 Calculating the COP for a three-unit system.
Require:
1. Initial values: T, and {Qm}
i=1

2. Prediction of outdoor temperature T,.
Compute:
. Pressure in gas cooler P..
. Enthalpy into evaporator h;, as a function of P,.
. Enthalpy out from evaporators hee ; as a function of T;, and Qel
. Enthalpy into compressor h;. using mass and energy balances to combine hge;’s.
. Enthalpy out of compressor h,. as a function of h;., Te, and P..
. ;s as a function of T, and P,.
. COP as nis(]- - nheat)(hoei - hie)/(hoc - hic)'

3

N O U W N

2.4 Control

Manipulated variables Our controller manipulates the cooling capacity in each zone and the
evaporation temperatures T, and T.p. The latter two are common for the entire refrigeration
part and the entire frost part, respectively. In practice this is achieved by setting the set-points
for inner control loops which operate with a high sample rate (compared to our control). This
fast local control system allows us to ignore the complex and highly nonlinear behavior in the
gas-liquid mixture in the evaporator.
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Measured variables The controller bases its decisions on measurements of air and food temper-
atures in each unit, on the known current outdoor temperature and electricity price, and on the
predicted future values of the latter two. The heat disturbances are unknown.

2.5 Constraints

We would like the food temperatures to satisfy the inequalities

Tfood,min S Tfood S Tfood,ma)u (5)

where Ttood,min and Ttood,max are a given allowable range given for each of the individual units.
With randomly occurring load disturbances, it is not possible to guarantee that the temperatures
are always in this range. So in lieu of imposing the constraints, we encode (5) as a set of soft
constraints, i.e., as a term added to the cost function,

T¥inal

V= psoft,max (Tfood - Tfood,max)Jr + Psoft, min (Tfood,min - Tfood)+dtu
To

where (a); = max{a,0}. This objective term penalizes violations of the temperature range
constraints. We choose the positive constants psoft max and psoft,min S0 that violations are very
infrequent in closed-loop operation. This formulation ensures a feasible problem even in the
presence of uncertain loads. In a stochastic formulation, such as the one presented in Hovgaard
et al. (2011), probabilistic constraints guarantee a feasible problem.

In addition, two constraints that cannot be violated are given by the nature of the system,

0 < Qe < kevap,max(Tair - Te)) (6)

0< Wc < Wc,maxa (7)

where Eevap,max 1S the constant overall heat transfer coefficient from the refrigerant to the air
when the evaporator is completely full and Wc,max is the constant limit on maximum energy
consumption in the compressors. We define the set 2 as all (Qe,Te) that satisfy the system
dynamics (1)—(2) and the constraints (6)—(7).

2.6 Thermostat control

Today, most display cases and cold rooms are controlled by a thermostat. This means that
maximum cooling is applied when the cold room temperature reaches an upper limit and shut
off when the lower limit is reached. The advantage of this control policy is that it is simple
and robust. The disadvantages, however, include: a high operating cost since the controller is
completely unaware of system efficiency and electricity prices, no capability of demand response,
and no specific handling of disturbances. All of these are addressed in our proposed method by
intelligently exploiting the thermal capacity in the refrigerated mass.

3 Method

Fig. 3 outlines the overall structure of the proposed method and in the following sections we
describe the details of the controller.
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Figure 3. Block diagram of the MPC controller.

3.1 Economic MPC controller

The refrigeration system is influenced by a number of disturbances which we can predict (with
some uncertainty) over a time horizon into the future. The controller must obey certain con-
straints, while minimizing the cost of operation. Economic MPC addresses all these concerns.
Whereas the cost function in MPC traditionally penalizes a deviation from a set-point, the pro-
posed economic MPC directly reflects the actual costs of operating the plant. This formulation
is tractable for refrigeration systems, where we are interested in keeping the outputs (cold room
temperatures) within certain ranges, while minimizing the cost of doing so.

Like in traditional MPC, we implement the controller in a receding horizon manner, where an
optimization problem over N time steps (the control and prediction horizon) is solved at each
step. The result is an optimal input sequence for the entire horizon, out of which only the first
step is implemented. The controller aims at minimizing the electricity cost of operation. This
cost relates to the energy consumption but we do not aim specifically at minimizing this, nor do
we focus on tracking certain temperatures in the cold rooms. The optimization problem is thus
formulated as

minimize C 4V,
subject to (Qe, Te) € Q, (8)
szf(i)zal = (Tfood7min + Tfood,max) /2u

where the variables are @, and T, (both functions of time). The feasible set { imposes the
system dynamics and constraints, and is defined by (1)-(2) and (6)-(7). We add a terminal
constraint that the final food temperature Tgf(i)’é““ must be at the midpoint of the allowable range
of temperatures.

Instead of (8) we solve a discretized version with N steps over the time interval [Ty, Thnall,

. . N-1 _
Qe = {ng}kzo ) T, = {Tek}ivzol : (9)

The MPC feedback law is the first move in (9).

The controller uses the initial state as well as predictions of the real-time electricity cost, the
outdoor temperature and the injected heat loads for the time interval. The predictions could
come from any source, including national weather service, market or balance responsible parties
on the power grid, etc. In this paper we use very simple implementations of predictors that we
describe in §4.4.

3.2 Sequential convex programming method

The feasible set €2, the terminal constraint, and the cost function term V' are all convex. Unfor-
tunately, as C' is nonconvex in the controllable variables Q). and T, the problem in (8) is not
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convex.

Instead of using a generic nonlinear optimization tool, we choose to solve the optimization
problem iteratively using convex programming, replacing the nonconvex cost function C' with a
convex approximation,

. Tinal 1 . 1 )
i = / pa | Qet —EQur | 1, (10)

A7
Ty Nlcop Ncop,F

where 7&0p and ﬁéORF are calculated for the ith iteration as in Algorithm 1 using Qé_l and
Ti=1 found in the previous iteration. Thus in each iteration we solve a convex optimization
problem, which can be done very reliably and extremely quickly. Our approximation in each
step is simple and natural: We use the coefficient of performance calculated for the last iteration
trajectory.

While our proposed method gives no theoretical guarantee on the performance, we must re-
member that the optimization problem is nothing but a heuristic for computing a good control
and that the quality of closed-loop control with MPC is generally good without solving each
problem accurately. Indeed, we have found that very early termination of this sequential convex
programming method, well before convergence, still yields very good quality closed-loop control.

Algorithm 2 outlines the method. In the algorithm, ¢prox and ¢roc are regularization terms
which we describe in §3.3.

Algorithm 2 Iterative optimization with nonconvex objective.

Initialize
2, Teo, and 7 = 1.
Compute
fieop and ﬁéOP,F’ as functions of {Qe, 7.}~ and T,.
Solve
minimize Cl + V + Qﬁprox + Procy
subject to ( %, T:) € Q,
Tfoﬁréalﬂ = (Tfood,min + Tfood,max) /27
Update

)i T and i =i+ 1
Repeat until convergence.

In Hovgaard et al. (2012) we concluded that a unique minimum of the power consumption
function exists within the feasible region. This assures that an iterative approach will converge
to the intended extremum point.

3.3 Regularization

We use two different types of regularization in the optimization problem. To avoid oscillations
from iteration to iteration we add proximal regularization of the form

N-—1
Pprox = Pprox Z HQS - ng’prevnga (11)
k=0

where the superscript ‘prev’ indicates that it is the solution from the previous iteration and pprox
is a constant weight chosen to damp large steps in each iteration. Smaller steps will of course
increase the number of iterations required for the sequential convex programming method to
converge, but, since we warm-start the algorithm from the solution in the previous time step,
the difference is negligible.
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Without proximal regularization oscillatory behavior can occur due to the nature of the ther-
modynamics in the refrigeration system: In one iteration of the sequential optimization, greater
amounts of cooling capacity are applied to time steps where the efficiency of the system is high.
Doing this causes the mass flow of refrigerant, the pressure difference over the compressor, or
both to increase, and thereby lowers the efficiency. If this effect is sufficiently powerful, the COP
calculated in the following iteration might be completely different and the optimization will try
to reduce cooling at those time steps and the outcome will differ greatly from the previous.
Proximal regularization eliminates this oscillatory behavior. .

Finally, we add a quadratic penalty on the rate-of-change of Q,

N—-1

Proc = Proc Z HQS - ng_l”%' (12)

k=1

This regularization term serves two purposes: it improves the convergence of the sequential
programming method, and also discourages rapid changes or switches in compressor levels, which
helps reduce wear and tear of the compressor.

Adding (11) and (12) to the linear objective formed by C' + V results in a QP which we must
solve once in each iteration. Due to the special structure of the MPC problem this QP is sparse;
see, e.g., Jorgensen et al. (2004), Jorgensen (2005), Wang and Boyd (2010).

3.4 Non-homogeneous sampling

To benefit from the variations in outdoor temperature and electricity prices we want to have an
effective prediction horizon of at least 12 hours. Since the tail of the control sequence calculated
in open loop is typically not identical the optimal closed-loop sequence, we choose a sufficiently
long prediction and control horizon of 24 hours.

Speed of computation is a major concern in this work and we want to limit the size of the
QPs that we solve in each iteration. A sampling time of 15 minutes directly gives 96 steps
to be computed for the 24-hour prediction horizon. One way of reducing the problem size is
non-homogeneous sampling over the prediction horizon, exploiting that accuracy becomes less
important towards the end of the open-loop sequence. Hence, we are using a prediction horizon
augmented of three sequences with increasing sample time.

4 Case study

By simulation of realistic case studies we have verified the functionality and performance of
the proposed MPC controller. In this section we describe the scenarios used and present the
outcomes of the simulations.

4.1 Scenario

Data from supermarkets actually in operation in Denmark have been collected. From these
data, typical parameters such as time constants, heat loads, temperature ranges, capacities, and
normal control policies have been estimated for three very different units; a milk cold room, a
vertical shelving display case and a frost storage room. These units differ widely in load, mass of
goods, and temperature demands. The c??oling capacity is controlled individually for each unit
and we index these variables as {Qez} . The refrigeration system that we monitored uses

1=

COg as refrigerant. COs is getting increasingly popular for supermarket refrigeration since it is
non-poisonous and non-flammable and since several governments put restrictions on the usage of
conventional HFC refrigerants. We use calculations of the power consumption capable of handling
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Table 1. Key parameters for the refrigeration system
used in the case study scenario.
UNIT 1: MILK COOLER

Mfo0dCp, food 550.0 kJ/K
MairCp,air 80.0 kJ/K
kambfcr 8.0 W/K
kfood—air 45.0 W/K
Kevap,max 135.0 W/K
Tfood,min 1.0 °C
Tfood max 4.0 °C
UNIT 2: VERTICAL DISPLAY

Mfo0dCp,food 395 kJ/K
MairCp,air 100.0 kJ/K
kambfcr 11.0 W/K
kfood—air 80.0 W/K
Kevap,max 170.0 W/K
Tfood,min 2.0 °C
Tfood max 3.0 °C
UNIT 3: FROST ROOM

Mfo0dCp, food 775 kJ/K
MairCp,air 50.0 kJ/K
kambfcr 2.3 W/K
kfood—air 19.0 W/K
Kevap,max 88.0 W/K
Tfood,min -22.0 °C
Tfood max -18.0 °C
COMMON

Tamb 20.0 °C
Te,min -12.0 °C
TeF,min -35.0 °C
Compressor heat 10ss (Npeat) 15 %

both sub- and super-critical operation of the COs system. Table 4.1 gives the key parameters
for the system. In Hovgaard et al. (2012) we demonstrated how to estimate the parameters and
design an observer for the food temperatures in the refrigeration system. We convert the system
in §2.1 to the discrete-time equivalent using these parameters. Since inner control loops are in
place we have found that a sampling time of 15 minutes for the MPC controller is appropriate.

We model a contribution from the uncertain load by a 40% increase in the normal heat load.
The increase occurs at random instances in 25% of the 15-minute periods. To account for this,
back-offs from the temperature limits are introduced. We adjust these such that violations of
the limits occur only 0.5-1% of the time. Less than 0.1° is often sufficient.

The temperature in the frost room (which has the slowest dynamics) increases from Tiood,min
to Ttood,max i approximately 11.5 hours if no cooling is applied. This supports the need for a
horizon of at least 12 hours as mentioned in §3.

4.2  Algorithm details

We use a prediction horizon of 24 hours, with nonhomogeneous sampling. The first 6-hour interval
is sampled every 15 minutes, followed by the second 6-hour interval sampled every 30 minutes,
and the last 12-hour interval is sampled every hour. This gives us a total of 48 values to describe
the 24-hour period.

For regularization of the optimization problems the best behavior was observed with parame-
ters in the order of pprox = 0.08 and pyoc = 0.06; however, the method seems to be quite robust to
changes in these values. With these values of the regularization parameters, the sequential con-
vex programming method typically converged in 5 or so steps. We found that early termination,
after only 2 steps, still resulted in quite good closed-loop control performance.

Recent advances in convex optimization allow for convex QPs to be solved at millisecond and
microsecond time-scales. We use CVXGEN (Mattingley and Boyd 2012) to generate a custom
embedded solver for ultra fast computation of each convex QP in the sequential approach.
CVXGEN transformed the original optimization problem into a standard form QP with 573
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variables and 1248 constraints. In CVXGEN we specify and exploit the sparsity of the special
problem structure.

4.3 Temperatures and prices

As outdoor temperatures and electricity prices affect the efficiency and the cost, respectively, of
operating the system, they are important factors in the MPC formulation. In our scenario we use
temperature measurements from a meteorological station in the Danish city Sorg sampled every
30 minutes, along with hourly electricity spot prices downloaded from the Nordic electricity
market, Nordpool. We simulate the scenario with data covering an entire calender year and use
three years of data for training the predictors.

4.4 Predictors

A prerequisite to solve the problem in (8) is to have available predictions of the outdoor tem-
peratures and the electricity prices for the chosen prediction horizon. Only past values of such
parameters can be available to the controller and in the present work we incorporate predic-
tors that can provide a sufficiently good estimate of the disturbances using a series of past
measurements. We use historical data to train these predictors.

In the literature predictors are suggested for different purposes and with different levels of
complexity. In Galanis and Anadranistakis (2002) a Kalman filter approach is taken to correct
temperature forecasts and in Leephakpreeda (2012) a grey prediction model is used for outdoor
temperatures as well. Mohsenian-Rad and Leon-Garcia (2010) used a correlation-based analysis
to find coefficients for a polynomial estimator of real-time electricity prices. In this work we use
predictors that are simple to find from historical data and require extremely little computational
effort in the real-time closed-loop implementation. Predictions of both electricity prices and
outdoor temperatures are computed in the same manner which we describe here.

We use the historical training data set to construct typical days that describe the mean daily
variation for each month in the year. If, e.g., price is sampled every hour we get 24 data points
for each one of the 12 months. We compute a smooth baseline covering all 365 days in a year
using linear interpolation of two adjacent months.

For the entire historical data set we calculate the residual (difference between baseline and
historical data) and compute a residual predictor by solving the convex optimization problem

minimize 33 [[[Rk—ns - Rl X = [Ripr, o, Rien]llz + MIX (13)

for X, where K is the number of data points in the training data set, n is the number of past
data points used for prediction, N is the number of future data points that we want to predict, X
is the n+1 x N predictor matrix and R are the residuals. The ¢; regularization on the predictor,
with positive parameter A, yields a sparse predictor matrix (Boyd and Vandenberghe 2004). By
cross-validation with the test data set we choose A to minimize the validation error.

Now, we can compute the predictions online in each time increment by first predicting the N
future residuals from the n past residuals (n past measurements subtracted the baseline) and
adding these to the baseline of the corresponding time window.

Algorithm 3 summarizes this procedure. After experimenting with the data, we chose to use
two days of past data for predicting the outdoor temperature (residual) and seven days for the
price prediction. (We use an entire week for the latter since the price pattern is different from
weekdays to weekends.)

For both outdoor temperatures and electricity prices the training sets are defined from 1
January 2007 until 31 December 2009 and the simulation/test set covers the entire year of 2010.
Fig. 4 shows the mean absolute prediction error for outdoor temperatures and for electricity
prices over the prediction horizon. The temperature data cover a range from —11°C to 30°C with
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Algorithm 3 Computing predictors from historical data.

Off-line:
1. D = historical data set.

2. Compute typical day for each month by averaging over D.
3. Compute yearly baseline (b) by linear interpolation.

4. Compute residual R = D — b.
4. Compute X by (13).
On-line:
1. Rpast = past measurements — b.
2. Predict residual as: RT . X.

past

3. Compute prediction as: predicted residual + baseline.
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Figure 4. Mean absolute value of prediction errors for outdoor temperature and electricity spot price with training set
covering 2007-2009 and test set covering 2010. Prediction horizon is 24 hours.

an average of 6.3°C, and the price data cover a range from —20EUR/MWh to 100 EUR/MWHh,
with an average of 46 EUR/MWh. For the baselines the mean absolute errors are 2.5°C and
13.2 EUR/MWh for temperature and price respectively.

We show an example with baseline, predicted values, and real measurements for a randomly
chosen point of time in Fig. 5. Fig. 6 shows histograms for the prediction errors of the outdoor
temperatures at 1, 4, 12 and 24 hours into the future and Fig. 7 gives the same for electricity
prices.

For the unknown disturbance in the heat load we use a very simple predictor, namely the
expected mean value of the random heat injection.

4.5 Computation times

We have simulated the proposed method with the case study described in the previous sections.
The optimization problems solve in the order of a handful of milliseconds per MPC step which is
more than fast enough for real-time implementation. A full year simulates in less than 4 minutes
on a 2.8GHz Intel Core i7, excluding the time needed outside the optimization routine for
predictors etc. The same problem with a generic solver such as ACADO takes around 4 minutes
per MPC step on the same processor. For implementation in embedded industrial hardware a
rough estimate of the computation time is around 1000 times of what we have observed here. This
is still way below 10 seconds per time step which certainly allows for real-time implementation.
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4.6 Convergence

When cold-started the proposed method generally converges in 10-20 iterations. In MPC, how-
ever, the open-loop trajectory from the previous run of the optimizer, shifted one time-step, is
an excellent guess on the next outcome and is well-suited for warm-starting the algorithm. Us-
ing this warm start initialization, the method generally converges in fewer than 5 iterations. In
addition, we find that early termination after, e.g., 2-3 iterations, generally gives good results,
degrading the overall performance by less than 1%.

4.7 Savings

To benchmark the savings gained by introducing the proposed MPC controller, we have per-
formed a simulation for the same system and conditions but using the conventional thermostat
control policy. As in real systems the air temperature surrounding the foodstuff in each unit is
the variable used in the thermostat. We have defined upper and lower bounds for switching on
and off, such that the interval corresponds to what is normally observed in real operation. Be-
sides, we determine the upper bound such that cooling quality is maintained at a minimal cost,
i.e., such that the food temperatures only violate the upper allowable limit in 0.5-1% of the time
(to be comparable with the MPC control). Fig. 8 shows a segment of the simulated system with
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Figure 8. Selected trajectory for food temperature and hourly cost of energy for the refrigeration system controlled by
thermostat vs. the proposed MPC controller. In addition, the spot price is plotted for comparison (scaled to fit the range
of the other variables).

thermostat control versus the proposed MPC controller. We show the trajectory for one unit
only and we observe how the food temperature is pulled down by the MPC controller at times
with low electricity prices, meaning that pre-cooling is applied. At such times the instantaneous
cost of operating the system might be higher than if the conventional thermostat is used, as can
be seen on the figure. But this is, however, more than compensated by the savings when the
electricity prices go up.

In Fig. 9-10, resulting temperature distributions for selected units are shown for both control
by thermostat and by MPC. While both control policies tend to keep the temperatures close to
the upper limit most of the time, we observe how the MPC controller makes use of the entire
range for storing coldness. A unit with larger thermal mass (Fig. 9) is utilized to a greater extend
than a unit which has less storage capacity (Fig. 10).

We observe savings on the order of 40-50% for the simulations covering a full year (2010).
However, a part of this comes from the ability to increase the evaporation temperature, and
thereby the efficiency, significantly at times where there is almost no cooling demand. In an
actual refrigeration system more units are expected and the chance of instances where all of
them have an imperceptible cooling demand at the same time decreases. In addition, the most
loaded unit might not even be able to participate with flexibility and will thus maintain its
cooling demand at all times. A more realistic savings estimate is in the order of 30%.
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Figure 10. Temperature distribution for selected unit. Simulation over the full year 2010.

Adding the uncertain heat load injections and the appropriate back-offs from the temperature
limits, as described in §4, increases the overall cost by approximately 10%.

Fig. 11 compares the cost-per-period distribution for the system controlled by thermostat
and by MPC, respectively. In particular, we observe how a majority of the savings come from
avoiding the most expensive instances, e.g., above 0.006 EUR/period, when we use the MPC
control policy.

4.8 Demand response

Fig. 12 shows the total cooling energy applied to all three units plotted as a function of the
electricity price at the time of use. We have selected one month to limit the number of data-points
but the picture is almost identical for the entire year of simulation. We observe no correlation
between energy consumption and electricity prices when the thermostat controls the refrigeration
system while we see a clear tendency to apply more cooling at times with low prices, and vise
versa, if we employ the proposed MPC scheme. A linear fit is made using a Huber function
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regression. The slope is around —50 W/(EUR/MWh) for the MPC controlled system as opposed
to 0 for the thermostat which clearly illustrates the demand response behavior of the system. We
should remember that the spot price used here is just an example and not a prerequisite of our

method. In a smart grid the price signal could
party to promote demand response.

4.9 Perfect predictions

be artificially made by the balance responsible

By again simulating over the full year of 2010, but this time with a prescient setting assuming
knowledge of the exact future conditions instead of using their predictions, we are able to compare
the performance of the simple predictors and give a rough judgment on how much the method

relies on the availability of accurate predictions.

We have observed that the extra savings gained

by having the full information available are in the order of 1-2%. This justifies the use of simple

predictors.
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4.10 Plant perturbations

By re-running the simulations using the exact same controller but with reasonable perturba-
tions in the plant parameters we observed that the proposed controller is quite robust. With
perturbations of up to at least 20-30% in parameters such as mass of the refrigerated foodstuff
and the heat transfer coefficients we see essentially no changes in the closed-loop dynamics and
behaviors, like what we reported for the nominal system in Figures 9-12, appear.

5 Conclusion

In this paper we have presented an MPC controller for a commercial multi-zone refrigeration
system. We have based our method on convex optimization, solved iteratively to treat a noncon-
vex cost function. By employing a fast convex quadratic programming solver to carry out the
iterations, the method is more than fast enough to run in real-time. Simulation on a realistic
scenario reveal significant savings as well as convincing demand response capabilities suitable
for implementation with smart grid schemes.
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