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ABSTRACT

For linear systems that contain unspecified parameters that lie in
given intervals, we present a branch and bound algorithm for computing
the maximum H_,-norm over the set of uncertain parameters.
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1. INTRODUCTION

We consider the family of linear time-invariant systems described by

t = Axr + Byu + Byuw, z(0) = o,

y = Cyr + Dyu + Dyw, (1)
z = Cxe + Dpu + D,,w,

u = Ay,

where z(t) € R", w(t) € R™, z(t) € R, u(t),y(t) € R?, and A, By, By, Cy,
Csy Dyys Dy, Dy, and D, are real matrices of appropriate sizes. A is a diagonal
perturbation matriz. In the sequel, we will assume that A is parametrized by a

vector of parameters ¢ = [¢1,¢2, ..., ¢n], and is given by

A= diag(qlfl,qglg,...,qm]m), (2)
where [; is an identity matrix of size p;. Of course, >°" p; = p. We will also assume
that ¢ lies in a rectangle Qi = [l1, u1] X [l2, ua] X -+ X [ln, um]. A block diagram

of the above family of linear systems is given in figure 1.
For future reference, we define

P,, = Cy(sI—A)"'B,+ D,
Pn, = Cy(sl —A)'By,+ Dy,
P, = C.(s1—-A)"'B,+ D,,
P, = C.(sI—A)"'By,+ D,,.
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Fig. 1. System in standard form.

We may now write down an expression for the closed-loop transfer matrix from
w to z:

PCl(q) = Pzw —I' quA(] - PyuA)_Iwa.

For uncertain systems described by the above framework, there are many in-
equivalent measures of stability: the stability margin [7], the minimum stability

degree [1] etc. We will concern ourselves with computing the maximum H.,-norm
(Hywe) of the system, defined as

Hue(Qinit) = max {max Mﬂ} = max || Pua(q)|s,

quinit w(t);éO HwHRMS qEQinit
where || - || refers to the Hy-norm:
[Glloc = sup omax(G(s))-
Re s>o0

(Omax(M) is the maximum singular value of M). Hy. is just the worst-case root
mean square gain (RMS-gain) of the system between the input w(t¢) and the output
z(1).

There exist no methods that compute Hy. exactly; however, there are several
methods that provide good upper and lower bounds for Hy.. For example, lower
bounds are provided by Monte Carlo methods where H,. is approximated by the
largest value of || Pa(q)|le over many values of ¢ drawn according to some distri-
bution. Another class of methods that yield lower bounds are local optimization
methods. Here a local search is made for the “worst” parameter, that is, one that
finds a local maximum of || P.y(¢)]|e. On the other hand, upper bounds are provided
by conservative methods. These are usually based on some analytical result, such
as a small gain theorem, or a Lyapunov theorem.

In this paper, we employ an approach where we first compute upper and lower
bounds for Hyc(Qinit) using some of the methods described above; if these bounds are
not satisfactory, that is, if they are not close enough, a branch and bound technique
is used to systematically refine the bounds. At each stage of the algorithm, upper
and lower bounds are maintained for Hye(Qinit). The branch and bound technique
used in this paper is described in detail in [1], where it is used to compute the
minimum stability degree.

In the following section, we briefly describe the basic branch and bound algo-
rithm; we then use it to compute Hy. in subsequent sections.



2. THE BRANCH AND BOUND ALGORITHM

The branch and bound algorithm finds the maximum of a function f : R™ — R
over an m-dimensional rectangle Qipni¢ (the subscript “init” stands for initial rectan-
gle).

For a rectangle Q C Q;.;¢ we define

Punax(Q) = max f(g).

Then, the algorithm computes ®pax( Qinit) to within an absolute accuracy of € > 0.
The algorithm uses two functions ®1,(Q) and ®,,(Q) defined over {Q : Q C Qi }
which are easier to compute than ®,,,.(Q). These two functions must satisfy the
two following conditions:

(R1) P1p(Q) < Prax(Q) < Pup(Q)

(R2) As the maximum half-length of the sides of Q, denoted by size(Q), goes to
zero, the difference between upper and lower bounds uniformly converges to
Z€eT0, 1.€.,

YVe>036>0V Q C Qe SiZG(Q) <6 = (I)ub(Q) — (I)lb(Q) < e.

Roughly speaking, then, the bounds ®), and ®,;, become sharper as the rect-
angle shrinks to a point.

We describe the algorithm briefly (for a detailed description as well as for a
discussion of convergence issues, see [1]). In what follows, k stands for the iteration
index, £ denotes the list of rectangles, Lj the lower bound and Uy the upper bound
for ®max(Qinit), at the end of k iterations.

The Algorithm

k=0;

/:0 = {Qinit};

Lo = P1p(Qinit);

Up = @ub(Qinit) 5

while Uy — Ly > ¢, {
pick Q € Ly, such that ®4,,(Q) = Uy;
split Q into Qp and Qpr along the longest edge;
Liy1 = (Lr —{Q})U{Q1, Qu1};
Lk-l-l ‘= INaXoely (I)lb(Q);
Uk-l-l ‘= InaXoely (I)ub(Q);
k=k+1;

At the end of k iterations, Uy and Lj; are upper and lower bounds respec-
tively for @ax(Qinit). Since @, (Q) and P,,(Q) satisfy condition (R2), Uy — Ly is
guaranteed to converge to zero.

Now we apply the branch and bound algorithm to the problem of computing
the Hy. of systems described by equations (1).



3. COMPUTATION OF H,.
Recall that our objective is to compute

ch(Qinit) moax HPCI(q)”oo

qCinit

Then, following the notation used to describe the branch and bound algorithm, we
have f(q) = ||Pa(q)]|c and Pmax(Q) = Hye(Q). The task that remains before the
branch and bound algorithm can be applied to this problem is the computation of
a lower bound ®,,(Q) and an upper bound ®y,(Q) for Hye.

Given any parameter rectangle, we may first apply a loop transformation so
that we have Q = [—1,1]™ (see [4] or [1] for details). Therefore, we will consider
only the case @ = [—1,1]™. Note that from equation (2), ||A|le = 1.

A simple lower bound for Hy.(Q) is just the Ho,-norm of the closed-loop
system with the parameter vector set to the midpoint of the parameter region Q:

O1(Q) = [[Pa(0)]lcc = [ Prwlloo- (3)

We now describe a simple scheme for computing an upper bound that is based
on a small gain based robust stability condition due to Doyle [5] and Safonov [9]
(see [3, p239-241]).

We define
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where 3 > 0. Then

1Psll.. <1== sup |[Pe + PuA(T = Pud) ' P || < 8.
1Al <1

Our upper bound is:
Cup(Q) = inf {8 : || Pslloo < 1}, ()

with the convention that the infimum of a function over the empty set is infinity. The
condition in (5) is readily checked by forming an appropriate Hamiltonian matrix
and checking its eigenvalues (see [2]); a simple bisection can be used to compute
O

Of course, more sophisticated bounds can be used. A local optimization pro-
cedure can be used to search for a (locally) worst parameter value, which would
give a good lower bound. The upper bound can be vastly improved by scaling (see
Doyle [5], Safonov [8]) or other techniques for approximating the structured singu-
lar value (see Fan and Tits [6]).

4. An Example
We consider a mechanical plant consisting of two masses connected by a spring
with the lefthand mass driven by a force, as shown in figure 2 below.

The parameters are the masses and spring constant, each of which varies in a
range between 2/3 and 3/2:

2/3<my <3/2, 2/3<my<3/2, 2/3<k<3/2
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Fig. 2. The plant consisting of two masses connected by a spring.

Thus, these physical parameters can vary over a range exceeding 2 : 1.

With [z @1 22 iz]T as the state, we employ a state-feedback law F' = —krqr
which is LQR optimal for the nominal parameter values m; = my = k = 1 (with
weights Q) = I, p = 1), and consider the sensitivity transfer function (from w to z):

1

Hy=——
! 1+ kLQRH

where H denotes the transfer matrix from the input £ to the state x, as shown
in figure 3. Thus, Hy. is the worst case peak of the sensitivity transfer function
induced by the parameter variations. From LQR theory we know that with the
nominal parameters, ||Haleo = 1.

Y

Fig. 3. The closed-loop system with LQR-optimal state feedback.

Figure 4 shows the convergence of the upper and lower bounds as a function
of iterations. We observe that by about 50 iterations, the upper bound on Hy. is
finite, indicating that the system is robustly stable. At the end of 500 iterations,
the algorithm guarantees that 2.21 < Hy. < 2.34. The algorithm takes about
1100 iterations to return Hy. = 2.25 to within an absolute accuracy of 0.01; thus
relatively large parameter variations, even in the worst case, only degrade system
performance a little bit. Of course, control theory folklore holds that LQR state
feedback is quite “robust”. But the folklore does not help us with this specific
problem—for example, if the LQR optimal regulator for weights ) = I, p = 10 is
used instead, not much can be concluded from conventional LQR wisdom, while our
algorithm rapidly determines that Hy. = oo, t.e. , the system is not robustly stable.

The algorithm returns the worst-case parameters m; = 3/2, my = 2/3 and
k = 3/2, which happen to lie on a vertex of the parameter box. Needless to say, this



bounds

10

200 400 600 800 1000

Fig. 4. Bounds for the maximum H,-norm.

is not the case in general. It is likely that local optimization methods would find
this set of parameters fairly quickly. However, unlike our algorithm, local methods

have no way of guaranteeing that the maximum they find is the global maximum.
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