Report No.:

Title:

Author:

Abstract:

Keywords:

Published by:

91-15 January 22, 2001

Global Optimization of Hy-norm of Parameter-dependent
Linear Systems

Silvano Balemi* and Venkataramanan Balakrishnan'

For linear systems with unspecified parameters that lie in in-
tervals, we present a branch and bound algorithm for com-
puting the maximum and the minimum possible H,, norm of
any transfer matrix of interest. We extend this branch and
algorithm further so as to compute the “minmax” of the H,
norm, where the choice of parameters is sought that minimizes
the maximum H,, norm over another set of parameters.

Branch and bound algorithm, Global optimization, H,,-norm,
Parameter dependent linear systems

Automatic Control Laboratory
Swiss Federal Institute of Technology
ETH-Zentrum, 8092 Ziirich, Switzerland

Contents
1 Introduction

2 The Branch and Bound Algorithms
2.1 The branch and bound Algorithm for maximization
2.2 The branch and bound algorithm for minimization.
2.3 The branch and bound algorithm for minmax-problems

2.3.1 Using simple bounds 0.

3 Bound Computations
3.1 A Loop Transformation
3.2 Bounds for Hmax - - - « « o o i e
3.3 Bounds for Hmin - - - « - 0o e e e
3.4 Bounds for Huminmax - = « = « « « « v v e e e e e e e e

4 Examples
4.1 A transfer matrixo

4.2 Mass-spring system oL
5 Conclusions

A Proof of convergence
Al Hpax CONVEIZENCE o v it e e e e e

A2 Hpin CONVETZENCE ot ittt e e e

10
13

13

14
14
15

17

w z

— —>

u N P(S) Y
A |«

Figure 1: System in standard form.

1 Introduction
We consider the family of linear time-invariant systems described by

= Az 4+ Byuu + B,w, z(0) = zo,

Cyz + Dyu + Dyw, (1.1)
= C,ux + D,,u + D,,w, '
= Ay,

g e &
|

where z(t) € R", w(t) € R™, 2(t) € R™, u(t),y(t) € R?, and A, B,, By, Cy,
Cy, Dyy, Dyy, D,, and D,,, are real matrices of appropriate sizes. A is a diagonal
perturbation matriz. In the sequel, we will assume that A is parametrized by a
vector of parameters ¢ = [¢1, ¢o, - - -, @], and is given by

A = diag(qlh, q2]2, ey qum), (12)

where I; is an identity matrix of size p;. Of course, ;" p; = p. We will also assume
that ¢ lies in a rectangle Qinix = [I1, u1] X [lo, ua] X+« X [ly, Um]. A block diagram
of the above family of linear systems is given in figure 1.

For future reference, we define

We may now write down an expression for the closed-loop transfer matrix from
w to z:

Pa(q) = Py + P A — Py A) ' Py

Loosely speaking, system (1.1) represents linear systems which have unknown
gains ¢; that lie in intervals. The transfer function from w to z consists of all
transfer functions of interest, and is typically required to be “small” — for example,

*Automatic Control Laboratory, Department of Electrical Engineering, ETH-Zentrum, 8092
Zurich, Switzerland

tInformation Systems laboratory, Department of Electrical Engineering, Stanford University,
Stanford CA 94305, USA

when w consists of disturbances and z of error signals. The measure of “smallness”
that we will use in this report is the H,, norm.

Depending on the interpretation of A, different questions arise regarding sys-
tem (1.1). If the parameters ¢; are thought of as uncertainties, a natural question is
“how large can the transfer function from w to z be over the uncertainties?” This
quantity is the maximum H_, norm of the system, denoted by Ha.x and defined as

[[2]| mres
o) — MZHRMS P
o Qus) = g { a2 4 e (o)l
where || - ||o refers to the Hoo-norm:
[Gllo = sup Omax(G(s))-
Re s>0

(Omax (M) is the maximum singular value of M). Hpay is just the worst-case root
mean square gain (RMS-gain) of the system between the input w(t) and the output
z(t). We note that Hmax serves as a stability measure for the system (1.1). If the
system has lightly damped eigenvalues for some value of the parameter vector, the
RMS gain between w and z, under simple controllability and observability condi-
tions, would be large for some particular input w(t). Therefore a high ., could
imply that the system is “not very stable”.

Next, if A consists of design parameters, one might seek the choice of parameters
that minimizes the H,, norm between w and z. In this case, the quantity of interest
is the minimum H,, norm, denoted H,;» and defined as

z
Hin(Qi) = i, {I?# e } = n 1P (@)l
This situation may arise, for example, in parametric controller design.

Finally, if A contains both uncertainties and design parameters, the so-called
minmaz problem arises. Here, we seek the choice of design parameters that min-
imizes the Hma, over the uncertain parameters. More precisely, let the first m;
parameters be design parameters and remaining my parameters be uncertainties
(my + my = m). For convenience, let us rename the m; design parameters as
q=1q,, 9y -+ gml] and the my uncertain parameters as ¢ = [q;, Gy, ---y Gp,)- Let

@init = [llaul] X [l2au2] X - X [lmUuTnl],

and
Qinit = [lm1+laum1+1] X [lm1+2aum1+2] XX [lmaum]-

Then the minimax problem is the computation of

_ _ .
%minmax(ginit; Qinit) = min max {max ””ﬂ}

9€2;04 TE€EQimiy | W(H)#0 ||w||RMS

= min max ||Pu(q)||co;

9€ ;i TE€ Dinit

Computation of each of the three quantities above exactly is a hard problem.
However, there exist a host of methods that yield useful bounds. Local optimization
methods, Monte Carlo methods etc. give bounds in one direction, while analytical
methods such as Small Gain Theorem or Lyapunov methods give bounds in the
other. In the following, we describe branch and bound algorithms that use these
bounds in order to compute each of these quantities Huax, Hmin and Huminmax tO
within an absolute accuracy € > 0 in a finite number of iterations.

2 The Branch and Bound Algorithms

2.1 The branch and bound Algorithm for maximization

The branch and bound algorithm we use finds the maximum of a function f : R™ =R
over an m-dimensional rectangle Qj.;; (the subscript “init” stands for initial rectan-
gle).

For a rectangle @ C Q;,;; we define

D.0x(Q) = max f(q).

geQ

Then, the algorithm computes ®ax (Qinit) to within an arbitrary absolute accuracy
of € > 0. The algorithm uses two functions ®),(Q) and ®,,(Q) defined over {Q :
Q C Qnit} which are easier to compute than ®,,,,(Q). These two functions must
satisfy the two following conditions, which we roughly describe:

(R1) D, (Q) < Do (Q) < Py (Q).

(R2) As the maximum half-length of the sides of Q, denoted by size(Q), goes to
zero, the difference between upper and lower bounds uniformly converges to
Zero, i.e.,

Ve>030 >0 such that V Q C Qypi, size(Q) <0 = Pyp(Q) — P1(Q) <.

The algorithm starts by computing Py, (Qinit) and Pyp (Qinit)- If Pup(Q)—Pp(Q) <
€, the algorithm terminates. Otherwise we partition Q;n;; as a union of sub-rectangles
as Quuis = Q1 U QU -+ - U Qy, and compute ®,(Q;) and ®,,(Q;), i =1,2,---, N.
Then

max (I)lb(Qz) < (I)maX(Qinit) < 122)1(\[(I)ub(Qi)a

1<i<N

i.e., we have new bounds on @, (Qini)- If the difference between the new bounds
is less than or equal to ¢, the algorithm terminates. Otherwise, the partition of
Qinit 1s further refined and the bounds updated. It is also possible to prune those
rectangles over which we can establish that ®,,,, cannot be achieved (see [?] for
details).

The general branch and bound algorithm for maximization

In the following description, k£ stands for the iteration index. Lj denotes the list of
rectangles, Ly the lower bound and Uy the upper bound for @, (Qinit), at the end
of k iterations.

The Algorithm

k=0;

Ly = {Qinit};

Ly = @lb(Qinit);

Up = (Dub(Qinit);'

while Uy — L > ¢, {
pick Q € Ly, such that ®4,(Q) = Uy;
split @ along one of its longest edges into O and Qyy;
L1 := (L —{Q}) U{Qr, Qur};
Ly = maXgecy (I)lb(Q);
Uk+1 1= Maxgeg, ., D4 (Q);
k=k+1;

At the end of £ iterations, U, and L; are upper and lower bounds respectively for
D ax (Qinit)- Since Py, (Q) and @, (Q) satisfy condition (R2), Uy — Ly, is guaranteed
to converge to zero. We will prove this rigorously in the appendix.

2.2 The branch and bound algorithm for minimization

The branch and bound algorithm of the previous subsection may be directly applied
to minimize f by maximizing — f. For convenience, we will present a version of the
previous algorithm that directly minimizes a function f : R™—R. Our description
below suffers from some abuse of notation; we will continue to use ®;;, and ®,;, as
lower and upper bounds, now for the minimum. However, the meaning of these
symbols should be clear from context.

Given a rectangle Q C Qi we define

@min(g) = IIllIlf(Q)
qeQ

Then, the algorithm computes ®min(Qinis) to within an arbitrary absolute accuracy
of e > 0. &,(Q) and @, (Q) denote upper and lower bounds

P1p(Q) < Pmin(Q) < Pup(Q).

We suppose that the two bounds satisfy requirement (R2). Again, the algorithm
starts by computing @y, (Qinit) and @y, (Qinit)- If @up(Q) — P, (Q) < ¢, the algorithm
terminates. Otherwise we partition Qj,i¢ as previously and obtain

121§HN Pib(Qi) < Prin(Qinit) < 1215nN Du,(9:),

4

If the difference between the new bounds is less than or equal to €, the algorithm
terminates. Otherwise, we further partition Qj,;;, and continue with the computa-
tion.

The general branch and bound algorithm for minimization

Here k and L£; have the same meaning as before. L, denoted the lower bound and

Uy, the upper bound for ®,in(Qinit), at the end of & iterations.

The Algorithm

k=0,
Ly = {Qinit};
Ly = ‘I’lb(Qinit);

Up = CI’ulo(Qinit);
while Uy — Ly > €, {
pick Q € Ly, such that ®1,(Q) = Ly;
split @ along one of its longest edges into O and Qyy;
Liy1 = (Lr —{Q}) U{Qr, Qur};
L1 := mingeg, Q1,(Q);
Uky1 = minger, ., Pun(Q);
k=k+1;

At the end of & iterations, U, and L, are upper and lower bounds respectively for
D 11in (Qinit)- Since @1, (Q) and P, (Q) satisfy condition (R2), Uy — Ly is guaranteed
to converge to zero.

2.3 The branch and bound algorithm for minmax-problems

We now present an extension of the branch and bound algorithm of the previous
sections which minimizes, over a set of parameters, the maximum of the function
over another set of parameters. More precisely, for a function g(g,q) we seek

\IIminmax = min max g(Qa 6) .
€L geg

The extended branch and bound algorithm needs two functions ¥,(Q, Q) and
V(2 Q) (Eﬁned over @ C Q... Q C Qi which are easier to compute than
U minmax (2, @). These two functions must satisfy the two following conditions:

(R3) \Illb (27 @) S \Ilminmax (2; g) S \Ilub (Qa @) .

(R4) As the maximum half-length of the sides of @ and Q denoted by size(Q) and
size(Q) respectively go to zero, the difference between upper and lower bounds

uniformly converges to zero, i.e.,

Ve>0360>0 such that VQ C Q. .. and Q C Qipis,
size(Q) < § and size(Q) < § = V,;,(Q, Q) — ¥1p(Q,9) < €

As with the simpler branch and bound algorithm for maximization or minimization,
the algorithm starts by computing \Illb(let, Qinit) and Vb (Qinie» Oinit)- If the dif-
ference Wi, (Q, Qinit) — Vb (D o0 Oiit) < ¢, the algorithm terminates. Otherwise
Q..i; 1s partitioned as a union of subrectangles as let Q. U9, U---UQ,, and
compute Ui,(Q,, Oinit) and ¥yup(Q;, Qinit), ¢ = 1,2, -+, N are computed. Then

1I<I11<I}V ‘Ijlb(Q"’ let) S qlmmmax(glmt’ anlt) < mln \Ilub(Qz: let)
If the difference between these two bounds is small enough, we stop, otherwise we
partition any of the subrectangles Q,xQini; into smaller subrectangles as QX Qinit =
9. xQUQ,xQpU---UQ, xQ;,, and compute Vi,(Q;, Q;;) and ¥y (Q,, Qij)-
Then

lginN{lga}]\(i \Illb(Q,a Qz])} < \I’mmmax(let, let) < 121<nN{1£rjlaX \I’ub(QZ; sz)}
Once more, if the difference between the new bounds is less than or equal to €, the
algorithm terminates. Otherwise we either partition @, .. into smaller rectangles, or
we partition a subrectangle Q, x Oinit into smaller subrectangles: in both cases we
can then update the bounds. It is also possible to prune those rectangles over which
we can establish that U iumax(Q, @) cannot be achieved.

The general branch and bound algorithm for minmax problems

In the following description, k£ stands for the iteration index. L denotes a list of
Ny, rectangle lists. Every rectangle list corresponds to a member Q, of a partition of
Q. .. and is therefore denoted by £(Q,). Every subrectangle in E(QZ.) is of the form
9, % QU, with sz C Oumit- M, ik stands for the number of subrectangles in the ¢th list
K(gz.) at the end of k iterations. In other words, we have a two-dimensional list of
rectangles, first partitioned along the minimizing parameters to yield the rectangle
lists, and each of these lists further partitioned along the maximizing parameters.
L, and Uy, are lower and upper bounds respectively for Wi (Q; .., Oinit) at the end
of the k-th iteration. Let

k(Q) = max Wn(Q,Q;) and w(Q)= max Wu(Q; Q).

1< <My (4) 1< <My (3)

I, and uy, are lower and upper bounds for W inmax over Q. X Qipiy.

The Algorithm

k=0;
Z(mlt) {let X let}

{K(1n1t)}
LO \Illb (let, %nit);
UO = \I]ub (Qinit’ Qinit);
while Uy, — Ly > € {
pick £(Q,) € Ly such that 1,(Q,) = Ly; B
pick Q. % Qz] € £(Q;) such that U, (Q,, Qij) = ur(Q;);
split Q X Q;; along one of the longest edges of Q;; into
9, ><Q” and Q, XQZ],
E(QZ)_: (U(Q;) — ;% sz) u{g;x Qi» 9 ngj};
split all Q. x Q;; € £(Q,) along one of the longest edges of Q, into
Q.XQ;; aﬁd Q, X Qjj;
4Q) = U;{Q <2y}
0(Q)) =U;{Q x i},
Lir = (Lp — £(Q;)) UL(Q;), £(Q;)}
Lk+1 = minf(gi)6£k+1 lk (21)7
Ugq1 := IIliIle(gi)e.c,cJrl Uk (Qi);
k=k+1;

2.3.1 Using simple bounds

We now show how we may obtain bounds W), and ¥, from the bounds for the
simple minimization or maximization of a function. The conditions under which
these bounds can be used are stated in the following proposition.

Proposition 2.1 Given any Q and Q let

P (2,7,) < mlng(q 7,) and Pyu(g,, Q) > maxg(q,,q) (2.1)
gc

ax
€Q

with g, and g, being any point in Q and Q respectively. ®y, and @y, are lower
and upper bounds for simple minimization and mazimization problems respectively.
Then

‘Illb(ga @) = élb(g, qo) and \Ijub(gn @) = (I)ub(gon @) (22)
are bounds for VU inmax Satisfying (R3). Moreover they satisfy (R4) if

1. g(q,9q) is continuous in {(¢,q) : ¢ € Q, € Q}.
2. ®1p(Q,7) and ming(Q,q) satisfy (R2) for any g € Q.
acL

3. ®uy(g, Q) and max g(g, Q) satisfy (R2) for any ¢ € Q.
- qeQ -

Proof: We start with the well-known inequality

max min g(g¢,q) < minmax g(g, 7). (2.3)
7€Q 9€< 9€L geQ

This allows to define bounds on ¥, ;,max that involve only maximization or mini-
mization. By choosing any ¢ € Q and g, € Q we directly derive

min (g, q,) < minmax g(¢,7) < maxg(q,,q) (2.4)
a€Q 9€Q geQ 7€9
From the assumptions on &, and @), and from equation (2.2) it follows directly
that Uy, (Q, Q) and ¥ ;,(Q, Q) are bounds for ¥ inmax (Q, Q) and therefore that they
satisfy (R3). This completes the first part of the proof.
Now we have to prove that Uy,(Q, Q) and ¥, (Q, Q) satisfy (R4). We first show
how condition 1. implies that the two bounds of equation (2.1) converge to each
other uniformly over Q@ x Q. Condition 1 means

given € > 0, 36 such that |g(¢,7) — 9(g,,G,)| <e€if lg— ¢, <d and [[7—7,| <.
Now, by considering ¢, ¢, € @ and g, g, € Q we have that

Ve>0Vsuch that @ C Q .. and Q@ C Qiny

size(Q) < 6/2 and size(Q) < §/2 = ming(¢,q,) — maxg(q,,7) < ¢
U qeQ

which proves that the two bounds of equation (2.1) are uniformly convergent. With
a similar argument, conditions 2. and 3. imply that the two quantities in the
condition are uniformly convergent over Q and Q. Finally, as all the quantities on
the two sides of the inequalities of the expression

(blb(ga q()) < ming(ga qO) < ma_xg(ﬂ 56) < cI)ub(g :Q)
9€Q 7eQ ° ¢

uniformly converge over Q and Q for any q,€ Q and g, € 9, we have proven that
U, (Q, Q) and ¥, (Q, Q) satisfy (R4). m

3 Bound Computations

We now describe the computation of bounds for Hmax, Hmin and Hminmax, SO that we
may apply the branch and bound algorithms of the previous section towards their
exact computation.

3.1 A Loop Transformation

Before we go on to describing the computation of bounds for Hpax Hmin, and
H minmax; We describe a loop transformation that will enable us to henceforth as-
sume that the bounds are always calculated over the scaled unit cube ¢ = [—1, 1]™.
We refer the reader to [?] for a complete discussion of loop transformations.

The loop transformation is best explained through figure 2, where the symbols
H(s) and A refer to the “new” system and the “normalized” perturbation.

Figure 2: Loop Transformation.

The loop transformation can be interpreted as translating @ to the origin, and
then scaling it to the cube [—1,1]™.

l l m+ lm
K =diag(0y, 202y, Sm iy

2[2[2[

. Ur — b1 Ug — L2 Um — tm
F=d I I, ... 1,
lag(2 1 2 25) 9)

are the matrices that accomplish this.
A state-space representation of the loop-transformed system P(s) is given by
{4, B,C, D}, where

A = [A+B,TKC, |;

- _ | B.+BTED,, B.TF:
B - ~ ~ ~ Hf_/ ;
| B, By
2
i C,+D,,TKC,
¢ = 1 ; (3.1)
F2(I+D,,TK)C,

- . -]
~ DywtDWwTKDyy D, TKF?
D =

F3(I+DyTK)D,, F?D,TF?

L D‘y'w D:u

T = (I — KDy,) ', and I is the identity matrix of appropriate size.
We note that performing this loop transformation automatically checks the well-
posedness of the system for A = K.

3.2 Bounds for Hx

A lower bound for Hax () that we will use in our algorithm is very simple: we just
compute the H,-norm of the closed-loop system with the parameter vector set to
the midpoint of the parameter region . Clearly, this number is less than or equal
to the mazrimum H,,-norm. That is,

Op(U) = [1Pa(@)lloc = 1Pewlloo (3:2)

Computation of the upper bound uses many ideas from [?], and is based on a
small gain based robust stability condition. This bound has been also proposed by
Doyle [?] and Safonov [?] (see [?, p239-241]).

Theorem 3.1 Let P(s) be a stable transfer function of the form shown in figure 1
and let B be real and positive. If

PZU} qu
ERRZH| PE
ﬂpu

VB P

then

sup | [Paw + PouA(T = Ppuld) ™' Pp]| < 8.
1Al <1 >

Remark: Note that the theorem makes no assumptions regarding the structure
of A.

Proof: The proof relies on two applications of the SGT. Consider the closed-loop
system of figure 3. This system corresponds to “closing the loop” of the system in
figure 1 with u = (A/B)y. We assume that A satisfies ||A||oo < 1. Since P(s) is of
the form shown in figure 1, the transfer matrix Pg(s) is given by

PZTU PZU
pe=| 4, (33
Pw p

VB

We may regard the system in figure 3 as consisting of the transfer matrix Pz(s)
with the feedback matrix diag(A,A). Since by assumption ||All < 1, for every
A such that ||Alje < 1, we have ||diag(A, A)|le < 1. Then, from the SGT, we
conclude that if || Ps(s)|| < 1, the closed-loop system is stable.

The closed-loop system above can be viewed in yet another way, as the system
Ps A (s) with the feedback matrix A. Since the only assumption made on A was that
|Allse < 1 (in particular, no assumptions were made regarding its structure), the
stability of the closed-loop system implies that ||Psallcc < 1 for every A such that
|Allc < 1. We now observe that Pga = (P, + Py A(I — Py, A)™'P,,)/8, which
immediately implies that || P, + Py A(I — Py A)™' Pyl < B and the conclusion
of the theorem follows. |

10

— 1B > p(s) [0 E

A R

i N i

T BPgals) |
A e

Figure 3: Closed-loop system with constant feedback 1/

This theorem suggests a direct method for the computation of the upper bound.
Any B > 0 satisfying || Ps|| < 1 is an upper bound for ®,,,,(¢). On the other hand,
if || P||cc > 1 for all beta, we may conclude only the the upper bound is infinity. We
may thus define our upper bound as:

o) = inf {8 : || Pyllos < 1}, (3.4)

with the convention that the infimum of a function over an empty set is infinity.

Computational issues for the bounds

The following theorem is useful in the computation of the upper bound for H .
In order to compute the upper bound for H,.. over a given rectangle i, we will
now establish that for 8 > 0, || Ps|/« is a monotonic non-increasing function of 3,
approaches infinity as 8 approaches zero, and approaches ||Py,||« as § approaches
infinity. Thus we may either establish that the upper bound is only infinity (in the
case || Pyyl|lco > 1), or use a bisection to find ®,,(U).

Theorem 3.2 ||Ps||o is a monotonic non-increasing function of 5 for > 0, with
limg_,o0 || Psllco = || Pyulloo- Provided that at least one of P,y,, P,, and Py, is nonzero,
lims o [1Pollo, = oo.

Proof: For any w and By > B; > 0, with I; and I, being identity matrices of the
appropriate size, and by defining oo = /51 /52 we have

s Pali) = mer (| 41 1 [Pati) | 5 7 |)

<ms (| 00 1|) e PG 3mar (| 00 1 |) = Gmann)
(3.5)

11

from which it follows directly that || Pg,||cc < ||Ps,|lco- To prove the second part of
the theorem, we note that as 8 — 0, at some frequency w, some entry of the matrix
Ps(jw) has magnitude that goes to infinity, which means ||Ps||c — oo. Finally, as

B — oo,
0 0
Pﬁ_>|‘0 Pyu],

so that || Psllec = || Pyullco- [

IIPglls T IIPglls T

1
[1Pyulleo

[IPyullc f===7===="===================--
1 ...

Figure 4: The figure on the left illustrates the case when a bisection may be used
to compute the upper bound. For the case depicted on the right, the
only guaranteed lower bound is oo.

Thus if || Pyy|l > 1, the upper bound is only co. In the case when || Pyl < 1,
we can use a bisection to compute the upper bound on the H,,.,. This might appear,
at a first glance, a formidable task. However, it is shown in [?] that checking if the
H_.-norm of a transfer matrix is greater than one involves an eigenvalue computation
of a Hamiltonian matrix; the Hy,-norm of the transfer matrix Co(sI — Ay)~* By + Dy

is greater than one if and only if the matrix

M — Ay — B()R_ID(?CO —BoR_lBg (3 6)
B cts—1c, —AT + CI'DyR'BY '
has imaginary eigenvalues, where R = (DIDy — I) and S = (DyD} — I). Thus
the bisection to compute the upper bound can be performed reasonably fast. In
any case, because of the conservativeness of the bound, we need not perform the
bisection to any great accuracy. In practice, two to three bisection iterations will

suffice.

Of course, more sophisticated bounds can be used. A local optimization pro-
cedure can be used to search for a (locally) worst parameter value, which would
give a good lower bound. The upper bound can be vastly improved by scaling (see
Doyle [?], Safonov [?]) or other techniques for approximating the structured singular
value (see Fan and Tits [?]).

12

3.3 Bounds for H,

The bounds we present here make the (unrealistic) assumption that system 1 is
robustly stable. In terms of design, this requires the designer to apply the algorithm
only over parameter ranges where the system is guaranteed to be stable. Removing
this unreasonable assumption is currently under investigation.

The upper bound for H,i,(U) is the lower bound for Hpax(U), i.e. the Hy-
norm of the closed-loop system with the parameter vector set ot the midpoint of the
parameter region /. Clearly, this number is larger than or equal to the minimum
H,,-norm. That is,

Pup(U) = [[Pa(@)lloo = [[Pewlloo (3.7)

Computation of the lower bound is derived using some simple norm inequalities. We
can determine it in a constructive way:

|Pa(@)llec = [Pow + Pou A — PyuA)_IwaHoo
> |IPawlloo = IPeullocllAlloll (I = PpuA) ™ Hloo [l Pywll o

_ Peullool| Prwlloll Alloo
1= [|Byullool[Alloo

v

1Pzl o

where last step requires that ||P,, Al < 1. Finally, by remarking that A is de-
scribed by a set of parameters in the m-dimensional hypercube, we have the bound

[Pzull ool Py [l 0 :
max < || Pywlloo — , 0 if [|[Pullee <1

0 otherwise

We remark that the computation of the two bounds requires four H,,-norm
computations.

It is not difficult to show that || P,y|c, || Pywlleo and || Pyullsc all go to zero when
the size of the rectangle goes to zero: condition (R2) is satisfied by just looking at
the definitions (3.7) and (3.8).

In the appendix we show that there exist positive real numbers M, and § such
that for every rectangle Q with size(Q) < J the gap (®,,(Q)— P (Q)) between upper
and lower bounds is bounded by Masize(Uf). This allows to determine a bound on
the number of iterations necessary to obtain a desired precision.

Again, more sophisticated bounds can be used. Also the lower bound for H i,
can be improved by scaling or other techniques for approximating the structured
singular value as it was the case for the upper bound for the H,,,x computation.

For a more detailed analysis of the convergence of the branch and bound algo-
rithm for this bounds we refer to the appendix.

3.4 Bounds for Hinmax

We will use U and U to denote unit cubes of the same dimensions as Q and 9. Note
that the loop transformation of subsection 3.1 enables us to assume that the bounds
are now computed over Q@ = U and Q = U.

13

A lower bound for Hpinmax (U, 27) can be obtained by using the lower bound for
Hmin of equation (3.8). From equation (2.2) of the previous section we can choose
g, = 0, that is the center of the box U. and compute directly from equation (3.8)

[Peus [loo (| Pyrw || oo :
_ — <
q’lb(zl, u) _ maX{“Pzw”oo 1 — ||Py1u1||oo s 0 if ||Py1u1 ||oo <1 (3'9)
0 otherwise

An upper bound for Hminmax (U, U) can be obtained by using the upper bound for
Humax of equation (3.4). From equation (2.2) of the previous section we can choose
g, = 0 that is the center of the box . and compute directly from equations (3.3)
and (3.4)

Pzw qu2

v =6 || L V] <1t (3.10)
~ v p2u2
vB Y o

We can now apply the branch and bound algorithm together with these bounds to
compute Hminmax-

4 Examples

4.1 A transfer matrix

We will present one simple example to illustrate the application of the branch and
bound algorithm on the maximum H,-norm computation. We consider a 2 x 2
transfer matrix H(s):

q1 q1
H(S): 3+Q2 S—;ql : q1€[174]7 Q2€[174]
g2 s+ aq

We can cast the problem very easily into our setup as follows:

70 0/0 0 0 0 1 -1 07
0 0/0 0 -1 10 0 0
1 1/]0 0 000 0 0
0 -1{01 000 0 1
P(s)y = |0 1/0 0 000 00
0 001 000 00
0 0[/1 0 000 0 0
1 0(00 000 00
L0 0[1 0 000 0 O]

with A = diag(¢1,¢1, ¢, G2, g2). The branch and bound algorithm terminates guar-
anteeing that the maximum H.,-norm of the considered system lies in the interval
[4.2298, 4.2391].

14

14

12 —

i]

2

o 200 400 600 800 1000 1200

Figure 5: bounds for the maximum H-norm of the transfer matrix example

1 X2

— —>

k
— ™ 00
— my o

Figure 6: The plant consisting of two masses connected by a spring.

4.2 Mass-spring system

We consider a mechanical plant consisting of two masses connected by a spring with
the lefthand mass driven by a force, as shown in figure 6 below.

The parameters are the masses and spring constant, each of which varies in a
range between 2/3 and 3/2:

2/3<my<3/2, 2/3<my<3/2, 2/3<k<3/2.

Thus, these physical parameters can vary over a range exceeding 2 : 1.

With [z1 &1 @2 4o]" as the state, we employ a state-feedback law F' = —krqr
which is LQR optimal for the nominal parameter values m; = my = k = 1 (with
weights Q = I, p = 1), and consider the sensitivity transfer function (from w to z):

1
Hy=—""
1+ kiorH

where H denotes the transfer matrix from the input F' to the state z, as shown
in figure 7. Thus, H.x is the worst case peak of the sensitivity transfer function
induced by the parameter variations. From LQR theory we know that with the
nominal parameters, ||Hq|lw = 1.

15

Y

Figure 7: The closed-loop system with LQR-optimal state feedback.

10 - —

bounds

2:/_1,_)

o

200 400 600 800 1000

Figure 8: Bounds for the maximum H,-norm of the sensitivity transfer function
for the spring mass system.

Figure 8 shows the convergence of the upper and lower bounds as a function of
iterations. We observe that by about 50 iterations, the upper bound on H, .y is
finite, indicating that the system is robustly stable. At the end of 500 iterations,
the algorithm guarantees that 2.21 < Hpax < 2.34. The algorithm takes about
1100 iterations to return Hmax = 2.25 to within an absolute accuracy of 0.01; thus
relatively large parameter variations, even in the worst case, only degrade system
performance a little bit. Of course, control theory folklore holds that LQR state
feedback is quite “robust”. But the folklore does not help us with this specific
problem—for example, if the LQR optimal regulator for weights @) = I, p = 10
is used instead, not much can be concluded from conventional LQR wisdom, while
our algorithm rapidly determines that H,,x = 00, ¢.e. , the system is not robustly
stable.

The algorithm returns the worst-case parameters m; = 3/2, my = 2/3 and
k = 3/2, which happen to lie on a vertex of the parameter box. Needless to say, this
is not the case in general. It is likely that local optimization methods would find
this set of parameters fairly quickly. However, unlike our algorithm, local methods
have no way of guaranteeing that the maximum they find is the global maximum.

16

5 Conclusions

We have presented two simple branch and algorithms, based on which we may
optimize the H,,-norm of systems with parametric uncertainties. The algorithms
enjoy the following advantages:

e The algorithms maintain guaranteed upper and lower bounds for the quantities
they compute, so that they can be terminated at any stage yielding valuable
information.

e They attack problems for which no conventional methods exist.

e Improvements in the computation of the bounds may be readily incorporated
into the algorithms, thereby improving the overall performance, sometimes
significantly (see [?]).

However, it is quite easy to construct examples where the algorithms perform poorly.

The basic branch and bound algorithm itself is very simple. It can be easily
implemented, and the only problem-specific task is the computation of the upper
and lower bounds over a given parameter region for the function whose maximum,
minimum or minimax is to be found. Thus they can be applied to a wider class of
problems than those addressed in this report.

A Proof of convergence

We prove that the branch and bound algorithm applied to the computation of H iy,
and H .y converges in a finite number of steps. The proof of convergence of H ninmax
computation is under preparation [?].

In order to prove the convergence for H . and Hpin, we must first show that
the bounds for Hp.x and Hy, satisfy condition (R2) in section 2.

Then it is shown in [?] that we can establish an upper bound for the number
of iterations of the branch and bound algorithms described in section 2 in order to
compute P, resp. ®in within a desired precision.

Our last task is therefore to prove that the bounds for H,.;, and H.x satisfy
condition (R2).

A.1 H,.. convergence

Proposition A.1 If Hyax(Q) < 00, there exist positive real numbers M, and §
such that for every rectangle Q with ||Q]| < 9,

B,,(Q) — Bu(Q) < M| Q| 1%, (A1)

where @y, an d Py, are bounds on the marimum Hy -norm, as given in equations
(3.2) and (3.4) .

17

Proof: We denote by P the loop-transformed system. We the observe that we may

write 155 as
- ,8_1/2 0 . ,8_1/2 0
Fs = [o 7 0] (82)

where

is given by the state space realization

A= [A+ B, T'KC,l;

B= [By + B, T 'KD,,, BT } :

N —1

o [C+ DzuT_lKCy ; (A.3)
C,+ D, T KC,

D=

D,y + D, ,T'KD,,, D, T 'K
Dy, + Dy T 'KD,,,, D, T

Note that Pzw = P,,, which we will use in the sequel. Note also that p depends on
K; we will not show this dependence explicitly in what follows.

: P.. F:P,./B
Dy — Py < lim < B - l/ﬂ P /ﬂf =1—¢€p —[[Powlloo;
e—0 waF2/ﬁ2 F2Pqu2 -

By noting that ||F||.c = ||Q|| and using a simple norm inequality, we derive the
larger bound

: . 1 a 5 19l | 4 _
< 1133 {/B (”Pzw”oog + (”qu”oo + ||wa||00) T + ”Pyu”oonQ” =1l-e¢ _”Pzw”om

Now let us introduce for simplicity of notation

a = ||P.wl|%;
pzu 00 pw 00 > 1 A4
b:mx{“ o + | Pyullee ”Pyu”&}' (A4)
201 Pewl

Then from the previous expression we derive this looser inequality:

Sli_r)ré{ﬁz (a2%+2ab %+b2||9||> =1—6}—a2.

Equivalently:

2 2
a 1 a
= lim ﬁ:<—1+b||Q||5) =l—¢p—a*=lim — —a’
e—)O{ /35 e—0 (,/1_€_b||Q”§)2

18

Thus, for ||Q| < § < 1/4b? and letting € go to zero

a? 9 2a2b

<——— -’ <——| Q|
1—2b]|Q||z 1—26\/3” |

Therefore by defining with equation (A.4)

bmaz = sSup {b}, Qmag = SUP {CL}

q€ Qinit q€ Qinit
we can state that for any § and Q C Qi such that ||Q|| < § < 1/4b2,,, there exists
| — 20’$nawbma$
1- 2bmaw\/g
such that)
D (Q) — Pup(Q) < M| Q2.
Note that Hmax(Qinit) < 0o implies that M; < co.]

A.2 H.,i, convergence

Proposition A.2 If the system is stable for all ¢ € Qinis, there exist positive real
numbers My and & every rectangle Q@ with ||Q]| < 0,

Dy (Q) — p(Q) < M| QY], (A.5)

where @y, and Py, are bounds on the marimum Hy-norm, as given in equations
(3.8) and (3.7) .

Proof: We observe that the loop-transformed transfer matrix P can be written as

~ I 0 ~| I 0
Pl le[1 8] »

where P is given by the state space realization (A.3). Again, we will not show, as in
the computation of the convergence for the bounds on ., the explicit dependence
on K. Then, from (3.8)

A 1P F % || ool| F2 Byl
max Pzw oo 1~ 1
P (Q) = {” | 1— ||F?PpF 7|
0 otherwise

: 0} if |F2 P F2||o < 1

By noting that ||F||. = [|Q]| and taking only regions such that || Q|| < 1/2||P,ullc
we have || F2 P F2 ||so < ||F]lool|Pyulloo < 1/2 and therefore

||qu||oo||wa||oo||Q||}
1= [|PpulllI€1/2

(I)ub(Q) - (I)lb(Q) S ||pzw||oo — {”Pzw“oo -
< 20| Poullool| By lloo | 2

19

By choosing My = 2maxycg || Pyw|loo Maxyeg || Poulloo and having a number of itera-
tions so large that 2||Q||||Pyullcc < 1 we can conclude that

D,,(Q) — D1p(Q) < My|| Q]

20

