On parameter convergence in adaptive control * # Stephen BOYD and Shankar SASTRY Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of California, Berkeley, CA 94720, USA Received 27 July 1983 Revised 8 September 1983 It is well known that the parameter error as well as the model-plant mismatch error in a model reference adaptive scheme tends exponentially to zero iff a certain sufficient richness condition holds for signals inside the time-varying plant control loop. In this paper we give conditions on the reference signal (the exogenous input to the adaptive loop) – namely, that it have as many spectral lines as there are unknown parameters, in order to guarantee parameter convergence. Keywords: Model reference adaptive systems, Parameter convergence, Sufficient richness, Persistent excitation. #### 1. Problem statement In recent work [1,2,8] on continuous time model reference adaptive systems, it has been shown that under a suitable choice of adaptive control law the output of the controlled plant $y_{\rm p}$ asymptotically tracks the output y_{M} of a stable reference model, despite the fact that the parameter error vector may not convergence to zero (indeed, it may not converge at all). Consider, for example, the case when the reference input is a step. In this case it may be shown that the parameter error vector converges, not necessarily to zero but to a value such that the (asymptotic) closed loop plant transfer function matches the model transfer function at D.C. (0 rad/sec). This observation suggests the following intuitive argument: assuming that the parameter vector does converge, the plant loop is 'asymptotically time invariant'. If the input r has spectral lines at frequencies ν_1, \dots, ν_N , we expect pose of this paper to make this intuitive argument formal. Results that have appeared in the literature on parameter error convergence (notably [3,4,5,13]) have established the uniform asymptotic and (equivalently) the exponential stability of the adaptive schemes under a certain sufficient richness condition. As is widely recognized, e.g. [14], the principal drawback to this condition is that it applies to a certain vector of signals w(t) appearing inside the time varying feedback loop around the unknown plant. As a result, it is presently impossible to determine a priori whether a given reference input will result in a sufficiently rich w(t) and subsequent parameter error convergence to zero. In this paper, we remedy this deficiency. Specifically, we show that when the reference input (which is the exogenous input to the adaptive system) has as many spectral lines as there are unknown parameters, then the output error $y_P - y_M$ and parameter error converge to zero exponen- tially. We also sketch how prior parameter and plant-model state error bounds can be used along with the methods of [4] to give an estimate of the rate of exponential convergence. y_P will also; since $y_P \rightarrow y_M$, we 'conclude' that the asymptotic closed loop plant transfer function matches the model transfer function at s = $j\nu_1, ..., j\nu_N$. If N is large enough, this implies that the asymptotic closed loop transfer function is precisely the model transfer function so that the parameter error converges to zero. It is the pur- We agree with the authors of [12] that the issue of parameter convergence is important, not just for its own sake, but as a first step in tackling important questions like robustness to unmodelled dynamics, slowly time-varying plants, etc. that have recently been raised (e.g. [9,10]). The organization of the paper is as follows: Section 2 briefly describes the model reference adaptive system; in Section 3, we state and prove our main result for the relative degree 1 case; in Section 4, we discuss the extension to the higher relative degree cases. Section 5 contains concluding remarks. ^{*} Research supported in part by the Air Force Office of Scientific Research (AFSC) United States Air Force Contract F49620-79-C-0178. S. Boyd gratefully acknowledges the support of the Fannie and John Hertz Foundation. ### 2. The model reference adaptive system To fix notation, we briefly review the model reference adaptive system of Narendra, Valavani, et al. [1,2]. The single-input single-output plant is assumed to be represented by a transfer function $$\hat{W}_{P}(s) = k_{P} \frac{\hat{n}_{P}(s)}{\hat{d}_{P}(s)} \tag{2.1}$$ where $\hat{n}_{P}(s)$, $\hat{d}_{P}(s)$ are relatively prime monic polynomials of degree m, n respectively and k_{P} is a scalar. The following are assumed known about the plant transfer function: - (A1) The degree of the polynomial \hat{d}_{P} , i.e. n, is known. - (A2) The relative degree of \hat{W}_{P} , i.e. (n-m), is known. - (A3) The sign of k_P is known (say, + without loss of generality). - (A4) The transfer function \hat{W}_{P} is assumed to be minimum phase, i.e. \hat{n}_{P} is Hurwitz. **Remark.** (A1) may be replaced by the weaker assumption that an upper bound on the degree of \hat{d}_P is known. We use (A1) here for simplicity. The objective of adaptive control is to build a dynamic compensator so that the plant output asymptotically matches that of a stable reference model $\hat{W}_{M}(s)$ with input r(t), output $y_{M}(t)$ and transfer function $$\hat{W}_{M}(s) = k_{M} \frac{\hat{n}_{M}(s)}{\hat{d}_{M}(s)} \tag{2.2}$$ Fig. 1. The adaptive system for the relative degree 1 case. where $\hat{n}_{\rm M}$, $\hat{d}_{\rm M}$ are monic polynomials of degree m^* , n^* respectively, $k_{\rm M} > 0$. Since our interest in this paper is in parameter convergence we will assume $n^* = n$, $m^* = m$. We do not, however, need $\hat{n}_{\rm M}$ and $\hat{d}_{\rm M}$ to be relatively prime. If we denote the input and output of the plant u(t) and $y_{\rm p}(t)$ respectively, the objective may be stated as: choose u(t) such that $y_{\rm p}(t) - y_{\rm M}(t) \to 0$ as $t \to \infty$. ### 2.1. Relative degree 1 case By suitable prefiltering, if necessary, we may assume that the model $\hat{W}_{M}(s)$ is strictly positive real. The adaptive scheme in this case is as shown in Figure 1. The dynamic compensation blocks F_1 , F_2 are identical one input, (n-1) output systems, each with transfer function $$(sI - \Lambda)^{-1}b; \quad \Lambda \in \mathbb{R}^{(n-1)\times(n-1)}, b \in \mathbb{R}^{(n-1)},$$ where Λ is chosen so that the eigenvalues of Λ are the zeros of $\hat{n}_{\rm M}$. We assume that the pair (Λ, b) is in controllable canonical form so that $$(sI - \Lambda)^{-1}b = \frac{1}{\hat{n}_{\mathsf{M}}(s)} \begin{bmatrix} 1\\ s\\ \vdots\\ s^{n-2} \end{bmatrix}. \tag{2.3}$$ The adaptive gains $c \in \mathbb{R}^{n-1}$ are in the pre-compensator block for the purpose of cancelling the plant zeros and replacing them by the model zeros, $d \in \mathbb{R}^{n-1}$, $d_0 \in \mathbb{R}$ in the feedback compensator for the purpose of assigning the plant poles. The adaptive gain c_0 adjusts the overall plant gain. Thus, the vector of 2n adjustable parameters denoted θ is $$\boldsymbol{\theta}^{\mathsf{T}} = \left[c_0, c^{\mathsf{T}}, d_0, d^{\mathsf{T}} \right].$$ If the signal vector $w \in \mathbb{R}^{2n}$ is defined by $$w^{T} = \left[r, v^{(1)T}, y_{P}, v^{(2)T} \right], \tag{2.4}$$ we see that the input to the plant u is given by $$u = \theta^{\mathrm{T}} w. \tag{2.5}$$ It may be verified that there exists a unique constant $\theta^* \in \mathbb{R}^{2n}$ such that when $\theta = \theta^*$, the transfer function of the plant plus controller equals $\hat{W}_{M}(s)$. Further, it has been shown that under the update law $$\dot{\theta} = -e_1 w \tag{2.6}$$ then $\lim_{t\to\infty}e_1(t)=0$ provided r(t) is bounded. Further, all signals in the loop, viz. u(t), $v^{(1)}(t)$, $v^{(2)}(t)$, $y_{\rm P}(t)$, $y_{\rm M}(t)$ are bounded. Define the parameter error $\phi=\theta-\theta^*$. Then we have from [1] that $$\phi \in L^2 \cap L^\infty$$, $\dot{\phi} \in L^\infty$ and $\dot{\phi} \to 0$ as $t \to \infty$. However, we cannot say anything as yet about the convergence of $\phi(t)$ and hence of $\theta(t)$. # 2.2. Relative degree 2 case In this case $\hat{W}_{\rm M}$ cannot be chosen positive real; however, we may assume (using suitable prefiltering, if necessary) that there is $L(s)=(s+\delta)$, with $\delta>0$, such that $\hat{W}_{\rm M}\hat{L}$ is positive real. The scheme of Figure 1 is modified (see [1]) ¹ by replacing each of the gains θ_i , viz. c_0 , d_0 , c, d by the gain $\hat{L}\theta_i\hat{L}^{-1}$ which in turn are given by $$\hat{L}\theta_i\hat{L}^{-1}=\theta_i+\dot{\theta}_i\hat{L}^{-1},\quad i=1,\ldots,2n.$$ We now define the signal vector $$\zeta^{\mathsf{T}}(t) = \left[\hat{L}^{-1}r, \hat{L}^{-1}v^{(1)}, \hat{L}^{-1}y_{\mathsf{P}}, \hat{L}^{-1}v^{(2)} \right]. \tag{2.7}$$ Then $$\dot{\theta} = -e_1 \zeta \tag{2.8}$$ yields that $e_1(t) \to 0$ as $t \to \infty$ provided r(t) is bounded. ## 2.3. The case of relative degree ≥ 3 As in Section 2.2, pick a stable Hurwitz polynomial \hat{L} so that $\hat{L}\hat{W}_{\rm M}$ is positive real. The trick ¹ Λ is now chosen to be exponentially stable, with the zeros of \hat{n}_{M} a subset of the eigenvalues of Λ . Fig. 2. Schematic of the adaptive system when the relative degree $\geqslant 3$. used in Section 2.2, namely, to replace each θ_i by $\hat{L}\theta_i\hat{L}^{-1}$, is no longer possible since $\hat{L}\theta_i\hat{L}^{-1}$ depends on second and (possibly higher) derivatives of θ_i . To obtain a positive real error equation we retain the original configuration of Figure 1, and augment the model output by $$\hat{W}_{\mathsf{M}}\hat{L}[\boldsymbol{\theta}^{\mathsf{T}}\hat{L}^{-1} - \hat{L}^{-1}\boldsymbol{\theta}^{\mathsf{T}}]w$$ as shown in Figure 2. In addition to obtain $\dot{\phi} \in L^2$ and thereby prove stability of the adaptive scheme, we add an additional quadratic term to y_a to get the total augmented model output y_a $$y_{a} = \hat{W}_{M} \hat{L} \{ [\theta^{T} \hat{L}^{-1} - \hat{L}^{-1} \theta^{T}] w + \alpha \zeta^{T} \zeta e_{1} \}$$ (2.9) where $\alpha > 0$ and ζ is defined in (2.7). The update law $$\dot{\theta} = -e_1 \zeta \tag{2.8}$$ yields that as $t \to \infty$, $e_1(t) \to 0$, $y_a(t) \to 0$ so that $y_M(t) \to y_P(t)$. As before, the parameter error ϕ satisfies $$\phi \in L^2 \cap L^{\infty}$$, $\dot{\phi} \in L^{\infty}$ and $\dot{\phi} \to 0$ as $t \to \infty$. Again, nothing can be said about the convergence of $\phi(t)$. # 3. Spectral lines and sufficient richness in the relative degree 1 case Consider the adaptive system of Section 2.1 for the case of relative degree 1. We noted that the control law of (2.5) with the adaptive law of (2.6) yield that $$\lim_{t \to \infty} e_1(t) = 0$$ provided r(t) is bounded. Without additional conditions, however, we cannot guarantee $$\lim_{t\to\infty} \theta(t) = \theta^*$$ (or in fact that θ converges at all). It has been shown by Morgan and Narendra [3], Anderson [4], Kreisselmeier [5] that $e_1(t) \to 0$, $\theta(t) \to \theta^*$ exponentially iff the signal vector w(t) is sufficiently rich, in the following sense: There is $\delta > 0$, $\alpha > 0$ such that for all $s \in \mathbb{R}_+$ $$\int_{s}^{s+\delta} w(t) w^{\mathsf{T}}(t) \, \mathrm{d}t \ge \alpha I. \tag{3.1}$$ Recall from the definition of w(t) in (2.5) that it contains signals $v^{(1)}(t)$, $v^{(2)}(t)$, $y_{\rm P}(t)$ generated inside the time varying feedback loop around the unknown plant. Conditions on the reference input r(t) required for (3.1) to hold are, to our knowledge, so far unknown. In the remainder of this section we will show that if r(t) has 2n spectral lines (in a sense that will be made precise), then we have exponential convergence of $e_1(t)$ to 0 and $\theta(t)$ to θ^* . The proof is in two steps. Step 1 consists of transcribing the condition (3.1) into an analogous condition for the model, which is a linear *time-invariant* system. Step 2 consists of showing that the condition analogous to (3.1) for the model is obtained when the reference signal r(t) has 2n spectral lines. We now discuss these steps in detail: For Step 1, redraw Figure 1 as shown in Figure 3 with the model represented (in non-minimal form) as the plant with dynamic compensator and $\theta = \theta^*$. The signal vector $w_M \in \mathbb{R}^{2n}$ in the model-loop is given by $$w_{\mathbf{M}}^{\mathsf{T}} = \left[r, v_{\mathbf{M}}^{(1)}, y_{\mathbf{M}}, v_{\mathbf{M}}^{(2)} \right].$$ We have that $w_M \to w$ as $t \to \infty$. Hence, it seems reasonable to expect that if w_M is sufficiently rich then so is w. The foregoing is indeed true if \dot{w} and \dot{w}_M are bounded. However, we will use no supplementary assumptions on w, w_M but rather the conclusion from Narendra and Valavani [1] that $w(\cdot) - w_M(\cdot) \in L^2$. Further, it follows from their proof (specifically, Equations 16, 17, 18 of [1]) that $$\|w(\cdot) - w_{M}(\cdot)\|_{2}$$ $$\leq K_{0}(\|\theta(0) - \theta^{*}\| + \|x_{M}(0) - x_{P}(0)\| + \|v^{(1)}(0) - v_{M}^{(1)}(0)\| + \|v^{(2)}(0) - v_{M}^{(2)}(0)\|)$$ (3.2) where x_M , x_P are the state variables in minimal representations for the plant in the model loop, plant loop respectively. Hence, from prior bounds on the parameter error, and initial state errors a bound on the L_2 norm of $w(\cdot) - w_M(\cdot)$ is obtained. Further, from [1], it follows that there is a K_2 such that $$||w(t)||, ||w_{M}(t)|| \le K_{2} \quad \forall t.$$ (3.3) The bound K_2 depends as before on $$\|\theta(0) - \theta^*\|, \|x_M(0) - x_P(0)\|,$$ $$||v^{(1)}(0) - v_{\mathbf{M}}^{(1)}(0)||, ||v^{(2)}(0) - v_{\mathbf{M}}^{(2)}(0)||.$$ We now have: Theorem 3.1. Suppose $$||w(t)||, ||w_{M}(t)|| \leq K_{2}$$ and $$||w(\cdot)-w_{M}(\cdot)||_{2}=K_{1}<\infty.$$ Then, w(t) is sufficiently rich $\Leftrightarrow w_M(t)$ is sufficiently rich. **Proof.** The argument is symmetric between w and w_M . Hence, we only show (\Rightarrow) . w sufficiently rich implies that $\exists \alpha, \delta > 0$ such that $\forall s \in \mathbb{R}_+, z \in \mathbb{R}^{2n}$ $$z^{\mathsf{T}} \left[\int_{s}^{s+\delta} w w^{\mathsf{T}} \, \mathrm{d}t \right] z \geqslant \alpha z^{\mathsf{T}} z. \tag{3.4}$$ Iterating on (3.4) p times we get that $\forall p \in \mathbb{Z}_+$ $$z^{\mathsf{T}} \left[\int_{s}^{s+p\delta} w w^{\mathsf{T}} \, \mathrm{d}t \right] z = \int_{s}^{s+p\delta} (z^{\mathsf{T}} w)^{2} \, \mathrm{d}t$$ $$\ge \alpha p z^{\mathsf{T}} z. \tag{3.5}$$ Now, note that $$(z^{\mathrm{T}}w)^{2} - (z^{\mathrm{T}}w_{\mathrm{M}})^{2} = z^{\mathrm{T}}(w - w_{\mathrm{M}})z^{\mathrm{T}}(w + w_{\mathrm{M}})$$ $\leq z^{\mathrm{T}}z^{2}K_{2}||w - w_{\mathrm{M}}||.$ Fig. 3. The adaptive system of Figure 1 with a new representation for the model. Hence $$\int_{s}^{s+p\delta} (z^{\mathsf{T}}w)^{2} - (z^{\mathsf{T}}w_{\mathsf{M}})^{2} dt$$ $$\leq z^{\mathsf{T}}z^{2}K_{2}\int_{s}^{s+p\delta} ||w - w_{\mathsf{M}}|| dt.$$ (3.6) But, by Cauchy-Schwarz $$\int_{s}^{s+p\delta} ||w - w_{M}|| dt \le (p\delta)^{1/2} \int_{s}^{s+p\delta} ||w - w_{M}||^{2} dt$$ $$\le K_{1} (p\delta)^{1/2}. \tag{3.7}$$ Using (3.7) in (3.6), and (3.4), we obtain that $\forall p \in \mathbb{Z}_+$ $$z^{\mathsf{T}} \left[\int_{s}^{s+p\delta} w_{\mathsf{M}} w_{\mathsf{M}}^{\mathsf{T}} \, \mathrm{d}t \right] z \geqslant z^{\mathsf{T}} z \left(\alpha p - 2 K_{2} K_{1} (p\delta)^{1/2} \right).$$ Choose p_0 sufficiently large so that $$\overline{\alpha} := \alpha p_0 - 2K_2K_1(p_0\delta)^{1/2} > 0$$ and define $\bar{\delta} = p_0 \delta$. Then we have that $\forall s \in \mathbb{R}_+$ $$\left[\int_{s}^{s+\delta} w_{\mathsf{M}} w_{\mathsf{M}}^{\mathsf{T}} \, \mathrm{d}t \right] \geqslant \bar{\alpha} I. \tag{3.8}$$ Thus w_{M} is sufficiently rich. \square **Remark.** We have shown that we have exponential convergence of parameter error and $e_1(t)$ provided that w_M is sufficiently rich (i.e. (3.8) holds). This completes Step 1. Step 2. We now give conditions on r(t) so that $w_M(t)$ is sufficiently rich, using the classical concept of a spectral line (see Wiener [6]). **Definition 3.2.** A function $u(t): \mathbb{R}_+ \to \mathbb{R}^n$ is said to have a spectral line at frequency ν of amplitude $\hat{u}(\nu) \in \mathbb{C}^n$ iff $$\frac{1}{T} \int_{s}^{s+T} u(t) e^{-j\nu t} dt$$ (3.9) converges to $\hat{u}(\nu)$ as $T \to \infty$, uniformly in s. When $\hat{u}(\nu) \neq 0$ we will say that u has a spectral line at ν . **Remark.** u does *not* have to be almost periodic to have a spectral line at frequency v_0 ; for example (3.9) need not converge for $v \neq v_0$. The following lemma is immediate: 1) **Lemma 3.3.** Let u(t), y(t) be the input and output, respectively, of a stable linear time-invariant system with transfer function $\hat{L}(s)$ (and arbitrary initial condition). If u has a spectral line at frequency v then so does y, with amplitude $$\hat{y}(\nu) = \hat{L}(j\nu)\hat{u}(\nu). \tag{3.10}$$ **Remark.** Since the initial condition contributes a decaying exponential to y(t) it does not appear in (3.10). $\hat{y}(v)$ in (3.10) may be zero if $\hat{L}(s)$ has a zero on the imaginary axis. The second lemma is key to our main result: **Lemma 3.4.** Let $x(t) \in \mathbb{R}^N$ have spectral lines at frequencies $\nu_1, \nu_2, \dots, \nu_N$. Further, let $$\{\hat{x}(\nu_1), \hat{x}(\nu_2), \ldots, \hat{x}(\nu_N)\}$$ be linearly independent in \mathbb{C}^N . Then, x(t) is sufficiently rich, i.e. $\exists \alpha, \delta > 0$ such that $\forall s \in \mathbb{R}_+$ $$\int_{s}^{s+\delta} x x^{\mathsf{T}} \, \mathrm{d}t \geqslant \alpha I. \tag{3.11}$$ **Proof.** Define the $N \times N$ matrix $X(s, \delta)$ by $$X(s, \delta) := \frac{1}{\delta} \int_{s}^{s+\delta} \begin{bmatrix} e^{-j\nu_1 t} \\ \vdots \\ e^{-j\nu_N t} \end{bmatrix} x^{\mathsf{T}}(t) \, \mathrm{d}t$$ and the $N \times N$ matrix X_0 which is the (uniform in s) limit of $X(s, \delta)$ as $\delta \to \infty$, $$X_0 \coloneqq \begin{bmatrix} \hat{x}^{\mathsf{T}}(\nu_1) \\ \vdots \\ \hat{x}^{\mathsf{T}}(\nu_N) \end{bmatrix}.$$ By hypothesis X_0 is non-singular. Hence for δ sufficiently large $X(s, \delta)$ is invertible and $$||X(s,\delta)^{-1}|| \leq 2||X_0^{-1}||$$ for $\delta \geqslant \delta^*$ and all s. Now for $z \in \mathbb{R}^N$ with ||z|| = 1, and any $\nu \in \mathbb{R}$ we have $$\frac{1}{\delta} \int_{s}^{s+\delta} (x^{\mathsf{T}}z)^{2} dt = \frac{1}{\delta} \int_{s}^{s+\delta} |x^{\mathsf{T}}z| e^{-j\nu t}|^{2} dt$$ $$\geqslant \left| \frac{1}{\delta} \int_{s}^{s+\delta} x^{\mathsf{T}}z e^{-j\nu t} dt \right|^{2} \qquad (3.12)$$ (by Jensen's inequality). Using (3.12) for $\nu = \nu_1$, ν_2, \dots, ν_N we have $$\frac{1}{\delta} \int_{s}^{s+\delta} (x^{\mathsf{T}}z)^{2} dt \ge \frac{1}{N} \sum_{k=1}^{N} \left| \frac{1}{\delta} \int_{s}^{s+\delta} x^{\mathsf{T}}z \, \mathrm{e}^{-\mathrm{j}\nu_{k}t} \, \mathrm{d}t \right|^{2}$$ $$= \frac{1}{N} \|X(s,\delta)z\|^{2}$$ $$\ge \frac{1}{N} \|X(s,\delta)^{-1}\|^{-2} \quad \text{for } \delta \ge \delta.$$ $$\ge \frac{1}{4N} \|X_{0}^{-1}\|^{-2}.$$ Equation (3.11) now holds with $\delta = \delta^*$ and $$\alpha = \frac{1}{4N} ||X_0^{-1}||^{-2} > 0. \quad \Box$$ We now apply Lemmas (3.3), (3.4) to prove the main result of this section. **Theorem 3.5.** Suppose r(t) has spectral lines at v_1 , v_2, \ldots, v_{2n} . Then $w_M(t)$ is sufficiently rich. **Remark.** Once we have shown $w_M(t)$ is sufficiently rich, Theorem 3.1 guarantees that w(t) is also sufficiently rich which in turn guarantees exponential convergence of $e_1(t)$ to 0 and $\theta(t)$ to θ^* . Proof. Recall that $$w_{\mathbf{M}}^{\mathsf{T}}(t) = [r, v_{\mathbf{M}}^{(1)\mathsf{T}}, y_{\mathbf{M}}, v_{\mathbf{M}}^{(2)\mathsf{T}}].$$ We derive the transfer function from r(t) to $w_{\rm M}^{\rm T}(t)$; using (2.3) $$\hat{Q}^{T}(s) = \left[1, \frac{\hat{W}_{M}}{\hat{W}_{P}} \frac{1}{\hat{n}_{M}}, \frac{\hat{W}_{M}}{\hat{W}_{P}} \frac{s}{\hat{n}_{M}}, \dots, \frac{\hat{W}_{M}}{\hat{W}_{P}} \frac{s^{n-2}}{\hat{n}_{M}}, \frac{\hat{W}_{M}s}{\hat{n}_{M}}, \dots, \frac{\hat{W}_{M}s^{n-2}}{\hat{n}_{M}}\right]$$ $$= \frac{k_{M}}{k_{P}\hat{n}_{P}\hat{d}_{M}} \left[\frac{k_{P}\hat{n}_{P}\hat{d}_{M}}{k_{M}}, \hat{d}_{P}, \dots, \hat{d}_{P}s^{n-2}, k_{P}\hat{n}_{P}\hat{n}_{M}, k_{P}\hat{n}_{P}, \dots, k_{P}\hat{n}_{P}s^{n-2}\right]. (3.13)$$ Since the plant is minimum phase and the model is stable the transfer function $\hat{Q}(s)$ in (3.31) is stable. Neglecting the initial conditions (which do not, anyhow, contribute to the spectral lines of $w_{M}(t)$) we have $$w_{\mathsf{M}}^{\mathsf{T}} = \hat{Q}^{\mathsf{T}} r(t).$$ Now, the (n+1)th entry of \hat{Q} has numerator polynomial $\hat{n}_{P}\hat{n}_{M}$ with \hat{n}_{M} of degree (n-1). Further the first entry of \hat{Q} has numerator polynomial $\hat{n}_{P}\hat{d}_{M}$ with \hat{d}_{M} of degree n. Compare these terms with the last (n-1) entries of \hat{Q} , viz. $\hat{n}_{P},...$ $\hat{n}_{p}s^{n-1}$. Using constant row operations then we $$w_{M} = T\overline{w} = T \frac{1}{\hat{n}_{P}\hat{d}_{M}} \begin{bmatrix} \hat{d}_{P} \\ \vdots \\ \hat{d}_{P}s^{n-2} \\ \hat{n}_{P} \\ \vdots \\ \hat{n}_{P}s^{n-2} \\ \hat{n}_{P}s^{n-1} \\ \hat{n}_{P}s^{n} \end{bmatrix} r(t)$$ (3.14) for some $T \in \mathbb{R}^{2n \times 2n}$, a non-singular matrix. It follows that w_{M} is sufficiently rich iff \overline{w} \overline{w} is sufficiently rich iff \overline{w} is sufficiently \overline{w} is sufficiently \overline{w} is sufficiently \overline{w} is sufficiently \overline{w} in \overline{w} is sufficiently \overline{w} in \overline{w} is sufficiently \overline{w} in \overline{w} in \overline{w} in \overline{w} in \overline{w} is \overline{w} in $\overline{w$ for some $T \in \mathbb{R}^{2n \times 2n}$, a non-singular matrix. It follows that $w_{\rm M}$ is sufficiently rich iff \overline{w} is sufficiently rich. Now by Lemma 3.3 \overline{w} has spectral lines at ν_1, \dots, ν_{2n} of amplitude $$\frac{1}{\hat{n}_{P}(j\nu_{i})\hat{d}_{M}(j\nu_{i})} \begin{bmatrix} \hat{d}_{P}(j\nu_{i}) \\ \vdots \\ \hat{d}_{P}(j\nu_{i})(j\nu_{i})^{n-2} \\ \hat{n}_{P}(j\nu_{i}) \\ \vdots \\ \hat{n}_{P}(j\nu_{i})(j\nu_{i})^{n} \end{bmatrix}, \quad i = 1, \dots, 2n.$$ By Lemma 3.4 we need only show that these vectors are linearly independent. If not, there is a row vector $[\beta: \gamma]$ with $\beta^T \in \mathbb{R}^{n-1}$, $\gamma^T \in \mathbb{R}^{n+1}$ such $$[\beta:\gamma] \begin{bmatrix} \hat{d}_{P}(j\nu_{1}) & \cdots & \hat{d}_{P}(j\nu_{2m}) \\ \vdots & & \vdots \\ \hat{d}_{P}(j\nu_{1})(j\nu_{1})^{n-2} & & \hat{d}_{P}(j\nu_{2n})(j\nu_{2n})^{n-2} \\ \hat{n}_{P}(j\nu_{1}) & & \hat{n}_{P}(j\nu_{2n}) \\ \vdots & & \vdots \\ \hat{n}_{P}(j\nu_{1})(j\nu_{1})^{n} & \cdots & \hat{n}_{P}(j\nu_{2n})(j\nu_{2n})^{n} \end{bmatrix} = 0.$$ (3.15) Defining $$\hat{\beta}(s) = \beta_1 + \beta_2 s + \cdots + \beta_{n-1} s^{n-2}$$ and $$\hat{\gamma}(s) = \gamma_1 + \gamma_2 s + \cdots + \gamma_{n+1} s^n,$$ we may write (3.15) as $$\hat{\beta}(s)\hat{d}_{P}(s) + \hat{\gamma}(s)\hat{n}_{P}(s) = 0$$ at $s = j\nu_{1},...,j\nu_{2n}$. (3.16) The polynomial in (3.16) has degree (2n-1) so we conclude that it is identically 0 and $$\hat{\beta}\hat{d}_{\rm P} \equiv -\hat{\gamma}\hat{n}_{\rm P}.$$ But, since \hat{n}_P and \hat{d}_P are coprime (by assumption) the zeros of $\hat{\beta}$ must include those of \hat{n}_P . But this is impossible since $\hat{\beta}$ has degree n-2 and \hat{n}_P has degree (n-1). This establishes the contradiction. Thus \overline{w} and hence w_M are sufficiently rich. \square Comments. (1) We say that r(t) is persistently exciting at frequencies ν_1, \ldots, ν_{2n} if it has spectral lines at these frequencies. We have shown that when the reference input is persistently exciting at as many frequencies as there are unknown parameters, then w(t) is sufficiently rich resulting in exponential parameter and error convergence. - (2) r(t) does not have to be almost periodic [7] to satisfy the conditions of Theorem 3.5. It need only have spectral lines at 2n frequencies. Further the *strength* of the spectral lines figures only in an estimate of the *rate* of exponential convergence (which may be derived using the techniques of [4]). In particular a low intensity persistently exciting signal (i.e. having 2n spectral lines) may be added to the r(t) that needs to be tracked in the model to guarantee parameter convergence see also Remark 6 below. - (3) It is not widely appreciated in the literature that parameter convergence may not occur (even to an incorrect value), unless the signal w(t) is sufficiently rich. If it were known that $\lim_{t\to\infty}\theta(t)$ exists, a more elementary proof could be given though the convergence proven need not be either exponential or uniform. - (4) The hypothesis of the theorem can be weakened. For instance, we do not need r(t) to have spectral lines at ν_1, \ldots, ν_{2n} ; it is adequate that $$\lim \inf \left| \frac{1}{T} \int_{s}^{s+T} r(t) e^{-j\nu_k t} dt \right| > 0 \quad \text{uniformly in } s$$ for k = 1, ..., 2n. (5) Most periodic functions (specifically, those having at least 2n non-zero Fourier coefficients) for r(t) yield exponential parameter convergence. (6) Our estimate for the rate of convergence of the parameter error given the magnitude of the spectral line would (in principle) proceed as follows: use the estimates of Lemma 3.4 to obtain the α , δ in the definition of sufficient richness for $w_{\rm M}$. Then, use the prior bounds on parameter and initial error to bound the L^2 difference between w and $w_{\rm M}$, and obtain using Theorem 3.1 the α , δ in the definition of sufficient richness for w. From here, the techniques of [4] may be used to obtain a (conservative!) rate of convergence estimate. # 4. Parameter convergence when the relative degree ≥ 2 Consider first the relative degree 2 case of Section 2.2. In this case, the sufficient richness condition for exponential parameter and error convergence is on the signal vector $\zeta(t)$ of (2.7), i.e. $\exists \alpha$, $\delta > 0$, $\forall s \in \mathbb{R}$ $$\int_{s}^{s+\delta} \zeta \zeta^{\mathsf{T}} \, \mathrm{d}t \geqslant \alpha I. \tag{4.1}$$ Even though the adaptive scheme has changed, redraw the *model* exactly as in Figure 3. Now define from the $w_{\rm M}$ of the model the signal vector $$\zeta_{\mathbf{M}}^{\mathbf{T}} = \left[\hat{L}^{-1} r, \hat{L}^{-1} v_{\mathbf{M}}^{(1)\mathsf{T}}, \hat{L}^{-1} y_{\mathbf{M}}, \hat{L}_{\mathbf{M}}^{-1} v_{\mathbf{M}}^{(2)\mathsf{T}} \right], \tag{4.2}$$ i.e. $\zeta_{\rm M}$ is obtained by filtering each component of $w_{\rm M}$ through the stable system with transfer function \hat{L}^{-1} . Now, if r(t) has 2n spectral lines we have by Theorem 3.5 that $\hat{w}_{\rm M}(\nu_1)$, $\hat{w}_{\rm M}(\nu_2)$,..., $\hat{w}_{\rm M}(\nu_{2n})$ are linearly independent. From the definition of $\zeta_{\rm M}$ in (4.2) and the fact that $\hat{L}^{-1}(s)$ is stable, it follows that $$\hat{\xi}_{\mathbf{M}}(\nu_i) = \frac{1}{\hat{L}(j\nu_i)} \hat{w}_{\mathbf{M}}(\nu_i), \quad i = 1, \dots, 2n,$$ are linearly independent. Hence ζ_M is sufficiently rich. Further, the stability proof [1] yields that $\zeta(\cdot) - \zeta_{M}(\cdot) \in L^{2}$, so that ζ is sufficiently rich thereby guaranteeing exponential parameter convergence. Now consider the scheme of Figure 2 for the relative degree ≥ 3 case. Redraw the model as in Figure 3 and define ζ_M as in (4.2) above. The same argument, as above, yields that when r has 2n spectral lines then ζ_M is sufficiently rich. Further since (see [2] for the proof) $$w(\cdot) - w_{\mathbf{M}}(\cdot) \in L^2$$ and $\hat{L}(s)$ is stable, it follows that $$\zeta(\cdot) - \zeta_{\mathrm{M}}(\cdot) \in L^2$$ so that ζ is sufficiently rich as well. This guarantees parameter error convergence. Thus, we see that for each of the model Reference Adaptive Schemes of [1,2] it follows that r(t) has 2n spectral lines \Rightarrow exponential parameter convergence. Further, given prior bounds on the parameters and plant states, an estimate of the rate of convergence can be given. ### 5. Concluding remarks We have shown that continuous time MRAS systems exhibit parameter convergence when the reference input r(t) has 2n spectral lines. The same result also holds for the discrete time algorithm of Narendra and Lin [11] as well, with the obvious modification in the definition of spectral lines for discrete-time signals. It also applies to other adaptive algorithms such as Algorithm SISO I of [15]. For this algorithm conditions for parameter convergence have also appeared in [14]. It can be shown that our more explicit conditions, namely that the reference input contains sufficiently many spectral lines, imply those of [14]. Further, we feel that the machinery of generalized harmonic analysis will be useful in other problems in adaptive control as well, indeed it is well suited to the analysis of asymptotically linear time invariant systems. We conclude by proving the following interesting proposition: **Proposition 5.1.** Let $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ be a controllable pair and let the input u to the system $$\dot{x} = Ax + bu$$ have n spectral lines. Then, if A is exponentially stable, x is sufficiently rich. **Proof.** By suitable change of coordinates we may assume that (A, b) are in controllable canonical form so that the transfer function from u to x is $$\frac{1}{\hat{p}(s)} \begin{bmatrix} 1 \\ s \\ \vdots \\ s^{n-1} \end{bmatrix} \quad \text{with } \hat{p}(s) = \det(sI - A).$$ Since A is exponentially stable, so is this transfer function. If u has spectral lines at ν_1, \ldots, ν_n then so does x. The spectral amplitudes are $$\hat{x}(\nu_1) = \frac{\hat{u}(\nu_i)}{\hat{p}(j\nu_i)} \begin{bmatrix} 1 \\ \vdots \\ (j\nu_i)^{n-1} \end{bmatrix}, \quad i = 1, \dots, n.$$ But the $\hat{x}(v_i)$ are linearly independent since $$\det\begin{bmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ (j\nu_1)^{n-1} & \cdots & (j\nu_n)^{n-1} \end{bmatrix} = \pm \prod_{i < j} (j\nu_i - j\nu_j)$$ By Lemma 3.4, then, x is sufficiently rich. \Box . ### Acknowledgement We would like to thank Dr. Lena Valavani and Professor Charles Desoer for several useful discussions. This research was supported in part by the Air Force Office of Scientific Research (AFSC) United States Air Force Contract F49629-79-C-0178. #### References - K.S. Narendra and L.S. Valavani, Stable adaptive controller design Direct control, *IEEE Trans. Automat. Control* 23 (1978) 570-583. - [2] K.S. Narendra, Y-M. Lin and L.S. Valavani, Stable adaptive controller design, Part II: Proof of stability, IEEE Trans. Automat. Control 25 (1980) 440-448. - [3] A.P. Morgan and K.S. Narendra, On the uniform asymptotic stability of certain linear non-autonomous differential equations, SIAM J. Control Optim. 15 (1977) 5-24. - [4] B.D.O. Anderson, Exponential stability of linear equations arising in adaptive identification, IEEE Trans. Automat. Control 22 (1977) 83-88. - [5] G. Kreisselmeier, Adaptive observers with exponential rate of convergence, *IEEE Trans. Automat. Control* 22 (1977) 2-9. - [6] N. Wiener, Generalized harmonic analysis, Acta Mathematica 55 (1930) 117-258. - [7] C. Corduneanu, Almost Periodic Functions (Wiley-Interscience, New York, 1968). - [8] A.S. Morse, Global stability of parameter-adaptive control systems, *IEEE Trans. Automat. Control* 25 (1980) 433-440. - [9] C.E. Rohrs, Adaptive control in the presence of unmodelled dynamics, Ph.D. Thesis, MIT, Nov. 1982, also L.I.D.S. report No. TH-1254. - [10] P.A. Ioannou, Robustness of model reference adaptive schemes with respect to modelling errors, Ph.D. Thesis, Univ. of Illinois, Urbana-Champaign, August 1982, also D.C. Report No. 53. - [11] K.S. Narendra and Y.-H. Lin, Stable discrete adaptive control, *IEEE Trans. Automat. Control* 25 (1980) 456-461. - [12] B.D.O. Anderson and R.M. Johnstone, Adaptive systems and time-varying plants, *Internat. J. Control* 37 (1983) 367-377 - [13] J. S-C. Yuan and W.M. Wonham, Probing signals for model reference identification, *IEEE Trans. Automat. Con*trol 22 (1977) 530-538. - [14] B.D.O. Anderson and C.R. Johnson, Exponential convergence of adaptive identification and control algorithms, Automatica 18 (1982) 1-13. - [15] G.C. Goodwin, P.J. Ramadge and P.E. Caines, Discrete time multivariable adaptive control, *IEEE Trans. Automat.* Control 25 (1980) 449-456.