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It is well known that the parameter error as well as the
model-plant mismatch error in a model reference adaptive
scheme tends exponentially to zero iff a certain sufficient rich-
ness condition holds for signals inside the time-varying plant
control loop. In this paper we give conditions on the reference
signal (the exogenous input to the adaptive loop) — namely,
that it have as many spectral lines as there are unknown
parameters, in order to guarantee parameter convergence.
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1. Problem statement

In recent work [1,2,8] on continuous time model
reference adaptive systems, it has been shown that
under a suitable choice of adaptive control law the
output of the controlled plant y, asymptotically
tracks the output y,, of a stable reference model,
despite the fact that the parameter error vector
may not convergence to zero (indeed, it may not
converge at all). Consider, for example, the case
when the reference input is a step. In this case it
may be shown that the parameter error vector
converges, not necessarily to zero but to a value
such that the (asymptotic) closed loop plant trans-
fer function matches the model transfer function
at D.C. (0 rad/sec). This observation suggests the
following intuitive argument: assuming that the
parameter vector does converge, the plant loop is
‘asymptotically time invariant’. If the input r has
spectral lines at frequencies »,,...,v,, We expect
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yp will also; since yp, — yy, we ‘conclude’ that the
asymptotic closed loop plant transfer function
matches the model transfer function at s=
J¥1,-..,jvy. If N is large enough, this implies that
the asymptotic closed loop transfer function is
precisely the model transfer function so that the
parameter error converges to zero. It is the pur-
pose of this paper to make this intuitive argument
formal.

Results that have appeared in the literature on
parameter error convergence (notably [3,4,5,13])
have established the uniform asymptotic and
(equivalently) the exponential stability of the
adaptive schemes under a certain sufficient richness
condition. As is widely recognized, e.g. [14], the
principal drawback to this condition is that it
applies to a certain vector of signals w(t) appear-
ing inside the time varying feedback loop around
the unknown plant. As a result, it is presently
impossible to determine a priori whether a given
reference input will result in a sufficiently rich
w(t) and subsequent parameter error convergence
to zero. In this paper, we remedy this deficiency.
Specifically, we show that when the reference input
(which is the exogenous input to the adaptive
system) has as many spectral lines as there are
unknown parameters, then the output error Yp— Ym
and parameter error converge to zero exponen-
tially. We also sketch how prior parameter and
plant-model state error bounds can be used along
with the methods of [4] to give an estimate of the
rate of exponential convergence.

We agree with the authors of [12] that the issue
of parameter convergence is important, not just
for its own sake, but as a first step in tackling
important questions like robustness to unmodelled
dynamics, slowly time-varying plants, etc. that have
recently been raised (e.g. [9,10]).

The organization of the paper is as follows:
Section 2 briefly describes the model reference
adaptive system; in Section 3, we state and prove
our main result for the relative degree 1 case; in
Section 4, we discuss the extension to the higher
relative degree cases. Section 5 contains conclud-
ing remarks.
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2. The model reference adaptive system

To fix notation, we briefly review the model
reference adaptive system of Narendra, Valavani,
et al. [1,2]. The single-input single-output plant is
assumed to be represented by a transfer function

1 _ Ap(s)
W"(S)‘k"a,,(s) (2.1)

where 7p(s), ﬁp(s) are relatively prime monic
polynomials of degree m, n respectively and kpisa
scalar. The following are assumed known about
the plant transfer function:

(A1) The degree of the polynomial 3p, i.e. n,is
known.

(A2) The relative degree of WP, ie. (n—m), is
known.

(A3) The sign of kp is known (say, + without
loss of generality).

(Ad) The transfer function W, is assumed to be
minimum phase, i.e. 7ip is Hurwitz.

Remark. (Al) may be replaced by the weaker
assumption that an upper bound on the degree of
dp is known. We use (A1) here for simplicity.

The objective of adaptive control is to build a
dynamic compensator so that the plant output
asymptotically matches that of a stable reference
model WM(s) with input r(t), output y,,(t) and
transfer function

2 ﬁM(S)

W, (s)=kyy= ‘ (2.2)
MODEL "

s “A e

—-‘ PLANT d

(sI-AT®

F2 l (sI-AT'b
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Fig. 1. The adaptive system for the relative degree 1 case.
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where #,, d,, are monic polynomials of degree
m*, n* respectively, k,, > 0. Since our interest in
this paper is in parameter convergence we will
assume n* = n, m* = m. We do not, however, need
fiy and d, to be relatively prime. If we denote the
input and output of the plant u(¢) and yu(¢)
respectively, the objective may be stated as: choose
u(t) such that yp(¢) —yy(2) >0 as t - .

2.1. Relative degree 1 case

By suitable prefiltering, if necessary, we may
assume that the model WM(S) is strictly positive
real. The adaptive scheme in this case is as shown
in Figure 1.

The dynamic compensation blocks F,, F, are
identical one input, (n — 1) output systems, each
with transfer function

(sI—A)"'b; ARU-DX-1 peRn-b

where A is chosen so that the eigenvalues of A are
the zeros of 7iy,. We assume that the pair (A, b) is
in controllable canonical form so that

1
S
(d—AY%=ﬁi” : (2.3)

The adaptive gains c€ R"~! are in the pre-com-
pensator block for the purpose of cancelling the
plant zeros and replacing them by the model zeros,
d€R""!, d,€R in the feedback compensator for
the purpose of assigning the plant poles. The
adaptive gain ¢, adjusts the overall plant gain.
Thus, the vector of 2n adjustable parameters de-
noted 8 is

07 = [co, ¢, dy, d7].
If the signal vector w € R?" is defined by

wl = [r, o yo, U(Z)T] . (2.4)
we see that the input to the plant u is given by
u=0"w. (2.5)

It may be verified that there exists a unique con-
stant 8* € R2" such that when 6§ = 8*, the transfer
function of the plant plus controller equals WM(S).
Further, it has been shown that under the update
law

b= —ew (2.6)
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then lim,_ _e,(#)=0 provided r(t) is bounded.
Further, all signals in the loop, viz. u(r), vV(¢),
v(t), yp(t), ym(t) are bounded. Define the
parameter error ¢ = @ — §*. Then we have from [1]
that

p€L’NL®, ¢€L*® andp—0ass— oo.
However, we cannot say anything as yet about the
convergence of ¢(¢) and hence of 4(1¢).

2.2. Relative degree 2 case

In this case W, cannot be chosen positive real;
however, we may assume (using suitable prefilter-
ing, if necessary) that there is L(s)=(s+$), with
8 >0, such that WL is positive real. The scheme
of Figure 1 is modified (see [1]) ! by replacing each
of the gains 6, viz. ¢, d,, c, d by the gain £§,1.~!
which in turn are given by

LOL '=9,+0L7", i=1,... 2n.

We now define the signal vector

$T(t) = []:‘lr, ]:_lv(",ﬁ_lyp,f,_lv(z)]. (2.7)
Then

6= —e¢ (2.8)

yields that e,(¢) >0 as t - oo provided r(7) is
bounded.

2.3. The case of relative degree > 3

As in Section 2.2, pick a stable Hurwitz poly-
nomial L so that LW,, is positive real. The trick

' A is now chosen to be exponentially stable, with the zeros of
7y a subset of the eigenvalues of A.

GML-IW 'II\.‘.OYW

-l e

Fig. 2. Schematic of the adaptive system when the relative
degree > 3.
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used in Section 2.2, namely, to replace each 6, by
L6,L7", is no longer possible since L,L~! de-
pends on second and (possibly higher) derivatives
of §,. To obtain a positive real error equation we
retain the original configuration of Figure 1, and
augment the model output by

WyL[0TL~' LT |w

as shown in Figure 2. In addition to obtain ¢ € L2
and thereby prove stability of the adaptive scheme,
we add an additional quadratic term to Y, to get
the total augmented model output Ya

Y. = WyL {[6TL ' =L w+ ey} (2.9)

where a > 0 and ¢ is defined in (2.7). The update
law

b= —e (2.8)

yields that as 1 — oo, e,(1) - 0, ¥.(t) = 0 so that
Ym(t) = yp(2). As before, the parameter error ¢
satisfies

¢€L’NL®, $cL*® and é—>0ast— oo.

Again, nothing can be said about the convergence
of ¢(1).

3. Spectral lines and sufficient richness in the
relative degree 1 case

Consider the adaptive system of Section 2.1 for
the case of relative degree 1. We noted that the
control law of (2.5) with the adaptive law of (2.6)
yield that

lim e, (¢)=0
t— o0

provided r(7) is bounded. Without additional con-
ditions, however, we cannot guarantee
lim 6(¢)=6*

t— o0

(or in fact that @ converges at all). It has been
shown by Morgan and Narendra [3], Anderson [4],
Kreisselmeier [5] that e,(1)— 0, 0(t)—6* ex-
ponentially iff the signal vector w(r) is sufficiently
rich, in the following sense: There is § > 0, a > 0
such that forallseR,

[ 7w(0)wT(e) de > . (3.1)
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Recall from the definition of w(?) in (2.5) that
it contains signals v"(r), v®(1), yp(1) generated
inside the time varying feedback loop around the
unknown plant. Conditions on the reference input
r(t) required for (3.1) to hold are, to our knowl-
edge, so far unknown. In the remainder of this
section we will show that if r(¢) has 2n spectral
lines (in a sense that will be made precise), then we
have exponential convergence of e,(t) to 0 and 8(t)
to 8*. The proof is in two steps.

Step 1 consists of transcribing the condition
(3.1) into an analogous condition for the model,
which is a linear time-invariant system.

Step 2 consists of showing that the condition
analogous to (3.1) for the model is obtained when
the reference signal r(¢) has 2n spectral lines. We
now discuss these steps in detail;

For Step 1, redraw Figure 1 as shown in Figure
3 with the model represented (in non-minimal
form) as the plant with dynamic compensator and
0 = 6*. The signal vector w,, € R2" in the model-
loop is given by
wi = [r, o,y 02].

We have that Wy —> wast — 0. Hence, it seems
reasonable to expect that if wy, is sufficiently rich
then so is w. The foregoing is indeed true if # and
Wy are bounded. However, we will use no supple-
mentary assumptions on w, wy, but rather the
conclusion from Narendra and Valavani [1] that
w(-) —wy(-) € L% Further, it follows from their
proof (specifically, Equations 16, 17, 18 of [1]) that

”W( ) - WM(')Hz
< Ko(116(0) - 6%
Hlxm (0) = xp (0) | + [V (0) — o (0)
+1v®(0) — v (0)11) (32)

where xy, xp are the state variables in minimal
representations for the plant in the model loop,
plant loop respectively. Hence, from prior bounds
on the parameter error, and initial state errors a
bound on the L, norm of w(:)—wy(+) is ob-
tained. Further, from [1], it follows that there is a
K, such that

W wm (Dl < K, Ve, (3.3)
The bound K, depends as before on
19(0) = 6%, [1x (0) = x,(0)1,
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100(0) =0 ()1, 110®(0) — v@(0).
We now have:

Theorem 3.1. Suppose

Iw (M lwy (D)1l < K,

and

Iw(-) =wn ()l =K, < co.

Then, w(t) is sufficiently rich < wy(2) is suffi-
ciently rich.

Proof. The argument is symmetric between w and

wy. Hence, we only show (=). w sufficiently rich
implies that 3 &, § >0 such that Vse R ,, z € R2"

-

z (fjﬁ&swadt]zZasz. (3.4)

L " S
Iterating on (3.4) p times we get that V PEZ,
’— s+pé ] s+pd 2
T T T
z ww dt|z= z'w)" dr
/ f (z'w)

L" s

>apz'z. (3.5)
Now, note that
(z"w)* - (szM)2 =z (w—wy)zT(w+wy)

<zT22K,||w — wyl|.

PLANT

Yu

(sI-A)"d

Fig. 3. The adaptive system of Figure 1 with a new representation

for the model.
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Hence
/ﬁps(sz)z - (szM)2 dt

s+pd
<sz2K2f +p llw — wy|| dt. (3.6)

But, by Cauchy—Schwarz

s s+pd
L = wdide < (p8)' 72 7w = gl i

5

<K1(P8)l/2- 3.7)

Using (3.7) in (3.6), and (3.4), we obtain that
Vpez,

R

Choose p, sufficiently large so that
a=ap, = 2K2K1(P08)1/2 >0

and define § = py8. Then we have that V s € R .

s+&
[f Wl dt];&]. (3.8)

s

Thus wy, is sufficiently rich. O

Remark. We have shown that we have exponential
convergence of parameter error and e,(¢) provided
that w,, is sufficiently rich (i.e. (3.8) holds). This
completes Step 1.

Step 2. We now give conditions on r(t) so that
wy (1) is sufficiently rich, using the classical con-
cept of a spectral line (see Wiener [6]).

Definition 3.2. A function u(¢): R, - R" is said to
have a spectral line at frequency v of amplitude
a(v)e C"iff

= Tu(e) e a (3.9)

converges to #(v) as T — oo, uniformly in s. When
4(v)# 0 we will say that u has a spectral line at v.

Remark. u does not have to be almost periodic to
have a spectral line at frequency vy, for example

(3.9) need not converge for v # V.

The following lemma is immediate:
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Lemma 3.3. Ler u(r), y(t) be the input and output,
respectively, of a stable linear time-invariant system
with transfer function f.(s) (and arbitrary initial
condition). If u has a spectral line at frequency v
then so does y, with amplitude

p()=L(p)a(r).

Remark. Since the initial condition contributes a
decaying exponential to y(t) it does not appear in
(3.10). y(») in (3.10) may be zero if L(s) has a
zero on the imaginary axis.

(3.10)

The second lemma is key to our main result:

Lemma 3.4. Let x(1)eRY have spectral lines at
frequencies vy, v,,...,vy. Further, let

{j(p]),i(vz),...,i(v,\,)}

be linearly independent in CN. Then, x(t) is suffi-
ciently rich, i.e. 3 a, 8 > 0 such that ¥ s € R .

s+ 8 T
f xx dt>al.

5

(3.11)

Proof. Define the N X N matrix X(s, 8) by

e*i"]‘
1 rs+8
X(s, 8)==§f

e‘j"N’

xT(t) dr

and the N X N matrix X, which is the (uniform in
s) limit of X(s, §) as § — oo,

jT(”])
X = :
)ET(VN)

By hypothesis X, is non-singular. Hence for &
sufficiently large X(s, 8) is invertible and

X (s, 8) i< 211 X7

for 8 > 8* and all s. Now for z € R with Izl =1,
and any » € R we have

1 ps+6 s+ 8 .
Ef " (xTz)2 dt=%/ " |xTz e73*"12 d¢
s

2
>

1 rs+5 .
—f xTze " dy
8/,

(3.12)

(by Jensen’s inequality). Using (3.12) for v =v,,
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Vy,..., ¥y We have
1 ps+8 T_\2 1 N 1 .s+8.r v 2
8./5 (xz) dt?Nky;:l 8,/; xTze ds
_l X( 8) 2
*Nll 5, 8)z||
>%HX(s,6)“u‘2 for § > 8.
1 —-1p=2
> X2

Equation (3.11) now holds with § = §* and

1 1
a=25I1X II"*>0. O

We now apply Lemmas (3.3), (3.4) to prove the
main result of this section.

Theorem 3.5. Suppose r(t) has spectral lines at vy,
Vase-s¥y,. Then wy (1) is sufficiently rich.

Remark. Once we have shown wn(?) is sufficiently
rich, Theorem 3.1 guarantees that w(s) is also
sufficiently rich which in turn guarantees exponen-
tial convergence of e,(7) to 0 and 0(¢) to 6*.

Proof. Recall that
wa (1) =[r, 007, yyy, 0@7].

We derive the transfer function from r(t) towy (1);
using (2.3)

0"(s)=[1, o L Bus Wy
We v W, iy We Ny
. WMs Wyys" 2
Wy, = P
M M
K kphpdy - Y mea
= A A k * P ) PS ]
kphpdy M

k,,ﬁpﬁM,k,,ﬁp,...,kpﬁps"—z}. (3.13)

Since the plant is minimum phase and the model is
stable the transfer function Q(s) in (3.31) is stable.
Neglecting the initial conditions (which do not,
anyhow, contribute to the spectral lines of wy (1))
we have

wa = Q'r(1).
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Now, the (n+ 1)th entry of Q has numerator
polynomial 744, with fiy of degree (n — 1). Fur-
ther the first entry of @ has numerator polynomial
fipdy, with dy of degree n. Compare these terms
with the last (n— 1) entries of Q, viz, Ap,...,
Aps"~'. Using constant row operations then we
can write

r(1) (3.14)

for some T e R27Xx2n 4 non-singular matrix. It
follows that wy, is sufficiently rich iff w is suffi-
ciently rich. Now by Lemma 3.3 # has spectral
lines at »,...,»,, of amplitude

aP(.j”,')

_1% aP(.l“':‘)(j":‘)"—z
ﬁp(jlf,)dAM(j”,’) fip(jv,;)

| )" |

"By Lemma 3.4 we need only show that these

vectors are linearly independent. If not, there is a
row vector [B: y] with STe R"! yTe R"*! such
that

( dp (i) doGram) ]

dp(ir)Gr)" dp (2, )G72n)" 7 | _

! IR tip (72, )

B ;’P(jyli(jyl)n ﬁp(jVZn)(jVZn)" J

(3.15)

Defining
B(S)=IB| +Bys+ -

+ Bn—lsn72
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and
V(S)=n+ys+ - LR/ TS LA
we may write (3.15) as ‘

B(S)ap(s) +7(s)rip(s)=0 ats =juvy,...,jvy,.
(3.16)

The polynomial in (3.16) has degree (21 — 1) so we

conclude that it is identically 0 and

Bdp= —7viip.

But, since #p, and d p are coprime (by assumption)
the zeros of B must include those of 7. But this is
impossible since B has degree n — 2 and Aip has

degree (n — 1). This establishes the contradiction.
Thus @ and hence w,, are sufficiently rich. O

Comments. (1) We say that r(¢) is persistently
exciting at frequencies v,,...,v,, if it has spectral
lines at these frequencies. We have shown that
when the reference input is persistently exciting at
as many frequencies as there are unknown param-
eters, then w(r) is sufficiently rich resulting in
exponential parameter and error convergence.

(2) r(t) does not have to be almost periodic [7]
to satisfy the conditions of Theorem 3.5. It need
only have spectral lines at 2 frequencies. Further
the strength of the spectral lines figures only in an
estimate of the rate of exponential convergence
(which may be derived using the techniques of [4]).
In particular a low intensity persistently exciting
signal (i.e. having 2n spectral lines) may be added
to the r(¢) that needs to be tracked in the model to
guarantee parameter convergence — see also Re-
mark 6 below.

(3) It is not widely appreciated in the literature
that parameter convergence may not occur (even
to an incorrect value), unless the signal w(¢) is
sufficiently rich. If it were known that lim,_ 0(¢)
exists, a more elementary proof could be given -
though the convergence proven need not be either
exponential or uniform.

(4) The hypothesis of the theorem can be
weakened. For instance, we do not need r(t) to
have spectral lines at Vi,...,¥,,; it is adequate that

lim inf

1 s+ T .
7,/ r(t) e " dq>0 uniformly in s

fork=1,...,2n.
(5) Most periodic functions (specifically, those
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having at least 2n non-zero Fourier coefficients)
for r(¢) yield exponential paramete: convergence.
(6) Our estimate for the rate of convergence of
the parameter error given the magnitude of the
spectral line would (in principle) proceed as fol-
lows: use the estimates of Lemma 3.4 to obtain the
a, 8 in the definition of sufficient richness for Wy
Then, use the prior bounds on parameter and
initial error to bound the L? difference between w
and wy,, and obtain using Theorem 3.1 the a, § in
the definition of sufficient richness for w. From
here, the techniques of [4] may be used to obtain a
(conservative!) rate of convergence estimate.

4. Parameter convergence when the relative
degree > 2

Consider first the relative degree 2 case of Sec-
tion 2.2. In this case, the sufficient richness condi-
tion for exponential parameter and error conver-
gence is on the signal vector {(¢) of (2.7), i.e. 3 q,
§>0,VseR,

f”g{T dr>al. (4.1)

Even though the adaptive scheme has changed,
redraw the model exactly as in Figure 3. Now
define from the wy, of the model the signal vector

(L= [1:—1’., I:—IU(I\IA)T’ l‘:—lyM’ 11{410(:31”], (4.2)

Le. { is obtained by filtering each component of
wy through the stable system with transfer func-
tion L™'. Now, if r(r) has 2n spectral lines we
have by Theorem 3.5 that Wy, (»,), Wy (,y),...,
Wm(?,,) are linearly independent. From the defi-
nition of {y, in (4.2) and the fact that L™ (s) is
stable, it follows that
Eni(v) = —riny(v), i=1,....2n

M Ly T T e
are linearly independent. Hence ¢, is sufficiently
rich.

Further, the stability proof [1] yields that {(-) —
§m(-)E L% so that { is sufficiently rich thereby
guaranteeing exponential parameter convergence.

Now consider the scheme of Figure 2 for the
relative degree > 3 case. Redraw the model as in
Figure 3 and define {\, as in (4.2) above. The same
argument, as above, yields that when r has 2n
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spectral lines then ¢,, is sufficiently rich. Further
since (see [2] for the proof)

W(')—WM(') €L’
and L(s) is stable, it follows that
§C-)-tu(-)eL?

so that { is sufficiently rich as well. This guaran-
tees parameter error convergence.

Thus, we see that for each of the model Refer-
ence Adaptive Schemes of [1,2] it follows that r(t)
has 2n spectral lines = exponential parameter con-
vergence. Further, given prior bounds on the
parameters and plant states, an estimate of the
rate of convergence can be given.

5. Concluding remarks

We have shown that continuous time MRAS
systems exhibit parameter convergence when the
reference input r(¢z) has 2n spectral lines. The
same result also holds for the discrete time algo-
rithm of Narendra and Lin [11] as well, with the
obvious modification in the definition of spectral
lines for discrete-time signals.

It also applies to other adaptive algorithms such
as Algorithm SISO I of [15]. For this algorithm
conditions for parameter convergence have also
appeared in [14]. It can be shown that our more
explicit conditions, namely that the reference input
contains sufficiently many spectral lines, imply
those of [14].

Further, we feel that the machinery of gener-
alized harmonic analysis will be useful in other
problems in adaptive control as well, indeed it is
well suited to the analysis of asymptotically linear
time invariant systems. We conclude by proving
the following interesting proposition:

Proposition 5.1. Ler A € R"*" b € R" be a control-
lable pair and let the input u to the system
X=Ax+ bu

have n spectral lines. Then, if A is exponentially

stable, x is sufficiently rich.

Proof. By suitable change of coordinates we may
assume that (A, b) are in controllable canonical
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form so that the transfer function from uto xis

1
1 s
05) with p(s) = det(sI — 4).
p(s
sn—]

Since A4 is exponentially stable, so is this transfer
function. If u has spectral lines at Ys...,7, then so
does x. The spectral amplitudes are

1
ﬁ(%)

f(”l)zﬁ-

ﬁ(j”i)

: , i=1,....n.
G%)n—l
But the £(»,) are linearly independent since
1 ... 1
det

: : = in(j”i_j”j)
. n~—1 . n—1 i<j
0”1) UKJ
#0.
By Lemma 3.4, then, x is sufficiently rich. 0.
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