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CMOS analog amplifier design

problem: choose transistor dimensions, bias currents, component values

e critical part of mixed-mode (digital-analog) ICs

e for typical mixed-mode IC,

— 1:10 analog:digital area
— 10:1 analog:digital design time

this talk: a new method for CMQOS op-amp design, based on geometric
programming

e globally optimal and extremely fast

e handles wide variety of practical constraints & specs
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Monomial & posynomial functions

r = (x1,...,%y,): vector of positive variables

function g of form
an

.QA&V — H%ﬁ&.m@ SR 2

with «; € R, is called monomial
function f of form
¢
— A1k . X2k (o}
\.AHV — M ”QwHH Lo™" + .H:sﬁ
k=1

with ¢, > 0, ;1 € R, is called posynomial
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e posynomials closed under sums, products, nonnegative scaling
e monomials closed under products, division, nonnegative scaling

e if 1/f is posynomial we say f is inverse posynomial

examples:

o 0.1z125"° + 215297 is posynomial
e 1/(1+ z1237) is inverse-posynomial

e 2x3+/x1/x2 is monomial (hence also posy. & inv-posy.)
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Geometric programming

a special form of optimization problem:

minimize  fo(x)

subject to  fi(z) <1, i=1,.
L

where f; are posynomial and g; are monomial
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more generally with geometric programming we can

e minimize any posynomial or monomial function, or

e maximize any inverse-posynomial or monomial function
subject to any combination of

e upper bounds on posynomial or monomial functions
e lower bounds on inverse-posynomial or monomial functions

e equality constraints between monomial functions

UCSB 10/24/97



Geometric programming: history & methods

e used in engineering since 1967 (Duffin, Peterson, Zener)

e used for digital circuit transistor sizing with ElImore delay since 1980
(Fishburn & Dunlap’s TILOS)

new (interior-point) methods for GP (e.g., Kortanek et al)

e are extremely fast

e handle medium and large-scale problems
(100s vbles, 1000s constraints easily solved on PC in minutes)

e cither find global optimal solution, or provide proof of infeasibility
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Two-stage op-amp

Vaa

Ngmm O

I

Mo

e common op-amp architecture

e 19 design variables: W,.
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Large signal MOS model

s L.

NMOS PMOS

NMOS saturation condition: Vpg > Vas < Vrn
square-law model Ip = ki (W/L)(Vgs < Vrn)?
similar condition & model for PMQOS

(more accurate model possible, e.g., for short channel)
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Small signal dynamic MOS model

Coa
G 1 D
Qm_o — Qmm — 9mUgs DD 9o - Cu
Bulk S

transconductance and output conductance,

gm — \Aw)\NUS\«\NJ go — \AwNU

are monomial in W, L, Ip

capacitances are all (approximately) posynomial in W, L, Ip
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Dimension constraints

limits on device sizes:

N.\Ews < N\s m N.\EQVC «A\Ews < S\«s < «A\Em%

(express as L;/Lpax < 1, etc.)

symmetry constraints: W, = W,, L1 = Ly, Wy =Wy, L3 = Ly
bias transistor matching: L5 = L; = Lg

to reduce systematic input offset voltage:

W3/ Ls _ Wy/Ly _ W/ Ls
S\@\N\Q S\@\N\m MS\Q\N\Q

area = a;C; + a2 ) . W;L; is posynomial, hence can impose upper limit
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Bias constraints

each transistor must remain in saturation over specified
e common-mode input range [Vem min, Vem, max|
e output voltage swing [Vout mins Vout max)

leads to four posynomial inequalities

e.g., for M5 we get

11114 [Is5 L5
k k < Viga ©Vemmax + V-
4 W + K5 T dd : + Vrp

(every drain current is monomial in the design variables)
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Quiescent power & slew rate specs

quiescent power is posynomial:
P = G\Q& ﬂva\WmVANgmm + Nm + Nﬂv

hence can impose upper limit on power (or minimize it)
slew rate is

214 I

Qo u Qo + Qh

min

min slew rate spec can be expressed as posynomial inequalities

QOMWEE < Hu AQO + Qﬁvmwgg <1
214 - I -
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Transfer function

with standard value R. = 1/gm6, TF is accurately given by

Ay

Hig)= (1 +s/p1)(1 + s/p2)(1 + 5/p3)(1 + 5/pa)

e open-loop gain is monomial: A, = ke\/WaWs/LoLgI1I;
e dominant pole p; is monomial: p; = g1 /A,C.

e parasitic poles ps, p3, p4 are inverse posynomial

hence can fix the open-loop gain and dominant pole, and lower bound the

parasitic poles
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3 dB bandwidth and unity gain crossover specs

e bandwidth constraints: |H (jw)| > a for w < 2

. 2 \ww 2
& U = e om0 T T /) = °

& (a®/A2)A+ P /p) A+ Q% /p3) 1+ Q% /p3)(1+ Q% /p7) <1

... a posynomial inequality (since p; are inv.-pos.)
e unity gain crossover is (very accurately) monomial: w. = gu1/C-

e hence can fix (or upper or lower bound) crossover frequency
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Phase margin specs
min phase margin spec is:

4
s/ H(jwe) = M arctan(w./p;) < m <PMpuin
i=1

extremely good approximation:

4
M Eo\ﬁ& m 3.\M AHVHVH/\HBE
1=2

(since p; contributes 90°, and arctan(z) ~ z for x < 50°)

. .. a posynomial inequality since parasitic poles are inverse posynomial
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Other specs

e min common-mode rejection ratio

e min (pos. & neg.) power supply rejection ratios
e max spot noise at any frequency

e max total RMS noise over any frequency band

e min gate overdrive

can all be handled by geometric programming
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Summary
using geometric programming we can globally optimize a design

involving all the specs described above:

e dimension constraints, area
e bias constraints, power, slew rate

e bandwidth, crossover frequencies, phase margin
e CMRR, nPSRR, pPSRR

e spot & total noise
typical problem:

e approx 20 vbles, 10 equality & 20 inequality constraints

e solution time ~ 1 sec (inefficient Matlab implementation!)
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(Globally) optimal trade-off curves

o fix all specs except one (e.g., power)

e optimize objective (e.g., maximize crossover frequency) for different
values of spec

e yields globally optimal trade-off curve between objective and spec
(with others fixed)
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Default specs

our examples will maximize crossover BW with default specs

o Viq =5V, Vi =0V, 1.2um process

o L, >0.8um, W; > 2um, area < 10000pm?

e CM input fixed at mid-supply; output range is 10%—90% of supply
e power < 5mW

e open-loop gain > 80dB, PM > 60°

e slew rate > 10V /usec

e CMRR > 60dB

e input-referred spot noise (1kHz) < 300nV/vHz

(we'll vary one or more to get trade-off curves)
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Maximum BW versus power & supply voltage
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Minimum noise versus power & BW
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Maximum BW versus power & load capacitance
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Maximum BW versus area & power
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Extensions

e can solve large coupled problems
(e.g., total area, power for IC with 100 op-amps)

e can do robust design that works with several process conditions
e get sensitivities for free
e method extends to wide variety of amplifier architectures, BJTs, etc.

e can use far better (monomial) MOS models, e.g., for short-channel
designs
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Conclusions

e using geometric programming we can globally and efficiently solve
CMOS op-amp design problems

e allows designer to spend more time designing, i.e., exploring trade-offs
between competing objectives (power, area, bandwidth, . . . )

e yields completely automated synthesis of CMOS op-amps directly
from specifications

e huge reduction in analog design time

(cf. methods based on simulated annealing, expert systems, general
nonlinear programming, . . . )
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