CMOS Op-amp Design and Optimization via Geometric Programming

Mar Hershenson, **Stephen Boyd**, Thomas Lee

Electrical Engineering Department Stanford University

CMOS analog amplifier design

problem: choose transistor dimensions, bias currents, component values

- critical part of mixed-mode (digital-analog) ICs
- for typical mixed-mode IC,
- 1:10 analog:digital area
- 10:1 analog:digital design time

this talk: a new method for CMOS op-amp design, based on geometric programming

- globally optimal and extremely fast
- handles wide variety of practical constraints & specs

Outline

- Geometric programming
- Two-stage op-amp
- MOS models
- Constraints & specs
- Design examples & trade-off curves
- Extensions
- Conclusions

Monomial & posynomial functions

 $x=(x_1,\ldots,x_n)$: vector of positive variables

function g of form

$$g(x) = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n},$$

with $\alpha_i \in \mathbf{R}$, is called **monomial**

function f of form

$$f(x) = \sum_{k=1}^{t} c_k x_1^{\alpha_{1k}} x_2^{\alpha_{2k}} \cdots x_n^{\alpha_{nk}},$$

with $c_k \geq 0$, $\alpha_{ik} \in \mathbf{R}$, is called **posynomial**

- posynomials closed under sums, products, nonnegative scaling
- monomials closed under products, division, nonnegative scaling
- if 1/f is posynomial we say f is **inverse posynomial**

examples:

- $0.1x_1x_3^{-0.5} + x_2^{1.5}x_3^{0.7}$ is posynomial
- $1/(1+x_1x_2^{1\cdot3})$ is inverse-posynomial
- $2x_3\sqrt{x_1/x_2}$ is monomial (hence also posy. & inv-posy.)

Geometric programming

a special form of optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 1, \quad i=1,\ldots,m$
 $g_i(x)=1, \quad i=1,\ldots,p$
 $x_i>0, \quad i=1,\ldots,n$

where f_i are posynomial and g_i are monomial

more generally with geometric programming we can

minimize any posynomial or monomial function, or

maximize any inverse-posynomial or monomial function

subject to any combination of

upper bounds on posynomial or monomial functions

lower bounds on inverse-posynomial or monomial functions

equality constraints between monomial functions

UCSB 10/24/97

Geometric programming: history & methods

- used in engineering since 1967 (Duffin, Peterson, Zener)
- used for digital circuit transistor sizing with Elmore delay since 1980 (Fishburn & Dunlap's TILOS)

new (interior-point) methods for GP (e.g., Kortanek et al)

- are extremely fast
- handle medium and large-scale problems (100s vbles, 1000s constraints easily solved on PC in minutes)
- either find global optimal solution, or provide proof of infeasibility

Two-stage op-amp

common op-amp architecture

19 design variables: $W_1, \ldots, W_8, L_1, \ldots, L_8, R_c, C_c, I_{\rm bias}$

Large signal MOS model

NMOS saturation condition: $V_{\mathrm{DS}} \geq V_{\mathrm{GS}} \Leftrightarrow V_{\mathrm{TN}}$

square-law model $I_D=k_1(W/L)(V_{\rm GS} \Leftrightarrow V_{\rm TN})^2$

similar condition & model for PMOS

(more accurate model possible, e.g., for short channel)

Small signal dynamic MOS model

transconductance and output conductance,

$$g_m = k_2 \sqrt{I_D W/L}, \qquad g_o = k_3 I_D$$

are **monomial** in W, L, I_D

capacitances are all (approximately) posynomial in W, L, I_D

Dimension constraints

limits on device sizes:

$$L_{\min} \le L_i \le L_{\max}, \qquad W_{\min} \le W_i \le W_{\max}$$

(express as $L_i/L_{
m max} \le 1$, etc.)

symmetry constraints: $W_1=W_2$, $L_1=L_2$, $W_3=W_4$, $L_3=L_4$

bias transistor matching: $L_5=L_7=L_8$

to reduce systematic input offset voltage:

$$\frac{W_3/L_3}{W_6/L_6} = \frac{W_4/L_4}{W_6/L_6} = \frac{W_5/L_5}{2W_7/L_7}$$

 $area = lpha_1 C_{
m c} + lpha_2 \sum_i W_i L_i$ is posynomial, hence can impose upper limit

Bias constraints

each transistor must remain in saturation over specified

- common-mode input range $[V_{\rm cm,min},V_{\rm cm,max}]$
- ullet output voltage swing $[V_{
 m out,min},V_{
 m out,max}]$

leads to four posynomial inequalities

e.g., for M_5 we get

$$k_4 \sqrt{rac{I_1 I_1}{W_1}} + k_5 \sqrt{rac{I_5 I_5}{W_1}} \leq V_{
m dd} \Leftrightarrow V_{
m cm,max} + V_{
m TP}$$

(every drain current is monomial in the design variables)

Quiescent power & slew rate specs

quiescent power is posynomial:

$$P = (V_{\rm dd} \Leftrightarrow V_{\rm ss})(I_{\rm bias} + I_5 + I_7)$$

hence can impose upper limit on power (or minimize it)

slew rate is

$$\min\left\{\frac{2I_1}{C_{\rm c}}, \, \frac{I_7}{C_{\rm c} + C_{\rm L}}\right\}$$

min slew rate spec can be expressed as posynomial inequalities

$$rac{C_{
m c}{
m SR}_{
m min}}{2I_1} \leq 1, \qquad rac{(C_{
m c}+C_{
m L}){
m SR}_{
m min}}{I_7} \leq 1$$

Transfer function

with standard value $R_c=1/g_{
m m6}$, TF is accurately given by

$$H(s) = \frac{A_v}{(1+s/p_1)(1+s/p_2)(1+s/p_3)(1+s/p_4)}$$

- open-loop gain is **monomial**: $A_v = k_6 \sqrt{W_2 W_6/L_2 L_6 I_1 I_7}$
- dominant pole p_1 is **monomial**: $p_1 = g_{\rm m1}/A_v C_c$
- parasitic poles p_2, p_3, p_4 are inverse posynomial

hence can fix the open-loop gain and dominant pole, and lower bound the parasitic poles

3 dB bandwidth and unity gain crossover specs

bandwidth constraints: $|H(j\omega)| \geq a$ for $\omega \leq \Omega$

$$\Leftrightarrow |H(j\Omega)|^2 = \frac{A_v^2}{(1+\Omega^2/p_1^2)(1+\Omega^2/p_2^2)(1+\Omega^2/p_3^2)(1+\Omega^2/p_4^2)} \ge a^2$$

$$\Leftrightarrow (a^2/A_v^2)(1+\Omega^2/p_1^2)(1+\Omega^2/p_2^2)(1+\Omega^2/p_3^2)(1+\Omega^2/p_4^2) \le 1$$

. . . a posynomial inequality (since p_i are inv.-pos.)

- **unity gain crossover** is (very accurately) monomial: $\omega_{
 m c}=g_{
 m m1}/C_{
 m c}$
- hence can fix (or upper or lower bound) crossover frequency

Phase margin specs

min phase margin spec is:

$$\Leftrightarrow \angle H(j\omega_c) = \sum_{i=1}^4 \arctan(\omega_c/p_i) \le \pi \Leftrightarrow PM_{\min}$$

extremely good approximation:

$$\sum_{i=2}^{4} \omega_c/p_i \le \pi/2 \Leftrightarrow \text{PM}_{\min}$$

(since p_1 contributes 90° , and $\arctan(x) \approx x$ for $x \leq 50^\circ$)

. a posynomial inequality since parasitic poles are inverse posynomial

Other specs

- min common-mode rejection ratio
- min (pos. & neg.) power supply rejection ratios
- max spot noise at any frequency
- max total RMS noise over any frequency band
- min gate overdrive

can all be handled by geometric programming

UCSB 10/24/97

Summary

involving all the specs described above: using geometric programming we can globally optimize a design

- dimension constraints, area
- bias constraints, power, slew rate
- bandwidth, crossover frequencies, phase margin
- CMRR, nPSRR, pPSRR
- spot & total noise

typical problem:

- approx 20 vbles, 10 equality & 20 inequality constraints
- solution time pprox 1 sec (inefficient Matlab implementation!)

UCSB 10/24/97

(Globally) optimal trade-off curves

- fix all specs except one (e.g., power)
- optimize objective (e.g., maximize crossover frequency) for different values of spec
- yields globally optimal trade-off curve between objective and spec (with others fixed)

UCSB 10/24/97

Default specs

our examples will maximize crossover BW with default specs

- ullet $V_{
 m dd}=5$ V, $V_{
 m ss}=0$ V, $1.2 \mu {
 m m}$ process
- $L_i \geq 0.8 \mu\mathrm{m}$, $W_i \geq 2 \mu\mathrm{m}$, area $\leq 10000 \mu\mathrm{m}^2$
- CM input fixed at mid-supply; output range is 10%-90% of supply
- ullet power $\leq 5 \mathrm{mW}$
- \bullet open-loop gain $\geq 80 \mathrm{dB}$, PM $\geq 60^\circ$
- slew rate $\geq 10 V/\mu {
 m sec}$
- CMRR ≥ 60 dB
- input-referred spot noise (1kHz) $\leq 300 \mathrm{nV}/\mathrm{\sqrt{Hz}}$

(we'll vary one or more to get trade-off curves)

Maximum BW versus power & supply voltage

Minimum noise versus power & BW

Maximum BW versus power & load capacitance

Maximum BW versus area & power

Extensions

- can solve large coupled problems (e.g., total area, power for IC with 100 op-amps)
- can do robust design that works with several process conditions
- get sensitivities for free
- method extends to wide variety of amplifier architectures, BJTs, etc.
- can use far better (monomial) MOS models, e.g., for short-channel designs

Conclusions

- using geometric programming we can globally and efficiently solve CMOS op-amp design problems
- allows designer to spend more time **designing**, i.e., exploring trade-offs between competing objectives (power, area, bandwidth, . . .
- yields completely automated synthesis of CMOS op-amps directly trom specifications
- huge reduction in analog design time

nonlinear programming, . . .) (cf. methods based on simulated annealing, expert systems, general