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IntroductionIntroduction

DesignDesign--
manufacturing manufacturing 
interface is interface is 
becoming more becoming more 
and more and more 
complexcomplex
RF and analog RF and analog 
integrated integrated 
circuits are very circuits are very 
sensitive to sensitive to 
process variationprocess variation



Trends of variabilityTrends of variability
Variability in DSM technologies is increasingVariability in DSM technologies is increasing
LargeLarge--scale variation results in lowerscale variation results in lower
product yieldproduct yield
Control performance variability in early Control performance variability in early 
design stagesdesign stages
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Traditional Traditional CornerCorner--Enumeration OptimizationEnumeration Optimization

Corner-enumeration worst-case optimization
Most widely used robust design technique
Uncertain parameters are often assumed to have 
independent uniform distributions
Design is optimized for all corners of
a ±3σ tolerance box

Problems with corner-enumeration optimization
Often ignores correlation between process parameters 
Problem size increases exponentially in number of 
uncertain parameters
No guarantee for parameter points inside the ±3σ
tolerance box
Design for all corners could result in over-design

Design Optimization
on Corners
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Sources and Statistics of VariabilitySources and Statistics of Variability
Environment variationsEnvironment variations

Power supply voltagePower supply voltage
TemperatureTemperature
Noise couplingNoise coupling

Model environmental Model environmental 
variations by Uniform variations by Uniform 
distributions and capture distributions and capture 
their variability by their variability by 
polyhedronpolyhedron
Manufacturing variationsManufacturing variations

DeviceDevice
InterconnectInterconnect

Model manufacturing Model manufacturing 
variations by Normal variations by Normal 
distributions and capture distributions and capture 
their variability by their variability by ellipsoidellipsoid
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Capturing the process variationCapturing the process variation

Process variation statistics are characterizedProcess variation statistics are characterized
by jointby joint--pdfpdf [Nassif’01][Nassif’01]

Independent Gaussian random variablesIndependent Gaussian random variables
Correlated Gaussian random variablesCorrelated Gaussian random variables

Multivariate Gaussian Distribution (Multivariate Gaussian Distribution (µµ, , ΣΣ))

EquidensityEquidensity contour is concentric ellipsoidcontour is concentric ellipsoid

Probability has a chiProbability has a chi--square distribution with square distribution with 
degree degree nn
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OPERA ConceptOPERA Concept

Robust GP with Ellipsoidal Uncertainty

Stochastic GP with Joint Probability

Process Variations Variance linked to mean
Variance not linked to mean

GP Modeling of 
Analog Circuit +

Capture Process 
Variations by Ellipsoid
(Chi-square distribution)

Specification on Yield

Robust Design with Guaranteed YieldRobust Design with Guaranteed Yield



Robust Optimization ApproachRobust Optimization Approach

Robust geometric programmingRobust geometric programming††
Robust GP incorporates a model of data uncertainty and Robust GP incorporates a model of data uncertainty and optimizes for optimizes for 
the worstthe worst--case scenariocase scenario under the modelunder the model

Computation time increases Computation time increases linearlylinearly in number of uncertain parametersin number of uncertain parameters

Design for variability via robust GP:Design for variability via robust GP:
Many analog IC design for variability problems can be cast asMany analog IC design for variability problems can be cast as
robust GPsrobust GPs

HandlesHandles correlatedcorrelated statistical variations in both process parameters and statistical variations in both process parameters and 
design variablesdesign variables

Can carry out robust designs with required yield bound Can carry out robust designs with required yield bound 

Results in less overResults in less over--design (compared with cornerdesign (compared with corner--enumeration enumeration 
optimization)optimization)

† More details can be found in “Tractable Approximate Robust 
Geometric Programming”, revised for publication, May 2005
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Modeling Process VariationsModeling Process Variations

VarianceVariance--linkedlinked--toto--mean variationmean variation
Relative variations Relative variations (e.g. (e.g. ∆∆R/R, R/R, ∆∆C/C),C/C),

i.e. i.e. variance is proportional to meanvariance is proportional to mean
Model the variations in Model the variations in process parametersprocess parameters byby

VarianceVariance--notnot--linkedlinked--toto--mean variationmean variation
Absolute variations Absolute variations (e.g. (e.g. ∆∆W, W, ∆∆L, L, ∆∆VVthth),),

i.e. i.e. variance is independent of meanvariance is independent of mean
Model the variations in bothModel the variations in both design variablesdesign variables andand
process parameters process parameters asas
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Lognormal approximationLognormal approximation
Narrow normal distribution can be Narrow normal distribution can be 
approximated as lognormal distributionapproximated as lognormal distribution

Most process parameter variation satisfy this Most process parameter variation satisfy this 
condition (e.g. condition (e.g. toxtox))

µ=4.45nm, σ=0.1nm
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Ring Oscillator Design ExampleRing Oscillator Design Example

5GHz Ring Oscillator design example5GHz Ring Oscillator design example
IBM 7HP 1.8V 0.18IBM 7HP 1.8V 0.18µµm BiCMOS processm BiCMOS process
Design Variables:  Design Variables:  

WWeffeff, L, , L, ∆∆VV
Design objective and constraints:Design objective and constraints:

Minimize      Power
Subject to    Phase Noise ≤ PN_max

f _resonant =  f0



Optimization results (Optimization results (90%90% yield bound for robust yield bound for robust 
GP, Freq: 5GP, Freq: 5±±1 GHz):1 GHz):

Robust design achieve better yield with higher Robust design achieve better yield with higher 
design costdesign cost

Robust Ring Oscillator Design ResultsRobust Ring Oscillator Design Results

0.387V0.387V0.42V0.42V∆∆VV
0.240.24µµmm0.260.26µµmmLengthLength
6.686.68µµmm4.534.53µµmmWeffWeff

Robust GP Robust GP 
DesignDesign

GP DesignGP DesignDesign VariablesDesign Variables

≥≥ 90%90%50%50%YieldYield

4.85GHz4.85GHz5GHz5GHzFrequencyFrequency
--101dBc/Hz101dBc/Hz--100dBc/Hz100dBc/HzPhase NoisePhase Noise

2.59mW2.59mW1.87mW1.87mWPowerPower

Robust GP Robust GP 
DesignDesign

GP DesignGP DesignSpecificationsSpecifications



Monte Carlo VerificationMonte Carlo Verification
Actual yield is estimated by Monte Carlo analysis Actual yield is estimated by Monte Carlo analysis 
with 10K sampleswith 10K samples

Optimization without considering process variation Optimization without considering process variation 
(i.e. nominal design) might have very low yield(i.e. nominal design) might have very low yield
((50%50% in this example)in this example)
Robust GP design achieved guaranteed yield Robust GP design achieved guaranteed yield ≥≥ 90%90%
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TradeTrade--off curve of off curve of power consumptionpower consumption
(design cost ) versus (design cost ) versus yield  requirementyield  requirement

Design cost increases when yield requirement Design cost increases when yield requirement 
increasesincreases

Design Cost vs. Yield RequirementDesign Cost vs. Yield Requirement

Very high Very high 
design cost to design cost to 
achieve yield achieve yield 
approaching  approaching  
100%100%



VoltageVoltage--Controlled OscillatorControlled Oscillator
Design ExampleDesign Example

2.1GHz LC VCO design 2.1GHz LC VCO design 
exampleexample
Hitachi SiGe BiCMOS Hitachi SiGe BiCMOS 
process using 90GHz process using 90GHz ffTT
NPNNPN
Differential VCO is Differential VCO is 
equivalent to a tank equivalent to a tank 
modelmodel



VCO Experiment SetupVCO Experiment Setup

Design Variables:        Design Variables:        
I_bias, g_tank, C_tank, L, I_bias, g_tank, C_tank, L, VswVsw

Design objective and constraints:Design objective and constraints:

Design Uncertainty:Design Uncertainty:

),0(~,,
2
3

2
32

2
31

2
23

2
2

2
21

2
13

2
12

2
1
























 ∆∆∆

σσσ
σσσ
σσσ

N
L
L

g
g

C
C

tank

tank

tank

tank

Minimize Power
Subject to Phase Noise ≤ PN_max

Loop Gain ≥ LG_min
L_tank*C_tank*ω2 = 1
Vsw ≤ Vdd
Vsw ≤ I_bias/g_tank



VCO optimization resultsVCO optimization results

Robust GP yield bound:Robust GP yield bound:
Yield bound can be set by adjusting the ellipsoid radiusYield bound can be set by adjusting the ellipsoid radius

Corner selection Corner selection  vertices of polyhedron vertices of polyhedron 
Confidence ellipsoid in the robust optimization is Confidence ellipsoid in the robust optimization is 
inscribed in this polyhedroninscribed in this polyhedron

Optimization results (for 90% yield bound, Freq: Optimization results (for 90% yield bound, Freq: 
2.1±0.4GHz)2.1±0.4GHz)

2.5V2.5V2.5V2.5VVswVsw
2.82nH2.82nH2.83nH2.83nHLL
1.018m1.018mSS0.8940.894mmSSg_tankg_tank
1.26pF1.26pF1.33pF1.33pFC_tankC_tank
2.72mA2.72mA2.41mA2.41mAI_biasI_bias

Corner Corner -- enumeration enumeration 
optimizationoptimization

Robust optimizationRobust optimization



LC Oscillator design cost vs. yield LC Oscillator design cost vs. yield 
bound and actual yield bound and actual yield 

Yield is estimated by 10K Monte Carlo analysisYield is estimated by 10K Monte Carlo analysis
Design cost increase when yield requirement increaseDesign cost increase when yield requirement increase
20% over design for 20% over design for ±±33σσ actual actual yield in corneryield in corner--based based 
optimization compared to robust optimizationoptimization compared to robust optimization
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Discussions and ConclusionsDiscussions and Conclusions

Ellipsoidal uncertainty captures both independent Ellipsoidal uncertainty captures both independent 
and and correlatedcorrelated process variationsprocess variations
Yield requirement can be explicitly incorporated as Yield requirement can be explicitly incorporated as 
a design constrainta design constraint
Robust optimization using Robust optimization using posynomialposynomial equations equations 
(requires fewer simulations)(requires fewer simulations)
Guaranteed yield bound by assuring all parameters Guaranteed yield bound by assuring all parameters 
within the ellipsoid instead of sampling the within the ellipsoid instead of sampling the 
process variationprocess variation
Handles both parameter and Handles both parameter and design variabledesign variable
uncertaintyuncertainty
Achieve the same yield with much less overAchieve the same yield with much less over--designdesign
(compared with corner(compared with corner--enumeration optimization)enumeration optimization)


