OPERA: OPtimization with Ellipsoidal uncertainty for Robust Analog IC design

Yang Xu, Kan-Lin Hsiung, Xin Li Ivan Nausieda, Stephen Boyd, Larry Pileggi

June 16, 2005

- Introduction
- Background
- Proposed Approach
- Implementation Issues
- Examples and Preliminary Results
- Discussions and Conclusions

Introduction

- Designmanufacturing interface is becoming more and more complex
- RF and analog integrated circuits are very sensitive to process variation

Trends of variability

- Variability in DSM technologies is increasing
- Large-scale variation results in lower product yield
- Control performance variability in early design stages

Traditional Corner-Enumeration Optimization

Design Optimization on Corners timization

- Corner-enumeration worst-case optimization
 - Most widely used robust design technique
 - Uncertain parameters are often assumed to have independent uniform distributions
 - Design is optimized for all corners of a ±3σ tolerance box
- Problems with corner-enumeration optimization
 - Often ignores correlation between process parameters
 - Problem size increases exponentially in number of uncertain parameters
 - No guarantee for parameter points inside the ±3σ tolerance box
 - Design for all corners could result in over-design

- Introduction
- Background
- Proposed Approach
 - Capturing process variations
 - Robust optimization approach
- Implementation Issues
- Examples and Preliminary Results
- Discussions and Conclusions

Sources and Statistics of Variability

- Environment variations
 - Power supply voltage
 - Temperature
 - Noise coupling
- Model environmental variations by Uniform distributions and capture their variability by polyhedron
- Manufacturing variations
 - Device
 - Interconnect
- Model manufacturing variations by Normal distributions and capture their variability by ellipsoid

Capturing the process variation

- Process variation statistics are characterized by joint-pdf [Nassif'01]
 - Independent Gaussian random variables
 - Correlated Gaussian random variables
- Multivariate Gaussian Distribution (μ , Σ) $p_X(X) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (X \mu)^T \Sigma^{-1} (X \mu) \right\}$
- Equidensity contour is concentric ellipsoid

$$U = f(\mu, \Sigma, r) = \left\{ X \in \mathbb{R}^n \mid (X - \mu)^T \Sigma^{-1} (X - \mu) \le r^2 \right\}$$

Probability has a chi-square distribution with degree n

Prob
$$(u \in U) = F_{\chi_n^2}(r^2)$$

OPERA Concept

GP Modeling of Analog Circuit

+ Process Variations

Variance linked to mean Variance not linked to mean

Stochastic GP with Joint Probability

Robust GP with Ellipsoidal Uncertainty

Specification on Yield

Capture Process
Variations by Ellipsoid
(Chi-square distribution)

Robust Design with Guaranteed Yield

Robust Optimization Approach

Robust geometric programming

- Robust GP incorporates a model of data uncertainty and optimizes for the worst-case scenario under the model
- Computation time increases linearly in number of uncertain parameters

Design for variability via robust GP:

- Many analog IC design for variability problems can be cast as robust GPs
- Handles correlated statistical variations in both process parameters and design variables
- Can carry out robust designs with required yield bound
- Results in less over-design (compared with corner-enumeration optimization)
- More details can be found in "Tractable Approximate Robust Geometric Programming", revised for publication, May 2005

- Introduction
- Background
- Proposed Approach
- Implementation Issues
 - Variance-linked-to-mean uncertainty
 - Variance-not-linked-to-mean uncertainty
- Examples and Preliminary Results
- Discussions and Conclusions

Modeling Process Variations

- Variance-linked-to-mean variation
 - Relative variations (e.g. $\Delta R/R$, $\Delta C/C$),
 - i.e. variance is proportional to mean
 - Model the variations in process parameters by

$$\delta p_i / p_i \sim N(0, \sigma_i^2), i = 1, ..., q$$

- Variance-not-linked-to-mean variation
 - Absolute variations (e.g. ΔW , ΔL , ΔV_{th}),
 - i.e. variance is independent of mean
 - Model the variations in both design variables and process parameters as

$$\delta p_i \sim N(0, \sigma_{p_i}^2), i = 1, ..., q, \quad \delta x_j \sim N(0, \sigma_{x_j}^2), j = 1, ..., n$$

Lognormal approximation

- Narrow normal distribution can be approximated as lognormal distribution
 - Most process parameter variation satisfy this condition (e.g. tox)

- Introduction
- Background
- Proposed Approach
- Implementation Issues
- Examples and Preliminary Results
 - Ring Oscillator Example
 - LC Voltage-Controlled Oscillator Example
- Discussions and Conclusions

Ring Oscillator Design Example

- 5GHz Ring Oscillator design example
- IBM 7HP 1.8V 0.18µm BiCMOS process
- Design Variables:
 - \blacksquare W_{eff}, L, \triangle V
- Design objective and constraints:

Robust Ring Oscillator Design Results

Optimization results (90% yield bound for robust GP, Freq: 5±1 GHz):

Design Variables	GP Design	Robust GP Design
Weff	4.53μm	6.68µm
Length	0.26μm	0.24µm
Δ V	0.42V	0.387V
Specifications	GP Design	Robust GP Design
Power	1.87mW	2.59mW
Yield	50%	≥ 90%
Phase Noise	-100dBc/Hz	-101dBc/Hz
Frequency	5GHz	4.85GHz

Robust design achieve better yield with higher design cost

Monte Carlo Verification

Actual yield is estimated by Monte Carlo analysis with 10K samples

- Optimization without considering process variation (i.e. nominal design) might have very low yield (50% in this example)
- Robust GP design achieved guaranteed yield ≥ 90%

Design Cost vs. Yield Requirement

Trade-off curve of power consumption (design cost) versus yield requirement

Very high design cost to achieve yield approaching 100%

Design cost increases when yield requirement increases

Voltage-Controlled Oscillator Design Example

- 2.1GHz LC VCO design example
- **Hitachi SiGe BiCMOS** process using 90GHz f_T NPN
- Differential VCO is equivalent to a tank model

VCO Experiment Setup

- **Design Variables:**
 - I bias, g tank, C tank, L, Vsw
- **Design objective and constraints:**

Minimize Power Subject to Phase Noise ≤ PN max **Loop Gain ≥ LG_min** L_tank*C_tank* $\omega^2 = 1$ Vsw ≤ Vdd Vsw ≤ I_bias/g_tank

Design Uncertainty:

$$\left(\frac{\Delta C_{\mathsf{tank}}}{C_{\mathsf{tank}}}, \frac{\Delta g_{\mathsf{tank}}}{g_{\mathsf{tank}}}, \frac{\Delta L}{L} \right) \sim N(0, \begin{cases} \sigma_1^2 & \sigma_{12}^2 & \sigma_{13}^2 \\ \sigma_{21}^2 & \sigma_2^2 & \sigma_{23}^2 \\ \sigma_{31}^2 & \sigma_{32}^2 & \sigma_3^2 \end{cases})$$

VCO optimization results

- Robust GP yield bound:
 - Yield bound can be set by adjusting the ellipsoid radius
- Corner selection vertices of polyhedron
 - Confidence ellipsoid in the robust optimization is inscribed in this polyhedron
- Optimization results (for 90% yield bound, Freq: 2.1±0.4GHz)

	Robust optimization	Corner - enumeration optimization
I_bias	2.41mA	2.72mA
C_tank	1.33pF	1.26pF
g_tank	0.894mS	1.018mS
L	2.83nH	2.82nH
Vsw	2.5V	2.5V

LC Oscillator design cost vs. yield bound and actual yield

- Yield is estimated by 10K Monte Carlo analysis
- Design cost increase when yield requirement increase
- 20% over design for ±3σ actual yield in corner-based optimization compared to robust optimization

- Introduction
- Background
- Proposed Approach
- Implementation Issues
- Examples and Preliminary Results
- Discussions and Conclusions

Discussions and Conclusions

- Ellipsoidal uncertainty captures both independent and correlated process variations
- Yield requirement can be explicitly incorporated as a design constraint
- Robust optimization using posynomial equations (requires fewer simulations)
- Guaranteed yield bound by assuring all parameters within the ellipsoid instead of sampling the process variation
- Handles both parameter and design variable uncertainty
- Achieve the same yield with much less over-design (compared with corner-enumeration optimization)