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Introduction

Syslem Specifications

@ Design-
manufacturing ,
interface is Ubrary . JE Aroteciuro Seiecion
becoming more
and more Schematic Design
complex

@ RF and analog
integrated
circuits are Very Manufacturing
sensitive to

| Process and |

process variation | Mask Models |




Trends of variability

¥ Variability in DSM technologies is increasing

® Large-scale variation results in lower
product yield

B Control performance variability in early
design stages
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raditional Corner-Enumeration Optimization

Design Optlmlzatlon
on Corners '.

@ Corner-enumeration worst-case optimization
= Most widely used robust design technique

= Uncertain parameters are often assumed to have
independent uniform distributions

= Design is optimized for all corners of
a +3c tolerance box

# Problems with corner-enumeration optimization

= Often between process parameters

= Problem size increases in number of
uncertain parameters

o for parameter points inside the +3c

tolerance box
= Design for all corners could result in
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Sources and Statistics of Variability

@ Environment variations
= Power supply voltage
= Temperature
= Noise coupling
@ Model environmental
variations by Uniform
distributions and capture
their variability by
polyhedron

Correlated Parameter Variations Captured by Ellipsoid
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@ Manufacturing variations
m Device
= Interconnect

@ Model manufacturing
variations by Normal
distributions and capture
their variability by ellipsoid

Parame




Capturing the process variation

B Process variation statistics are characterized
by joint-pdf [Nassif’'01]
= Independent Gaussian random variables
m Correlated Gaussian random variables
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3 Equidensity contour is concentric ellipsoid

U=f(uZn)={x eR"| =) T (X -y <r?

3 Probability has a chi-square distribution with
degree n
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OPERA Concept

Robust Design with Guaranteed Yield



Robust Optimization Approach

@ Robust geometric programming

B Robust GP incorporates a model of data uncertainty and optimizes for
the worst-case scenario under the model

B Computation time increases in number of uncertain parameters

@ Design for variability via robust GP:

B Many analog IC design for variability problems can be cast as
robust GPs

B Handles statistical variations in both process parameters and

B Can carry out robust designs with required yield bound

B Results in less over-design (compared with corner-enumeration
optimization)

More details can be found in “Tractable Approximate Robust
Geometric Programming”, revised for publication, May 2005
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Modeling Process Variations

@ Variance-linked-to-mean variation

o (e.g. AR/R, AC/C),
l.e. variance Is proportional to mean
= Model the variations in )Y

2
5pl-/pl- ~ N(0,0'l- ), i =1,...,q

@ Variance-not-linked-to-mean variation
o (e.g. AW, AL, AV,,),
I.e. variance is independent of mean

m Model the variations in both and
as

P, ~N(o,a]29i), i=1...,q, &; ~N(O,c7)2€j), ji=1,...,n



Lognormal approximation

@ Narrow normal distribution can be
approximated as lognormal distribution

= Most process parameter variation satisfy this
condition (e.g. tox)

Fitting normal distribution with lognormaldistribution (T

)
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Ring Oscillator Design Example

@ 5GHz Ring Oscillator design example
@ IBM 7HP 1.8V 0.18um BiCMOS process

@ Design Variables:
= W, L, AV

@ Design objective and constraints:

Minimize  Power
Subject to Phase Noise < PN_max
f _resonant = f,




Robust Ring Oscillator Design Results

@ Optimization results ( yield bound for robust
GP, Freq: 51 GHz):

Design Variables GP Design

Weff 4.53um
Length 0.26um
AV 0.42V

GP Design Robust GP
Design
2.59mW
= 90%

Phase Noise -100dBc/Hz ~ L0l c/Fe/rlZ

Frequency 5GHz 299G 7

@ Robust design achieve better yield with higher
design cost

Specifications




Monte Carlo Verification

a Actual ¥(e|d is estimated by Monte Carlo analysis
with 10K samples

Phase noise histogram and Gaussian fitting

Acceptable Region: Unacceptable region:
PN = —100 dBc/H= -1 : PMN = —100 dBc/H=

MNominal Design

—103 —1025 —-102 —-101.5 —101 —100.5 —100 —995
Phase MNoise (dBcoc/Hz @ 1 MHz offset)

a1 Optimization without considering process variation
? .. nominal design) might have very low yield
in this example)

@ Robust GP design achieved guaranteed yield



Design Cost vs. Yield Requirement

@ Trade-off curve of
(design cost ) versus

Design cost (power consumption) versus yield requirement
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@ Design cost increases when yield requirement
Increases



Voltage-Controlled Oscillator
Design Example

@ 2.1GHz LC VCO design
example

@ Hitachi SiGe BiCMOS
process using 90GHz f;
NPN

@ Differential VCO is
equivalent to a tank
model




VVCO Experiment Setup

@ Design Variables:

= | _bias, g _tank, C_tank, L, Vsw
@ Design objective and constraints:

Minimize Power
Subject to Phase Noise < PN_max
Loop Gain > LG _min
L tank*C_tank*w2 =1
Vsw = Vdd
Vsw = | bias/g_tank

@ Design Uncertainty:

(Actank Agtank AL
Ciank  Ztank )
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VVCO optimization results

@ Robust GP yield bound:
= Yield bound can be set by adjusting the ellipsoid radius

@ Corner selection — vertices of polyhedron
m Confidence ellipsoid in the robust optimization is

inscribed in this polyhedron

@ Optimization results (for 90% yield bound, Freq:
2.1£0.4GHz)

Robust optimization

Corner - enumeration
optimization

C_tank 1.33pF 1.26pF
g_tank 0.894mS 1.018mS
L 2.83nH 2.82nH
Vsw 2.5V 2.5V
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L.C Oscillator design cost vs. yield
bound and actual yield

@ Yield is estimated by 10K Monte Carlo analysis
@ Design cost increase when yield requirement increase

@ 20% over design for +3c actual yield in corner-based
optimization compared to robust optimization

Design cost (Power consumption) versus yield requirement Design cost (Power consumption) versus actual yield

—— Design cost for robust optimization —8— Design cost for robust optimization
——— Design cost for corner-based optimization —&— Design cost for corner-based optimization

Power consumption (mW))
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Discussions and Conclusions

[ Ellipsoidal uncertainty captures both independent
and correlated process variations

@ Robust optimization using posynomial equations
(requires fewer simulations)

@ Guaranteed yield bound by assuring all parameters
within the ellipsoid instead of sampling the
process variation

@ Handles both parameter and design variable
uncertainty

B
(compared with corner-enumeration optimization)



