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Abstract—We first consider the problem of determining the
doping profile that minimizes base transit time in a (homojunc-
tion) bipolar junction transistor. We show that this problem
can be formulated as a geometric program, a special type of
optimization problem that can be transformed to a convex opti-
mization problem, and therefore solved (globally) very efficiently.
We then consider several extensions to the basic problem, such
as accounting for velocity saturation, and adding constraints on
doping gradient, current gain, base resistance, and breakdown
voltage. We show that a similar approach can be used to maximize
the cutoff frequency, taking into account junction capacitances
and forward transit time. Finally, we show that the method ex-
tends to the case of heterojunction bipolar junction transistors, in
which the doping profile, as well as the profile of the secondary
semiconductor, are to be jointly optimized.

Index Terms—Base doping profile, base transit time minimiza-
tion, cutoff frequency maximization, geometric programming,
Ge-profile optimization, optimal doping profile.

I. INTRODUCTION

THE BASE transit time is an important parameter in
determining the speed and the high frequency response

of a bipolar junction transistor (BJT). The base transit time is a
function of the doping profile; minimizing base transit time, by
proper choice of doping profile, is a well studied problem [29].
Methods that have been proposed include iterative schemes
[19], variational calculus [30], and optimal control [25], [26],
which are compared in [30]. None of these methods, how-
ever, can guarantee (global) optimality of the resulting doping
profiles.

In this paper we introduce a new method for finding the
doping profile that minimizes the base transit time, subject to
constraints. The method is based on formulating the problem
as a geometric program (GP), a special type of mathematical
optimization problem. Recently developed numerical methods
for GPs can solve even large scale problems very efficiently,
always guaranteeing that the global optimum is found [6], [7],
[15]. In particular, the method described in this paper finds the
globally optimal doping profile (for the models used).

The method described here can in addition handle a variety of
practical constraints, such as limits on the doping concentration
and its gradient, current gain, base resistance, and breakdown

Manuscript received March 25, 2005; revised August 15, 2005. This work
was supported by the Stanford Graduate Fellowship, by the MARCO MSD
Center, by the National Science Foundation under Grant 0423905 and (through
October 2005) Grant 0140700, by the Air Force Office of Scientific Research
under Grant F49620-01-1-0365, by the MARCO Focus Center for Circuit and
System Solutions under Contract 2003-CT-888, and by the MIT DARPA under
Contract N00014-05-1-0700. The review of this paper was arranged by Editor
J. N. Burghartz.

The authors are with the Department of Electrical Engineering, Stanford Uni-
versity, Stanford, CA USA (e-mail: sidj@stanford.edu; boyd@stanford.edu;
dutton@gloworm.stanford.edu).

Digital Object Identifier 10.1109/TED.2005.859649

voltage. The method also extends to the problem of minimizing
base transit time in heterojunction bipolar transistors (HBTs), as
studied in [3], [4], [17], [18]. In the case of SiGe HBT, our ap-
proach applies to several problems: determining the base doping
profile, given the Ge-profile; determining the Ge-profile, given
the base doping profile; and the joint optimization problem, i.e.,
jointly optimizing both profiles, to minimize base transit time.
This joint optimization problem has not been addressed in the
literature.

We start with the model of base transit time in a homojunction
BJT, and show how to formulate the basic optimal doping pro-
file problem as a geometric program. In Section III we describe
some model refinements, e.g., taking velocity saturation into ac-
count, as well as various additional constraints that can be added.
In Section IV we consider the problem of finding the optimal base
dopingprofile tomaximize thecutoff frequency of thedevice, and
show that it too can be (at least approximately) formulated as a
GP. In Section V we consider minimization of base transit time
in HBTs. We show the joint profile optimization problem, where
we optimize both the Ge-profile and the base doping profile to
minimize base transit time, can be transformed to a GP.

Our approach is to formulate these various doping profile op-
timization problems in GP form. We refer the reader to [6] for
an introduction to geometric programming, some of the basic
approaches used to formulate problems in GP form, a number
of examples, and an extensive list of references. For background
on geometric programming and its relation to convex optimiza-
tion, we refer the reader to [7, Sect. 4.5]. Geometric program-
ming has been used to solve a variety of circuit design problems,
including sizing of analog circuits [10], [13], [21], [33], digital
circuits [5], [27], mixed-signal circuits [8], [12], and RF circuits
[14], [22] (for a more complete list, see, e.g., [6]).

Geometric programs can be transformed to convex optimiza-
tion problems, and therefore solved globally and efficiently, for
example by recently developed interior-point methods (see, e.g.,
[7]). Sparse GPs (i.e., problems in which each constraint de-
pends on only a few variables) with tens of thousands of vari-
ables and hundreds of thousands of constraints can be solved
in minutes, on a small personal computer; problems with thou-
sands of variables can be solved in seconds. Moreover, the solu-
tion found by these methods is guaranteed to be the global solu-
tion. This is in contrast to most numerical optimization methods,
which typically produce a locally optimal solution, which need
not be the global solution.

II. BASE TRANSIT TIME OPTIMIZATION

A. Base Transit Time Model

The doping profile, denoted , is a positive function of
a space variable over the interval 0 , where
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is the base width. A model for the base transit time in a
homojunction BJT is given by [16]

(1)

where is the intrinsic carrier concentration and is
the carrier diffusion coefficient. This model assumes low-level
injection, and neglects velocity saturation and carrier recombi-
nation in the base region, which are the commonly made as-
sumptions. (In Section III we will consider a refined model that
includes velocity saturation.)

At a point , the intrinsic carrier concentration and car-
rier diffusion coefficient are functions of the doping con-
centration . The intrinsic carrier concentration de-
pends on the effective bandgap reduction as [17],
[19], [32]

(2)

where is the intrinsic carrier concentration in undoped sil-
icon, is the Boltzmann constant, and is the temperature
(Kelvin). In a homojunction BJT the effective bandgap reduc-
tion is only due to doping, i.e., ,
which is given by

0.018 eV (3)

where is a constant. (In this formula and throughout this
paper, denotes the natural logarithm.) Substituting (3) into
(2) we obtain

(4)

where 0.018 . The Boltzmann constant 8.617
10 eV/K; at 300 K, 0.69.

The carrier diffusion coefficient is a complicated
monotonic function of , but over the region of interest
is well approximated by

(5)

where and are positive constants. This is a simple model
that captures well, the dependence of the minority carrier mo-
bility for electron, on the doping concentration (see [17], [19],
[20], and [30]). More accurate model, obtained by fitting gen-
eralized posynomial to the mobility data (more specifically the
inverse of mobility), can be used without any change in the
methodology. (For generalized posynomial fitting see [6].)

Using (4) and (5) the expression for becomes

1

(6)

B. Basic Doping Profile Problem

The basic doping profile problem is to find the doping profile
, 0 , that minimizes the base transit time ,

subject to limits on the doping concentration

minimize

subject to 0 (7)

The problem (7) is an infinite dimensional problem, since the
optimization variable is the doping profile , a function of

. The doping concentration constraint is a semi-infinite con-
straint, i.e., it is an infinite family of constraints, one for each

0 .

C. Discretized Doping Profile Problem

We first discretize the base region with uniformly spaced
points, , 0 1 1. The doping pro-
file is sampled at these points: we define ,
0 1 1. The base transit time can then be approxi-
mated by the sum

1
(8)

The discretization error can be shown to satisfy
, where is a constant; see Appendix A. This shows that by

choosing large enough, the discretization error can be made
arbitrarily small. In the remainder of this paper we will work
with the discretized (approximate) expression for base transit
time, . To keep the notation simple, however, we will drop
the hat from , and simply use to denote the discretized
base transit time. Thus, from now on, we take

(9)

where .

D. Geometric Programming Formulation

Substituting in (9) into the basic optimal doping profile
problem (7), we obtain the problem

minimize

subject to (10)

which is a finite dimensional, nonlinear, constrained optimiza-
tion problem, with variables . It has, however,
a very special form: since in (9) is a posynomial function
of the variables , this problem is a geometric
program. (See [6] or [7, Sect. 4.5] for more on posynomials
and geometric programs.) As a result, the problem (10) can be
solved very efficiently, for example by interior-point methods.
Moreover, such methods guarantee that the globally optimal
solution is found.

We will denote the optimal doping profile by , and the
corresponding minimum base transit time .
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E. Sparse GP Formulation

A basic interior-point method for the problem (10) has a com-
plexity that grows like , since the objective function is not
sparse (indeed, it depends on all the variables). Such a method
would become slow for problems with more than a few thou-
sand. Fortunately we can derive an equivalent formulation of the
problem (10), which has more variables and constraints, but has
the very desirable feature of sparsity, i.e., its objective and each
of the constraint function depends only on a handful of variables.
A GP solver that can exploit sparsity can solve a sparse GP, even
if it has more variables and constraints, far faster than an equiva-
lent nonsparse formulation. For the optimal doping problem, the
complexity of such a method grows like , and essentially re-
moves any practical limit on what can be. For values of on
the order of a few thousand, the reformulated method gives ex-
tremely fast solution times, on the order of a second or two.

The key to developing a sparse formulation is to introduce
some new variables to represent the sums in our expression for

. We define

1

(11)
The base transit time can be expressed as . The above
equations can also be expressed as (backward) recursions

0 2

0 2 (12)

Using these expressions, we can formulate the optimization
problem (10) as

minimize

subject to 0 1 1

0 2

0 2

(13)

where are the
variables, and . This problem is not a GP, since
it contains posynomial equality constraints. (The last two
equality constraints are GP-compatible, since a GP can include
monomial equality constraints.) Note that the problem is sparse,
since the objective and each constraint function depends on
only a few variables (at most four).

The next step is to relax the posynomial equality constraints
to posynomial inequality constraints, which gives

minimize

subject to 0 1 1

0 2

0 2

(14)

TABLE I
MODEL AND PROBLEM PARAMETER VALUES USED FOR THE

NUMERICAL EXAMPLE

Fig. 1. Optimal doping profile N (x).

which is a sparse geometric program. Since increasing or
only increases the objective , we can conclude that at any op-
timal solution of the GP (14), the relaxed inequality constraints
hold with equality. Thus, by solving the sparse GP (14), we solve
the dense GP (10). Although the GP (14) has around three times
the number of variables as the original GP (10), it is very sparse,
and so can be solved extremely efficiently.

F. Example

We first consider a numerical example of the optimal doping
profile problem (10). The model and problem parameters are
taken from [30], and listed in Table I. We discretize the problem
with 1000, and use the sparse GP formulation (14), which
has 3000 variables and 4000 constraints. This GP is solved using
the MOSEK GP solver [1], with a computation time on the order
of 3 or 4 seconds, on a small personal computer. The resulting
(globally) optimal doping profile is shown in Fig. 1. The (glob-
ally) optimal base transit time is 1.52 ps. To check that our
discretization error is not significant, we also solved the problem
with 10 000 (which increases solution time to only 40
seconds), and find no change, to three significant figures, in the
optimal base transit time or the optimal doping concentrations.

We compared our optimal doping profile with the one ob-
tained by Kumar and Patri [19], who use an iterative method
to minimize base transit time. The optimal doping profile (and
base transit time) found by our method coincides with the one
found by their iterative scheme. Since our method always finds
the globally optimal solution, we conclude that (at least for this
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one example) their iterative scheme did in fact produce the glob-
ally optimal doping profile.

For comparison, we give the base transit time achieved by
a simple uniform doping profile. For such a doping profile we
have , so the base transit time has the form

2
(15)

Since 0, the minimum is achieved when .
For this particular example, the base transit time obtained by a
uniform doping profile is 1.80 ps, around 18% larger than the
optimal value. (In other words, the optimal doping profile gives
an 18% reduction in base transit time, compared to a simple
uniform doping profile.)

G. Sensitivity Analysis

Before proceeding we comment on the sensitivity of the op-
timal doping profile to variations in model parameters and the
doping profile, since optimization sometimes yields designs that
are very sensitive to model variations. First we consider varia-
tions in the doping profile itself, i.e., we assume the true doping
profile is 1 , where denotes
the optimal doping profile, denotes the actual doping
profile, and is a fractional error. As a simple model of vari-
ation, we assume that , where is a maximum frac-
tional deviation between of the optimal and the actual doping
profiles. We can find a general bound on how much such vari-
ations increase by first imagining that the variations in
are different in the two sums appearing in the expression (9) for

. (This assumption is conservative, i.e., it increases the effect
of the doping variation, but it makes the analysis simple.) With
this assumption we can substitute the extreme value

1 or 1 for each value
of , that maximizes . For the inner sum, i.e., for the terms

, we choose since 1 0. Similarly
for the outer sum, i.e., for the terms , we choose ,
since 1 0. This gives the (upper bound on) base transit
time

1 1

Here is an upper bound on the base transit time, for any
profile that is within a fraction of .

For our example, if we have a maximum deviation of
0.05 (i.e., 5% variation in the doping), and and from
Table I, the base transit time is no more than 1.60 ps, a 5% in-
crease over the optimal value.

In a similar way we can study uncertainty in the parame-
ters and . For the optimal profile, we find that in-
creases with decreasing and increasing . It follows that if
these two parameters lie within given intervals, the worst case
(i.e., largest ) occurs when assumes its smallest value, and

assumes it largest value. For the example, we find that, for
10% variations in and , the largest base transit time is ob-

tained when is 0.9 times its nominal value and is 1.1times
its nominal value. The resulting worst case base transit time
is 1.62 ps, a 7% increase over the optimal base transit
time. Further, if the doping profile is optimized at the worst case

values of and , the optimal base transit time achieved is still
the same, i.e., 1.62 ps. This shows that the optimal doping pro-
file does not change appreciably with variation in and .

In summary, we find that the optimal doping profile
found above does not suffer from excessive sensitivity to doping
profile or model parameter values.

III. EXTENSIONS OF BASE TRANSIT TIME OPTIMIZATION

In this section we consider various extensions to the basic
doping profile optimization problem (10) [or the sparse formu-
lation (14)], that still can be formulated as in GP form, and
thus preserves our ability to solve the problem globally (and
efficiently). First, we can change the model for , as long as
it remains a posynomial (or generalized posynomial). In Sect-
tion III-A, for example, we show how velocity saturation can
be modeled, while keeping our expression for generalized
posynomial. Second, we consider examples of additional GP
compatible constraints that can be added to the doping profile
problem. In Section III-B and Section III-C, we show how a
constraint on the doping gradient and a contraint on the current
gain of the device can be exactly transformed to a GP compat-
ible format, respectively. In Section III-D and Section III-E, we
show how a constraint on the intrinsic base sheet resistance and a
constraint on the breakdown voltage can be approximately taken
into account in the GP formulation. The base transit time opti-
mization problem can be solved with any combination of these
GP compatible constraints.

A. Velocity Saturation

A model for the base transit time in a homojunction BJT,
taking velocity saturation at the base–collector into account, is
given by [31]

1
(16)

where is the saturation velocity of electrons, which is a
constant.

Using the simple discretization described above, the (dis-
cretized, approximate) base transit time can be expressed as

(17)
This function is also a posynomial of the variables

, and so can be substituted into the basic base
transit time minimization problem (10), which gives another
GP.

The carriers can attain saturation velocity inside the base re-
gion. To take this velocity saturation into account we look at
the following interpretation of the base transit time. The base
transit time is the total time required by a carrier to travel
across the base width. Let the apparent velocity of the particle,
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i.e., not taking into account the velocity saturation, at point in
the base region be . Then the base transit time is given by

1
(18)

Velocity saturation means that the true velocity of the carriers
cannot increase beyond , and so the true velocity at a point

is . Therefore, the base transit time is

(19)

By comparing (1) and (18), the apparent velocity is

(20)

and base transit time considering velocity saturation in the base
is

1

(21)
We will now show that the problem of finding the base doping

profile that minimizes as in (21), is a generalized geo-
metric program (GGP) which can be transformed to a GP [6],
and then solved efficiently. Using (2)–(6), and discretizing the
base region we get

1 1

(22)

Note that this is a rather complex function of the variables ; for
example, because of the maximum, it is not even differentiable
(at some points, at least). But the base transit time is a sum
of terms, each of which is the maximum of posynomials, and so
is a generalized posynomial [6]. The problem of minimizing a
generalized posynomial, subject to posynomial constraints, is a
generalized geometric program; see [6, Sect. 5] for details. The
problem can therefore be solved efficiently.

To transform this problem to a sparse GP, we define

0 1

1
0 1 (23)

where is . The base transit time can be ex-
pressed as

(24)

The equations for s can be expressed as (backward) recursions,
as in (12). Using (23) and (12), the optimization problem is

minimize

subject to 0 1 1

0 2

0 1

(25)

where are the vari-
ables, and as in (24). This problem is not a GP, because
it contains generalized posynomial equality constraints. To con-
vert it to a GP, we relax these equality constraints to inequality
constraints, and use the fact that

if and only if

which gives

minimize

subject to 0 1 1

0 2

0 1

0 1 (26)

which is a GP. Since increasing or only increases the objec-
tive , we can conclude that at any optimal solution of the
GP (26), the relaxed inequality constraints hold with equality,
and therefore problems (25) and (26) are equivalent. Note that
for any given apparent velocity profile , 0 , we
have . Therefore, the optimal base transit time satis-
fies the inequality, .

To illustrate this, we again consider the numerical example of
SectionII-F.Wetakethesaturationvelocitytobe 10 cm/s.
We plot the apparent velocity profile (20) for the optimal
doping profile shown in Fig. 1, and find that is a in-
creasing function of , and reaches saturation at 0.723 .
We then solve the problem (26), which takes into account ve-
locity saturation. The resulting optimal doping profile obtained
is (very nearly) the same as the optimal doping profile obtained
for the original problem (10), shown in Fig. 1. The optimal base
transit time with velocity saturation in the base is found to be

1.66 ps, as compared to 1.52 ps, the optimal base
transit time for problem (10). So in this example, modeling ve-
locity saturation does not affect the optimal doping profile, but it
does affect the predicted base transit time. Of course in general
this need not be the case; the optimal doping profile for the model
including velocity saturation need not be the same as the optimal
doping profile when saturation is neglected.

B. Doping Gradient Constraint

Consider a maximum (percentage) gradient in doping con-
centration
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Fig. 2. Optimal doping profile N (x) for different values of doping gradient
limit � .

where specifies the maximum allowed gradient. After dis-
cretization of the base region this constraint can be expressed
in terms of as

1 1 0 1 2

(27)
These are 2 1 monomial inequality constraints, and so are
GP compatible. We can add these constraints to the basic doping
profile optimization problem, and obtain a GP.

To illustrate this, we consider our numerical example
problem, with an added doping gradient constraint,

minimize

subject to 0 1

1 0 2

1 0 2 (28)

where . (The other problem and model parameters
are given in Table I; we take 1000.) The optimal doping
profiles obtained, for

0.0155 0.0110 0.0065 0.0020

are plotted in Fig. 2. (The value corresponds to the
problem with no gradient constraint.) As decreases the doping
gradient constraint becomes tighter, and the value of minimum
base transit time increases. Fig. 3 shows the increase in with
decrease in , or equivalently, the optimal tradeoff curve of max-
imum doping gradient versus base transit time.

C. Current Gain Constraint

The current gain , i.e., the ratio of collector current to base
current, is also affected by the base doping profile. In this section
we show that a constraint requiring a minimum value of current
gain, i.e., , is GP-compatible. The optimal doping

Fig. 3. Optimal base transit time versus doping gradient limit � .

profile problem, with minimum current gain constraint, can be
expressed as

minimize

subject to 0

(29)

In the rest of this section we will show that the constraint
can be expressed as a posynomial inequality, so the

problem (29) becomes a GP, after discretization, and therefore
can be globally and efficiently solved.

The current gain can be expressed as ratio of Gummel num-
bers

(30)

where is the emitter Gummel number, and is the base
Gummel number [2], [32]. The emitter Gummel number
depends on the emitter doping profile and not on the base doping
profile, and therefore can be treated as a positive constant for our
purposes. The base Gummel number depends on the base
doping profile according to

(31)

Using (2)–(5), this becomes

1
(32)

Discretizing the base region we get the approximation

(33)
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Fig. 4. Optimal doping profiles N (x) for different values of minimum
current gain � .

which is a posynomial function of . The minimum
current gain constraint then becomes

1 1

(34)
which is a posynomial inequality constraint, and therefore GP
compatible. We can therefore express the problem (29) (approx-
imately) as the GP

minimize

subject to 0 1 1

1 (35)

By solving the problem (35) for various values of , we ob-
tain the (globally) optimal tradeoff curve between and .

The minimum current gain constraint is particularly simple
to express using the sparse GP formulation (14). From (11) we
see that , so the minimum current gain
constraint is just

1 (36)

Adding this constraint to problem (14) gives a sparse GP for-
mulation for the doping profile optimization problem with min-
imum current gain constraint (35).

To illustrate this, we consider the numerical example again,
with an additional minimum current gain constraint. The re-
sulting optimal doping profiles are shown in Fig. 4, for min-
imum current gains

10 0 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.43

(The value 0 corresponds to the unconstrained case, i.e.,
the optimal doping profile with no current gain constraint.)

The (globally) optimal tradeoff of base transit time versus
current gain is shown in Fig. 5. The plot shows that when is

Fig. 5. Optimal tradeoff curve of base transit time versus minimum current
gain � .

small the base transit time achieved is the same as in the uncon-
strained case, 1.52 ps. As the minimum current gain
is increased, the minimum base transit time increases. When the
minimum current gain is equal to the its maximum achiev-
able value (which occurs with a constant doping profile), we
have 1.80 ps.

D. Intrinsic Base Sheet Resistance Constraint

For a bipolar junction transistor it is desired to have low in-
trinsic base sheet resistance (denoted ). In this section we
consider imposing a limit on the maximum intrinsic base sheet
resistance, i.e., the constraint . We will see that
this constraint cannot be exactly incorporated in the GP frame-
work, but a good approximation will result in a GP compatible
constraint.

The intrinsic base sheet resistance is given by [32]

(37)

where is the magnitude of the charge of an electron, is
the mobility of holes in the -type base, and is the density
of holes in the -type base. The mobility is related to the carrier
diffusion coefficient by

The carrier diffusion coefficient of the holes, which are the ma-
jority carriers in the -type base, is well approximated by [3]

(38)

where , and are positive constants with values

8.98 cm s 10 cm 0.3627
(39)

The density of holes is approximately equal to the base
doping concentration , assuming complete ionization.
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Substituting (38) into (37), we get the dependence of the
intrinsic base sheet resistance on the base doping profile

(40)

Since 1 , we see that low doping concentration in the base
leads to high base sheet resistance, which is not desirable.

We would like to solve the base transit time problem (7) (and
(29)) with a maximum limit on , i.e., with an additional con-
straint . This is equivalent to

(41)

Discretizing the base region the inequality (41) becomes

(42)

Unfortunately, this inequality is not a GP compatible constraint.
Therefore, we seek GP compatible constraints that approxi-
mately limit the base resistance.

A crude method for controlling is to change the minimum
level of the doping concentration . We simply increase the
minimum doping concentration until the base resistance

is reduced to a satisfactory value.
We will now show a far better method to approximate the

intrinsic base sheet resistance constraint (41) in a GP formula-
tion. Using the arithmetic–geometric mean inequality we can
produce a GP compatible approximation of the constraint (42).
Since the arithmetic mean is greater than geometric mean, we
have

1

Therefore, if the inequality

(43)

holds, then the inequality (42) must also be satisfied. The in-
equality (43) is a GP compatible constraint, since the left-hand
side is a monomial function [6]. The constraint (43) can be
added to problem (10) [and (35)] to ensure that the intrinsic
base sheet resistance of the device is below , i.e.,

.
The approximation produces a conservative bound on the in-

trinsic base sheet resistance. The inequality (43) has the fol-
lowing interpretation. When the doping concentration is viewed
on a logscale, the inequality (43) means that the average doping
concentration (on a logscale) should be greater than a certain
value, i.e.,

1 1
1

To illustrate how the intrinsic base sheet resistance constraint
changes the optimal doping profile we will use the numerical
example of Section II-F, i.e., problem (10) with the additional

Fig. 6. Optimal doping profile N (x) for different values of R .

constraint (43). The intrinsic base sheet resistance for the doping
profile shown in Fig. 1 is found [using (40)] to be 10.3 k . We
solve the problem for two values of a maximum base resistance

5 k 2.5 k

Fig. 6 shows the optimal doping profiles obtained. The dashed
curve is the same doping profile as shown in Fig. 1. The solid
curve with a greater average doping is the optimal doping pro-
file for the case 2.5 k . Since the GP compatible
constraint (43) is an approximation, it produces a conservative
bound on the intrinsic base sheet resistance , and therefore
we expect the value of obtained by the optimal doping pro-
files to be lower than . The optimal doping profile for

5 k , has a 3.5 k (and 3.2 ps); and
for 2.5 k , has a 2.2 k (and 6.3 ps).

E. Breakdown Voltage Constraint

In the design of bipolar junction transistors we are interested
in achieving the collector-emitter breakdown voltage with the
base open circuit above a certain threshold, i.e., in-
clude a constraint in the base transit
time minimization problem. In this section we will show that
this constraint cannot be exactly transformed to a GP compat-
ible constraint, like the constraint on the intrinsic base sheet re-
sistance in Section III-D. Using the same technique, however,
we can form an approximation that is GP compatible.

The collector–emitter breakdown voltage with the base open
circuit is related to the collector–base breakdown
voltage with emitter open circuit by [32, Sect. 6.5]

1
(44)

where is a constant. The collector-base breakdown voltage
with emitter open circuit is determined by the col-
lector doping because the collector doping near the junction
is less than the minimum base doping concentration, and the
breakdown voltage of a junction is determined by doping on the
lightly doped side. Thus, does not depend on the base
doping concentration, and for a given collector doping
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is a known constant. The collector-emitter breakdown voltage
depends on and therefore on base doping profile.

A minimum breakdown voltage constraint on , i.e.,
is reflected as a constraint on as

(45)

The breakdown voltage constraint forces to be lower than a
certain threshold (unlike the constraint on in Section III-C).

Using equations (30)–(34) developed in Section III-C, after
the discretizing the base region, the constraint (45) is a con-
straint on the doping profile

(46)
This is not a GP compatible constraint. To produce a GP
compatible approximation of the constraint (46), we use
the arithmetic–geometric mean inequality (similar to Sec-
tion III-D). Since the arithmetic mean is greater than geometric
mean, if the inequality

(47)
holds, then the inequality (46) must be satisfied. The inequality
(47) is a GP compatible constraint. The inequality (47) gives a
conservative bound that guarantees .

IV. CUTOFF FREQUENCY OPTIMIZATION

In this section we will consider the problem of determining
the base doping profile that maximizes the cutoff frequency
of the bipolar junction transistor. The cutoff frequency is given
by [2], [32]

1
2

(48)

where is the forward transit time, is the base–emitter
junction or depletion layer capacitance, is the base–col-
lector junction or depletion layer capacitance, is the
transconductance, and, is the collector resistance. We will
now investigate how depends on the base doping profile and
then show the problem of optimizing cutoff frequency can be
solved by the GP approach.

A. Transconductance

The transconductance is given by

(49)

where is the collector current. The collector current is
given by [2, Sect. 3.6]

(50)

where is the magnitude of charge of an electron, is the
area of base–emitter junction, is the intrinsic carrier concen-
tration in undoped silicon, and, is a given applied voltage

across the base–emitter junction. Thus, depends on the base
doping profile through the base Gummel number as given in
(32). (We can put a maximum and minimum current constraint
on , which is same as having a maximum and minimum cur-
rent gain constraint. These constraints can be accurately trans-
formed to a GP compatible constraint as shown is Section III-E
and Section III-C respectively.)

B. Junction Capacitances

The doping concentration in the collector region near the
base–collector junction is assumed to be lower than the doping
concentration in base. Therefore, the base–collector junction
capacitance , is determined by the collector doping
profile. Thus, is independent of the base doping profile.
The collector resistance also depends on collector doping
and thus independent of the base doping.

The base–emitter junction or depletion layer capacitance
depends on the base doping profile, since the emitter

doping is greater than the maximum base doping . To
model the exact dependence of on the base doping pro-
file is quite complicated, therefore we make some simplifying
assumptions. We assume that the extention of base–emitter
depletion layer into the base is small, which is the case because
base–emitter junction is forward biased when the device is
operating in active region. We also assume that the base doping
near the base–emitter junction is constant, which is inspired
from the solution of problem (10) shown in Fig. 1. Note that
we can also add the constraint that the base doping profile is
constant up to 5% of the base width. Using the capacitance
relation for a pn-junction in [23, Sect. 7.2], for a constant
base doping is

2
(51)

where is the permittivity of silicon, is the area of the
base–emitter junction, is the built-in potential, is a
given applied voltage across the emitter–base junction. The
quantity depends very weakly on the base doping,
and we take it to be a constant. Thus, is proportional to

0 .
Other shapes of the base doping profile near the base–emitter

junction can be considered. In general suppose the doping pro-
file is given by

0 0.05

where is a variable, and is a constant that depends on the
shape of the profile. For example, 0 corresponds to con-
stant doping, 1 corresponds to linear graded doping. The
capacitance is given by

2

For a particular shape of the profile, i.e., given , the capaci-
tance is a monomial in the variable and therefore posses
no problems in optimizing the cutoff frequency by the GP ap-
proach.
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C. Forward Transit Time

The forward transit time has the following components [2,
Sect. 5.2], [32, Sect. 8.3.3]

(52)

where is the emitter delay time, is the base transit time,
is the emitter–base depletion region transit time, is the

base–collector depletion region transit time. The emitter delay
time is given by [2, Sect. 3.6, Sect. 5.2]

2
(53)

where is the width of the emitter region, is the
equilibrium concentration of holes in the emitter, is the
intrinsic carrier concentration in undoped silicon, is the
base Gummel number. The quantities , and
are independent of the base doping profile . The base
Gummel number depends on as given by (32). The
base–collector depletion region transit time is given by

2
(54)

where is the base–collector depletion width and is the
saturation velocity of electrons. The base–collector depletion
width is determined by the collector doping concentration
near the base–collector junction which we assume to be lower
than the base doping concentration. Therefore, does not
depend on the base doping profile. The emitter–base depletion
region transit time is typically small compared to the other
terms in (52) and can be neglected.

D. GP Formulation of Cutoff Frequency

Now we can see the dependence of the cutoff frequency on
the base doping profile. Substituting (49)–(51) in (48) we get

1
2 2

2

0

2
(55)

where and depend on base doping profile as
given by (6) and (32), respectively.

Discretizing the base region and using (9) and (33), we obtain
1/2 as a posynomial in the variables . There-
fore, the problem of maximizing , equivalently the problem

minimize
1

2
subject to 0 1 1 (56)

is a GP. Any other GP compatible constraints, e.g., as discussed
in the Section III, can be included in (56).

Fig. 7. Optimal doping profile N (x).

E. Example

To get an idea of the shape of the optimal doping profile that
maximizes the cutoff frequency, we consider a numerical ex-
ample. Without explicitly giving all the parameter values in the
expression (55) we will solve the following problem:

minimize 4 10 8 10

subject to 0 1 1

0 0.05 (57)

The parameter values in Table I are used. The optimal doping
profile obtained is shown in Fig. 7, and the optimal objective
value is 1.81 ps. The individual contributions to the objective
are: the base transit time 1.61 ps, the sum of the for-
ward transit time and the base–collector junction capacitance
delay, 4 10 0.17 ps and, the base–emitter junc-
tion capacitance delay 8 10 0.03 ps. If we take

0.4 ps, we obtain the cutoff fre-
quency 7.2 GHz.

V. HBT OPTIMIZATION

HBTs alters the structure of the semiconductor material in the
base region by using another semiconductor. In the SiGe HBT,
the base transit time is affected by the profile of both the doping
and the Germanium content in the base. This leads to several
possible optimization problems.

• Optimal doping profile. Determine the optimal doping
profile, given the Ge-profile.

• Optimal Ge-profile. Determine the Ge-profile, given the
doping profile.

• Joint profile optimization. Determine the optimal doping
profile and the optimal Ge-profile.

We will show that all three problems can be expressed as
GPs, and therefore solved globally with great efficiency. To be
specific, we will consider a silicon germanium (SiGe) HBT
throughout this section.
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A. Base Transit Time Model

For a SiGe HBT the base transit time is given by

(58)
where is the intrinsic carrier concentration in SiGe,
and is the carrier diffusion coefficient of SiGe. At
a point , the intrinsic carrier concentration depends
on the effective bandgap reduction as

(59)

where is the ratio of the effective density of states in SiGe to
the effective density of states in silicon, and is a constant. The
effective bandgap reduction has two components,
one due to the doping profile (as given earlier by
(3)), and the other due to the Ge-content

(60)

The component due to Ge-content depends linearly
on , the Ge fraction in SiGe at the point , i.e.

(61)

and we require

0 0 (62)

where is the maximum value of Ge fraction desired.
Therefore, we have

(63)

where the Ge fraction is a function of the space variable
. The carrier diffusion coefficient also depends on

Ge-content, and is given by

(64)

where is a constant and is given by (5).
Using (63) and (64) we obtain an expression for base transit

time

1

1
(65)

This expression depends on both the doping profile , and
the Germanium profile ; these are both functions of the
space variable , for 0 .

B. Optimal Doping Profile

We first consider the problem of choosing the doping pro-
file to minimize base transit time, when the Ge-profile is fixed.
We will show that this problem results in a GP similar to the
basic one considered above (7). Since the Ge-profile is known,
the values of the functions and 1

are known for 0 (and are positive).

Discretizing the expression for , we get

(66)

where and , , are the values of
the respective functions at for 0 1,
i.e.

1
1

(67)

Here, the values , , 0 1 are fixed posi-
tive values; are the variables. Thus, is a
posynomial in , so the problem of choosing the
doping profile, with a given Ge-profile, to minimize base transit
time, i.e.

minimize

subject to 0 1 1 (68)

is a GP.

C. Optimal Ge-Profile

We now assume that the doping profile is fixed, and consider
the problem of choosing the Ge-profile to minimize base transit
time. To formulate this problem as a GP we need to make some
simplifying assumptions. We assume the total Ge-content in the
base is kept constant

1
(69)

and that the diffusion coefficient of SiGe is approximated by

1 (70)

We note that 1 is a positive constant, since we
assume is fixed.

Instead of working with directly, we will work with its
logarithm, . The base transit time can be
expressed in terms of as

1
1

(71)

Now we discretize the base region, and define

0 1 1

The base transit time is then (approximately)

(72)

where 1 is a constant.
Since the doping profile is given, are positive constants; the
variables here are , which describe the Ge-profile.
Note that is a posynomial in .
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We now translate the maximum and average Ge-profile
constraints, given in (62) and (69), into GP-compatible con-
straints on . The maximum Ge-fraction constraint
becomes

0 1 1 (73)

which is a set of GP compatible constraints. The constraint on
the average value of the Ge-profile, in discretized form, is

1
(74)

which can be expressed in terms of as

(75)

This is a monomial equality constraint, and so is GP compatible.
To find the Ge-profile that minimizes base transit time, given

the doping profile, we solve the GP

minimize

subject to

0 1 1 (76)

with variables . The optimal Ge-profile is then
given by

0 1

D. Joint Profile Optimization

We now consider the most general problem: finding the
doping profile and the Ge-profile, simultaneously, that mini-
mize base transit time. To the authors’ knowledge, this problem
has not been considered before.

We first observe that in (72) is a posynomial of the
variables and . To form the joint
optimization problem, we simply combine constraints from the
doping problem (68) and the optimal Ge-profile problem (76),
to obtain

minimize

subject to

0 1

0 1 (77)

The problem is a GP with variables and
.

By solving this GP, we obtain the jointly optimal profiles,
i.e., doping profile and the Ge-profile that jointly minimize the
base transit time. This provides a one-step method, that finds
the globally optimal solution. In particular, it is guaranteed to
out-perform ad hoc methods for joint optimization, such as alter-
nating between doping profile optimization (with fixed Ge-pro-
file) and Ge-profile optimization (with fixed doping profile).

E. Sparse Joint Profile Optimization Formulation

We can obtain a sparse GP formulation of the joint doping
profile problem (77), as an extension of the sparse GP formula-
tion for homojunction BJT doping profile problem. The sparse
GP formulation is

minimize

subject to 1 0 1

0 1

0 2

0 2

0 2

(78)

where the variables are , ,
, , and . Each

constraint in this problem depends on at most five variables.
This is a large, sparse GP and can be solved extremely effi-
ciently.

F. Example

We give a numerical example to illustrate joint doping profile
optimization. We use the values from Table I, along with

3 0.688 eV/

which are taken from [17]. (At 300 K, we have
26.614.) The maximum Ge-content is taken to be 0.25,
and we consider average Ge-content values

0 0.02 0.05 0.08 0.11 0.14 0.17 0.2

(The value 0 corresponds to the BJT optimization
problem solved in Section II-F.) The resulting sparse GP has
4000 variables, and 7000 constraints, and is solved (globally)
using the MOSEK GP solver [1], in around 6 seconds, on a per-
sonal computer.

The jointly optimal doping and Ge-profiles are plotted as the
solid curves in the two plots in Fig. 8. The optimal base transit
time, obtained by the jointly optimal profiles, as a function of the
average Ge-content, is shown as the solid curve in Fig. 9. When
the Ge-content is zero, the optimal doping profile coincides with
the profile shown in Fig. 1. The optimal base transit time at-
tains the minimum when is 0.12. When 0.12, the
optimal base transit time is 0.28 ps, a factor of 5.4
smaller than when no Ge-content is used.

G. Extensions

The extensions described in Section III, for the homojunction
BJT case, are readily adapted to the case of HBTs. In particular, a
model that accounts for velocity saturation is readily developed,
gradient constraints (on doping and Ge-profile) can be imposed,
and, a minimum current gain constraint can also be imposed.
All of these can be transformed to GP compatible constraints.
Constraints on the intrinsic base sheet resistance and breakdown
voltage can be approximated to GP compatible constraints.
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Fig. 8. Optimal doping profiles N (x) and optimal Ge-profiles G (x), with
G = 0.25, for different values of G . (Top) Jointly optimal doping
profiles. (Bottom) The solid curves show the jointly optimal Ge-profiles.
The dotted curves show the optimal Ge-profiles for uniform doping profile
N (x) = N .

H. Comparison With Conventional Suboptimal Profiles

In this section, we compare the optimal doping and Ge-pro-
files to some more conventional ones, such as a uniform doping
profile and optimal linear Ge-profile, uniform doping profile and
optimal Ge-profile (i.e., with just the maximum Ge-content con-
straint and the average Ge-content constraint).

Optimal Linear Ge-Profile: We assume the doping profile is
uniform, and the Ge-profile is linear, i.e.

0

Given and , the slope can be determined as
2 . This profile is usually referred to as a tri-
angular profile when 0, and a trapezoidal profile when

0. For this joint profile the base transit time is given by

1
1

(79)
where 2 .

Fig. 9. Optimal base transit time � versus average Ge-content G ,
with G = 0.25. The solid curve shows the optimal base transit time for the
jointly optimal profiles. The dotted curve shows the optimal base transit time
for the uniform doping profile N (x) = N and optimal linear Ge-profile.
The dot-dashed curve shows the optimal base transit time for uniform doping
profile N (x) = N and optimal Ge-profiles.

To minimize , (as before) we choose .
The function 1 is decreasing in , so to
minimize it we should choose as small as possible. Therefore,
the linear Ge-profile is increasing in . The maximum value of
the Ge fraction is attained at , which should be less than

. This gives a constraint on how small can be, which is,
2 . Thus, the optimal value of for the linear

Ge-profile is

2 0 (80)

Given a value of and , the optimal base transit
time for this joint profile, which is a uniform doping profile

, and linear Ge-profile, is given by (79) and (80).
For 0.25 and between 0 and 0.2 the optimal
base transit time obtained by this joint profile is plotted as the
dotted curve in Fig. 9. The difference in the optimal base transit
times obtained by this joint profile and the jointly optimal
profile is the smallest for values of around 0.12. This is
because the optimal linear profile comes closest to the optimal
Ge-profile (shown in Fig. 8) when is around 0.12, but is
quite different for values of at the two extreme points.

We note that, as 0, 0, we have
1 1/2. Thus, the base transit time in (79)
reduces to in (15), as expected. This is verified by Fig. 9,
which shows the optimal base transit time obtained at 0
is 1.80 ps, the same as obtained earlier by (15) for .

Optimal Ge-Profile: It is also interesting to compare the op-
timal base transit time obtained by varying the Ge-content and
keeping the doping profile constant at , i.e., we want to
find the performance loss by choosing a uniform doping pro-
file . Thus, we want to solve the optimiza-
tion problem (76), with given by (72) and ,

0 1. For a given and the optimal
base transit time of this joint profile should be between the
optimal base transit times obtained by jointly optimal profile
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and joint profile with uniform doping profile ,
and optimal linear Ge-profile. For 0.25, the optimal
base transit time for this joint profile is shown in Fig. 9 by the
dot-dashed curve. The optimal Ge-profiles are plotted as dotted
line in Fig. 8.

When the average Ge-content is low, the base transit time
is dominated by the doping profile; but when the average
Ge-content is high, the base transit time is dominated by the
Ge-profile. Therefore, the optimal base transit curve for the
joint profile with constant doping profile , and
optimal Ge-profile, in Fig. 9, starts along the optimal base
transit time curve for optimal linear Ge-profile, uniform doping
profile and ends along the optimal base transit
time for jointly optimal profiles.

VI. CONCLUSION

We have shown that a variety of base doping profile opti-
mization problems can be formulated, after discretization, as
GPs. These problems range from the simplest formulation, min-
imizing base transit time subject to bounds on doping concentra-
tion, to more complex formulations involving multiple dopants,
and constraints on doping gradient and current gain.

Our method has several advantages. First, the GP approach
yields efficient computational solutions, that scale linearly with
the number of discretized regions, and in any case can be solved
in seconds for relatively fine discretizations. The approach is
extensible, in the sense that other GP compatible constraints can
be added, without loss of efficiency. In the same spirit, mode
accurate models of base transit time could be used, provided
they are GP compatible.

The method also handles multiple dopants, not just in the
modeling but in the optimization as well. We showed this in
detail for SiGe profiles in Section V, but the same ideas apply
to problems with even more dopants, e.g., Si Ge C . For
such problems the method gives the optimal solution without the
iteration required in a method that cycles through the dopants,
optimizing each one with the others fixed. Moreover, the GP
approach guarantees that the globally optimal solution is found;
this need not be the case for a method that cycles through opti-
mizing over several dopants separately.

Another general advantage of the GP method is that it is guar-
anteed to always find the globally optimal solution. In partic-
ular, the GP method cannot be “trapped” in a locally optimal de-
sign. While we suspect that other methods, such as the iterative
scheme proposed by Kumar and Patri [19], often find the global
solution, it is not clear to us why this should always be the case.
Since the global solution is always found by the GP method, it
can be used to find the (absolute) limit of performance. This can
be useful in practice even when a simpler profile will ultimately
be implemented. By comparing the performance achieved by a
simple profile (such as the ones found in Section V-H) to the
optimal performance, we can assess performance lost by using
a simple profile.

The main limitation of the GP approach lies in the models,
which are restricted to have a specific analytical form, i.e.,
posynomial or generalized posynomial. While this form is

fairly general, and includes a number of fairly accurate models
that have been used in the literature, we do not expect analytical
models like the ones described in this paper to have the ultimate
accuracy of more complex TCAD models and tools. This obser-
vation suggests a method for combining the GP-based methods
described in this paper with device optimization methods
that rely on detailed device simulations. GP-based methods
(which are fast, and guarantee global solutions, but rely on
less accurate analytical models) are used to rapidly explore the
performance trade-offs, and to get very good starting points.
Then, simulation-based methods (which are slow, find only
local solutions, but give high accuracy) are then used to do the
final tuning (and verification) of the design.

APPENDIX

A. Bound on Discretization Error

In this appendix we give a simple bound on the discretization
error . We assume the doping profile is Lips-
chitz continuous on 0 , i.e., satisfies

0 (81)

for some , called the Lipschitz constant. We also assume that
satisfies

0 for 0

We will show that the function is also Lipschitz on
0 , for any . Start with

(82)
As is Lipschitz, exists (almost everywhere) and
satisfies . The function is also bounded
and thus the integral on the right in (82) is well defined on
0 . Let be an upper bound on , i.e., take

if 1, and if 1. Then

(83)

Thus is Lipschitz on 0 , with Lipschitz constant
.

Now we show that is Lipschitz continuous
on 0 0 , for any , . This is the integrand
which we deal with in expression (6) of . Consider

(84)
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where if 0, and if 0,
and 2 . Thus, is
Lipschitz.

Consider in (6) and in (8). Let 1, and
1 . Then the difference between and can be
expressed as

1

(85)

Using the Lipschitz condition the change in the value of the
function over a square of size

is less than or equal to 2 ; and there are
1 2 such squares. It follows that

2 1
2

2

(86)
This bound on the error shows that as becomes large the error
goes to zero, i.e., 0. More sophisticated
bounds on the error can be obtained but the simple bound (86)
serves our purpose.
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