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Abstract

We consider analysis and controller synthesis of
piecewise-linear systems. The method is based on con-
structing quadratic and piecewise-quadratic Lyapunov
functions that prove stability and performance for the
system. It is shown that proving stability and perfor-
mance, or designing (state-feedback) controllers, can be
cast as convex optimization problems involving linear
matrix inequalities that can be solved very e�ciently.
A couple of simple examples are included to demon-
strate applications of the methods described.

Key words: Piecewise-linear systems, quadratic sta-
bilization, linear matrix inequality (LMI).

1 Introduction

Promising new methods for the analysis and design of
controllers for linear and nonlinear uncertain systems
have emerged over the last few years. The basic idea
of these methods is to reformulate the control analy-
sis or synthesis problem in terms of certain optimiza-
tion problems that involve matrix inequalities (LMIs),
which are then solved numerically by new interior-point
algorithms. The theory (up to 1994) is covered in the
monograph [1] and the many references cited there.
Since then, many researchers have applied LMI meth-
ods in a variety of settings, such as synthesis of gain-
scheduled (parameter-varying) controllers [2, 3], mixed-
norm and multi-objective control design [4], analysis
and synthesis of systems with integral quadratic con-
straints [5, 6], fuzzy control [7, 8], and hybrid dynami-
cal systems [9, 10].
In this paper, using approaches that are standard

in the LMI context, we address the question of stabil-
ity and control of piecewise-linear time-invariant sys-
tems. Such systems can model, for example, a wide
range of nonlinear systems, including linear systems
with memoryless nonlinearities such as saturators. Us-
ing Lyapunov theory, we will derive su�cient condi-
tions for stability and performance that can be checked
by solving convex optimization problems with LMI con-
straints. The method is to search among special classes
of Lyapunov functions for a Lyapunov function that
proves stability or performance for the piecewise-linear

1Research supported in part by USAF (under F49620-97-1-

0459), AFOSR (under F49620-95-1-0318), and NSF (under ECS-

9222391 and EEC-9420565). The US Government is authorized

to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon.

system. We will consider two di�erent classes of Lya-
punov functions:

� Quadratic Lyapunov functions. In this case the
Lyapunov function is simply V (x) = xTPx for
some P = P T � 0. It is shown that by search-
ing over such Lyapunov functions, both analysis
and (state-feedback) synthesis can be formulated
as convex optimization problems with LMI con-
straints.

� Continuous piecewise-quadratic Lyapunov func-
tions. This class of Lyapunov functions is more
general than the previous one and therefore gives
less conservative results in the analysis. Spe-
cially, such Lyapunov functions can also deal with
piecewise-linear systems with multiple equilib-
rium points. However, in this case, it doesn't
seem that (state-feedback) synthesis can be ex-
pressed as a convex optimization problem.

We will also demonstrate applications of the methods
described by considering controller synthesis of a sim-
ple mechanical system subject to input saturation, and
stability analysis of an electrical circuit with multiple
equilibrium points.

2 Problem statement

Consider the piecewise-linear (PL) system

_x = A�(x)x+ b�(x) + B
(1)

�(x)
w + B

(2)

�(x)
u;

z = C
(1)

�(x)
x+D

(1)

�(x)
w +D

(2)

�(x)
u

(1)

where x(t) 2 Rn is the state, u(t) 2 Rnu is the control
input, w(t) 2 Rnw is the exogenous input, and z(t) 2
Rnz is the output. The PL system (1) can be in any
of M linear operation modes depending on where the
state x is, and this is determined by the function � :
Rn
! f1; : : : ;Mg. The set of all x satisfying �(x) =

i is called the ith operating region of the system and
is denoted by Ri. We assume that given any initial
condition x(0) = x0, and input signals u and w, the
di�erential equation (1) has a unique solution for t > 0.
The goal is to �nd control inputs u that provide sta-

bility and performance for the PL system (1). In par-
ticular, we are interested in �nding a control input u
that regulates the output z in terms of bounding the
L2 gain from w to z, i.e., for a given 
 > 0

kzk2

kwk2
� 
 with (1) and x(0) = 0;

in which the 2-norm is de�ned as k�k22 =
R
1

0
�T � dt.
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Figure 1: Ri is polytopic and the boundary of Ri and Rj is
characterized as being a subset of flij + Fijz j z 2

R
n�1g (here n = 2).

3 Description for operating regions

We assume that the operating regionsRi are polytopic,
i.e.,

Ri = f x j �(x) = i g

= f x j hTijx < gij ; j = 1; : : : ; pi g:
(2)

Moreover, we assume that if �Ri

T
�Rj 6= ; then Fij 2

Rn�(n�1) (full rank) and lij 2 R
n exist such that

�Ri

\
�Rj � f lij + Fijz j z 2 R

n�1 g;

for i = 1; : : : ;M and j = i + 1; : : : ;M (see Figure 3).
Also, whenever necessary, we suppose that each Ri can
be outer approximated by a union of (possibly degen-
erate) ellipsoids Eij for j = 1; : : : ;mi. In other words,
matrices Eij and fij exist such that

Ri �

mi[
j=1

Eij where Eij = fx j kEijx+ fijk � 1g : (3)

(This may require a bounded Ri.) In x8 we will brie
y
discuss how this ellipsoidal outer approximation can be
done.

4 Analysis using a single quadratic Lyapunov
function

In this section we analyze the PL system (1) using a
single quadratic Lyapunov function, i.e.,

V (x) = xTPx; P = PT � 0; (4)

where P = P T 2 Rn�n. In other words, we search
over all Lyapunov functions of the form (4) to prove
stability or performance for the PL system (1).

4.1 Stability
We �rst study stability of the PL system (1) for w = 0
and u = 0. A su�cient condition for this is that V
decreases (or equivalently dV (x)=dt < 0) along every
nonzero trajectory of the system. If such a V exists,
the system is said to be quadratically stable.
For all x 2 Ri we have
d
dt
V (x) = (Aix+ bi)

T Px+ xTP (Aix+ bi)

=

h
x
1

iT h
AT
i P + PAi Pbi
bTi P 0

i h
x
1

i
;

and therefore the condition for quadratic stability be-
comes the existence of a P � 0 such that for i =
1; : : : ;M

x 2 Ri )

h
x
1

iT h
AT
i P + PAi Pbi
bTi P 0

i h
x
1

i
� 0: (5)

Now according to x3, suppose that each region Ri can
be covered by a union of ellipsoids Eij as de�ned in (3).
Relaxing the condition x 2 Ri in (5) by x 2 Eij for
j = 1; : : : ;mi gives

x 2 Eij )

h
x
1

iT h
AT
i
P + PAi Pbi
bT
i
P 0

i h
x
1

i
� 0;

or, for all x satisfyingh
x
1

iT � ET
ij
Eij ET

ij
fij

fT
ij
Eij �(1 � fT

ij
fij)

�h
x
1

i
� 0

there should exist a P � 0 such thath
x
1

iT h
AT
i P + PAi Pbi
bT
i
P 0

i h
x
1

i
� 0:

Now using the S-procedure (see, e.g., [1]), this is equiv-
alent to the existence of P and �ij satisfying

P � 0; �ij < 0; i = 1; : : : ;M; j = 1; : : : ;mi;�
AT
i P + PAi + �ijE

T
ijEij Pbi + �ijE

T
ijfij

(Pbi + �ijE
T
ijfij)

T ��ij(1 � fTijfij)

�
� 0:

(6)

Clearly, (6) is an LMI in P and �ij , and gives a suf-
�cient condition for quadratic stability. This su�cient
condition will not be too conservative when the union
of the covering ellipsoids Eij is a good outer approxi-
mation to Ri.
With the new variables Q = P�1, �ij = 1=�ij , con-

dition (6) is also equivalent to the existence of �ij and
Q satisfying the LMI

Q � 0; �ij < 0; i = 1; : : : ;M; j = 1; : : : ;mi;�
AiQ+QAT

i + �ijbib
T
i �ijbif

T
ij +QET

ij

(�ijbif
T
ij +QET

ij)
T ��ij(I � fijf

T
ij )

�
� 0:

(7)

This equivalent form is crucial for the controller syn-
thesis problem in x7.

Remark. Note that instead of using the ellip-
soidal approximation description of Ri, we could
have used its polytopic description (2) to obtain
a stability condition similar to (6) by using the
S-procedure. One problem with this alternative
condition, however, is that it can be very conser-
vative because of the conservativeness of the S-
procedure for pi > 1 (as noted in x6, one such case
in which conservativeness hurts is when Ai is un-
stable). Another problem with this alternative is
that no such equivalent condition for stability as
in (7) with Q = P�1 exists, and therefore, it does
not seem that the controller synthesis problem can
be formulated as an LMI (see x7).

4.2 L2 gain and other performance measures
Using standard Lyapunov arguments (see, e.g., [1]) and
a method similar to the previous subsection, the L2

gain from input w to output z of (1) is bounded by

 > 0 if Q and �ij exist such that

Q � 0; �ij < 0; i = 1; : : : ;M; j = 1; : : : ;mi;2
6666664
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�
�
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D
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i
D

(1)T
i

�

3
7777775
� 0;

(8)



The best provable bound on the L2 gain can be found
by minimizing 
2 subject to (8).
Note that many other performance measures for (1),

such as decay rate, output energy, output peak, etc.,
can also be cast as LMIs.

5 Analysis using a continuous
piecewise-quadratic Lyapunov function

In this section we consider piecewise-quadratic Lya-
punov functions of the form

V (x) = xTP�(x)x+ 2qT
�(x)

x+ r�(x);

V (x) > 0; V is continuous;

where Pi = P T
i 2 Rn�n, qi 2 Rn and ri 2 R for

i = 1; : : : ;M . Note that since V is piecewise-quadratic,
V (x) > 0 also implies that V (x) ! +1 as kxk !
1. Clearly, this choice of Lyapunov function is more
general than that of x4, and for example, it can also
deal with PL systems with multiple equilibrium points.

5.1 Stability
The stability we refer to in this section is that, as t!
1, the state converges to one or more of the points in
the set

Q =
�
�P�1

1
q1;�P

�1
2

q2; : : : ;�P
�1
M qM

	
:

Clearly, all local minima of the Lyapunov function V
are in Q.
Using standard Lyapunov arguments it can be shown

that the PL system (1) with u = 0 and w = 0 is stable
if for i = 1; : : : ;M and j = i+ 1; : : : ;M ,

FT
ij (Pi � Pj)Fij = 0;

FT
ij (Pi � Pj)lij + FT

ij (qi � qj) = 0;

lTij(Pi � Pj)lij + 2(qi � qj)
T lij + (ri � rj) = 0;

(9)

andh
Pi qi �HT

i �

qTi � �THi ri � 2gTi �

i
� 0; � > 0; �i > 0;

h
AT
i Pi + PiAi Pibi +AT

i qi �Hi�i
bTi Pi + qTi Ai � �Ti H

T
i 2(gTi �i + bTi qi)

i
� 0;

(10)

in which �; �i 2 R
pi , and

Hi = [h1j h2j � � �hpij ]; gi = [g1j g2j � � � gpij ]
T :

Equality constraints (9) guarantee that V is continu-
ous, the �rst LMI in (10) guarantees that V is positive,
and the second LMI in (10) guarantees that V decreases
along all state trajectories.
Alternatively, if an outer ellipsoidal approximation

to Ri as in (3) is given, condition (10) can be replaced
by

�ij > 0; �ij > 0; j = 1; : : : pi;�
Pi + �ijE

T
ijEij qi + �ijE

T
ijfij

qTi + �ijf
T
ijEij ri + �ij(f

T
ijfij � 1)

�
� 0;

�
AT
i Pi + PiAi � �ijE

T
ijEij Pibi +AT

i qi � �ijE
T
ijfij

bTi Pi + qTi Ai � �ijf
T
ijEij 2bTi qi � �ij (f

T
ijfij � 1)

�
� 0:

(11)

Therefore, stability of the PL system is guaranteed if
conditions (9) and (10), or, (9) and (11) hold. In x6 we
discuss why the second set of conditions is relevant.

Remark. The equilibrium points of the PL sys-
tem (1) should be the local minima of any Lya-
punov function candidate. Therefore, if xeq;i 2
Ri is an equilibrium point we must have xeq;i =

�P�1
i

qi. In other words, for x 2 Ri

V (x) = (x� xeq;i)
TPi(x� xeq;i) + ri:

Replacing qi by �Pixeq;i and ri by ri+x
T
eq;iPixeq;i

in (9), (10), and (11), gives a new set of conditions
that are more favorable from a numerical point of
view because the LMIs are not strictly infeasible
anymore. Refer to x9.2 for an example.

5.2 Other performance measures
Using standard Lyapunov arguments, many other per-
formance measures can be explored for the PL sys-
tem (1). These include, L2 gain, decay rate, output
energy, output peak, reachable sets, etc. Refer to [1].

6 Polytopic vs. ellipsoidal outer approximation
description for operation regions Ri

In most practical cases, a polytopic description of the
regions Ri as in (2) is naturally available, so condi-
tions (9) and (10) can be used to prove stability of
the PL system. However, these conditions can be very
conservative because of the conservativeness of the S-
procedure for pi > 1. For example, in order for (10) to
hold, the (1; 1) block entry of the �rst LMI, Pi, should
be positive de�nite and the (1; 1) block entry of the
second LMI, AT

i Pi +PiAi, should be negative de�nite.
Therefore, by Lyapunov's theorem for linear systems
Ai must be stable. This means that we will never be
able to prove stability of a PL system if one of the Ai's
is unstable. Of course, there are many cases for which
one or more of the Ai's are unstable but the overall
system is stable (see x9.2).
If an ellipsoidal outer approximation forRi is known,

the LMIs in (11) can be used instead of those in (10).
The underlying S-procedure is a necessary and su�-
cient condition in this case, and potentially, using (9)
and (11), we can prove stability for systems with one
or more unstable Ai's. For example, note that we are
subtracting a negative semide�nite term from the (1; 1)
block entry of the second matrix in (11), and therefore,
we can still be feasible without AT

i Pi+PiAi being neg-
ative de�nite.
As shown in the next section, having an ellipsoidal

outer approximation for Ri has another advantage:
The state-feedback synthesis problem using a single
quadratic Lyapunov function can be cast as an LMI.

7 State-feedback synthesis using a single
quadratic Lyapunov function

In this section we consider the PL system (1) and
seek PL state-feedback control signals of the form
u = K�(x)x. Therefore, the closed-loop state equations
become

_x = (A�(x) +B
(2)

�(x)
K�(x))x+ b�(x) +B

(1)

�(x)
w;

z = (C
(1)

�(x)
+D

(2)

�(x)
K�(x))x+D

(1)

�(x)
w:

(12)

7.1 Quadratic stabilizability
Using (7), and by introducing the new variables Yi =
KiQ for i = 1; : : : ;M we get the following LMI in the



variables Q, Yi and �ij

Q � 0; �ij < 0; i = 1; : : : ;M; j = 1; : : : ;mi2
4
�
AiQ+QAT

i
+ �ijbib

T
i

+B
(2)

i
Yi + Y T

i
B
(2)T
i

�
�ijbif

T
ij
+QET

ij

(�ijbif
T
ij
+QET

ij
)T ��ij(I � fijf

T
ij
)

3
5 � 0:

(13)

When Q and Yi's satisfying (13) exist, the PL state-
feedback control command u = K�(x)x stabilizes (1)
where Ki = YiQ

�1 for i = 1; : : : ;M .

Remark. Another natural choice of input com-
mand would be one that is a�ne in the state x,
i.e., u = K�(x)x+ l�(x). However, it doesn't seem
that the condition for stabilizability using this type
of input command can be cast as an LMI.

7.2 L2 gain synthesis
Using (8) and (12), the state-feedback control u =
K�(x)x gives an L2 gain of less than 
 from w to z
if there exists Q, Yi and �ij such that

Q � 0; �ij � 0; i = 1; : : : ;M; j = 1; : : : ;mi;2
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(14)

where Ki = YiQ
�1. Clearly, (14) is an LMI in Q, Yi

and �ij .

7.3 A few practical notes
In this section, we assumed that the state-feedback
gains are indexed by �(x), i.e., u = K�(x)x. In other
words, the controller itself is piecewise-linear with the
same operating region function �. However, this as-
sumption is not necessary for controller synthesis us-
ing LMIs such as (14). For example, as an extreme
case, we can consider a constant state-feedback gain K
which corresponds to a linear controller. In this case,
the condition for a 
-level of performance in L2 gain is
obtained by replacing Yi = KiQ in (14) by Y = KQ.
As another alternative, eachRi can be partitioned into
smaller regions in which di�erent state-feedback gains
are used. The hope is that by introducing more state-
feedback gains (or extra free variables in the optimiza-
tion problem) we will get better performance for the
closed loop system.
Computing the covering ellipsoids Eij as de�ned

in (3) is crucial for the synthesis method described in
this paper. For an unbounded regionRi, covering ellip-
soids do not generally exist, and therefore, we need to
bound the state-space beforehand. We will come back
to this in x8.
A general assumption throughout this paper is that

the operating mode of (1), through the function �(�),
depends on the state x only. Hence, we have ruled out
the possibility that the control input u directly a�ect
the operating mode of (1), and therefore, modelings in

which there is a feed-through from u to a nonlinearity
should be avoided. We can always add states to the
system to overcome such unwanted feed-throughs, for
example, by adding a �rst-order system before the non-
linearity with a \large" enough bandwidth (see x9.1).
Conditions for quadratic stability and L2 gain per-

formance are given in (6) and (8) respectively. Clearly,
when 1� fTijfij < 0, we can only have �ij = 0 for the
LMIs to hold, and the LMIs are no longer strictly fea-
sible. 1 � fTijfij < 0 means that the origin lies inside

the ellipsoid Eij . In this case d
dt
V (x) < 0 for x 2 Eij

is equivalent to AT
i P + PAi � 0 (assuming bi = 0 so

that the origin is an equilibrium point of the system)
which is the condition on global stability of the linear
system _x = Aix. Therefore, for example, the (modi-
�ed) state-feedback synthesis formulation for quadratic
stabilizability (that avoids strict infeasibility) becomes
the existence of Q, Yi (Ki = YiQ

�1) and �ij such that
for i = 1; : : : ;M and j = 1; : : : ;mi

AiQ+QAT
i +B

(2)

i
Yi + Y T

i B
(2)T
i

� 0 when 0 2 Ri

(13) when 0 62 Ri:

(15)

Similarly, condition (14) for a 
-level of L2 gain should
be modi�ed (to avoid strict infeasibility) when 0 2 Ri.
This can be done by removing the second row and col-
umn of the 3 � 3 block matrix in (14), which is then
equivalent to having a 
-level of L2 gain from w to z
in the linear system

_x = (Ai +B
(2)

i
Ki)x+B

(1)

i
w; z = (C

(1)

i
+D

(2)

i
Ki)x+D

(1)

i
w:

8 Computing ellipsoidal outer approximations
for operating regions Ri

In theory, any region Ri can be (outer) approximated
arbitrarily well by a union of ellipsoids Eij for j =
1; : : : ;mi. However, as far as we know, there is no gen-
eral and numerically e�cient method to approximate
an arbitrary region Ri to any desired accuracy.
When theRi's are polytopic as in (2), there are many

well-known methods to compute ellipsoidal outer ap-
proximations. A discussion of these methods is out of
the scope of this paper and we only refer the interested
reader to the references [1, 11, 12, 13].
Let us note that if �(x) does not explicitly depend on

all state variables, the regions Ri are elongated to �1
in directions that correspond to state variables that do
not appear in �(x). If �x is the vector of state variables
that explicitly appear in �(x), once a covering ellipsoid
kEij �x+ fijk � 1 is computed for a cross section of Ri

in which all state variables other than �x are constant, a
degenerate ellipsoid that covers Ri is simply found by
adding zeros to Eij and fij at positions that correspond
to the missing state variables.
In order to be able to compute covering ellipsoids

that have �nite volume in the directions �x, the state
variables that explicitly appear in �(x) should be
bounded, say, by adding the component-wise inequal-
ity constraint �a � �x � b. This is not a practi-
cal problem, however, as we can always take a and
b larger than the physical limitations of the system.
Therefore, each Ri should be rede�ned as Ri  

Ri

T
fx 2 Rn j � a � �x � bg.

When Ri is a slab, a (degenerate) ellipsoid of the
form kEi1x+ fi1k � 1 can be found that approximates



Ri exactly. Suppose that Ri =
�
x j d1 � cTx � d2

	
,

then it is easy to see that we can takeEi1 = 2c=(d2�d1)
and fi1 = (d2 + d1)=(d2 � d1).
Finally, note that if we are using the single quadratic

Lyapunov function approach to analyze or design con-
trollers for (1), according to the discussion in x7.3, and
condition (15), we do not need to compute an ellip-
soidal outer approximation for regions Ri that contain
the origin.

9 Examples

9.1 Mechanical system with saturating actuator
In this example1 we consider the simple mechanical
system in Figure 2(a). The goal is to design a (state-
feedback) controller that makes the L2 gain from the
exogenous input w to the displacement x1 small. With-
out any control input, the L2 norm from w to x1 is
approximately equal to 
OL = 11:8.
The actuator is subject to a saturation nonlinearity

as shown in Figure 2(b). Note that the �rst-order sys-
tem 1=(�s+1) is introduced before the nonlinearity so
that there is no feed-through from the control input u
to the nonlinearity (see x7.3). In this case, � becomes
only a function of x5, and M = 3. It is straightforward
to compute the system matrices in each operation re-
gion, as well as ellipsoidal outer approximations which
are exact because the Ri's are slabs. (Note that the
state-space should be bounded in the x5 direction, say,
by adding the constraint �103 � x5 � 103.)
Assuming that k1 = 1, k2 = 1, b1 = 0:1, and b2 =

0:1, the modes of the mechanical system become

p1;2 = �0:1309 � j1:6127; p3;4 = �0:0191 � j0:6177:

We let 1=� = 10 which is a couple of orders of mag-
nitude larger than the decay rate of the mechanical
system.
The regulating output is chosen to be z = [x1 0:1u]

T .
Note that the input command u is also included in the
regulating output to avoid getting large state-feedback
gains. Using the results of x7.2 we design the state-
feedback gains for a level of L2 gain of 
 = 7 from w
to z. It turns out that the state-feedback gains in each
region Ri become the same and are equal to

K1;2;3 = [ 2:45 �12:50 �401:3 �645:3 �172:0 ]

where the state was chosen as x = [x1 x2 _x1 _x2 x5]
T .

Now if we recompute a bound on the L2 gain from
input w to output x1 of the closed loop system using
the results of x4.2 we get the value of 
CL = 0:09 which
is a signi�cant improvement over the open loop L2 gain
of 
OL = 11:8.

9.2 Circuit with multiple equilibrium points
Here we consider the simple electric circuit of Fig-
ure 3(a). The nonlinear resistor has a tunnel-diode type
(i; v)-characteristic as shown in Figure 3(b). The state
of the system is x = [iL vc]

T and there are three equi-
librium points xeq;1 = [0:14 0:71]T , xeq;2 = [0:45 0:50]T ,
and xeq;3 = [0:64 0:37]T . Clearly, a single quadratic
Lyapunov function cannot handle this system as there
are three equilibrium points. Also, because of the neg-
ative slope of the nonlinear resistor, A2 is unstable and

1The example in this section and the next were carried out
using the semide�nite program solver package sdpsol [14].
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(a) Simple mechanical system with two degrees of
freedom.
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(b) Actuator input/output behavior.

Figure 2: Controller design for a simple mechanical sys-
tem subject to input saturation nonlinearity.

as a result, we need an ellipsoidal outer approximation
for R2. Since R2 is just a slab, an exact ellipsoidal
approximation exists (see x8). For regions R1 and R3

we can just use the polytopic description. Note that
p1 = p3 = 1 and therefore conditions in (10) are neces-
sary and su�cient.
Using the results of x5 it is possible to prove sta-

bility for this system in the sense of x5.1. Figures 3(c)
and 3(d) show one of the piecewise-quadratic Lyapunov
functions that achieve this. It can be seen that xeq;2 is
a saddle point of the Lyapunov function which means
that xeq;2 is unstable. xeq;2 and xeq;3 are local minima
of the Lyapunov function and are therefore stable. In
fact, this is a bistable circuit.

10 Conclusions and further research

In this paper we have given a method for analysis of PL
systems by Lyapunov methods. The analysis involves
solving convex optimization problems involving LMIs
that can be done very e�ciently. If a single quadratic
Lyapunov function is used, state-feedback synthesis of
PL systems can also be formulated as LMIs. (If the
full state is not available for feedback, observer-based
controllers can be designed by solving LMIs, although
this was not mentioned in this paper.) On the other
hand, piecewise-quadratic Lyapunov functions are spe-
cially useful for dealing with PL systems with multiple
equilibrium points. A central idea in this paper was to
use an ellipsoidal outer approximation to the operating
regionsRi. This enabled us to reduce the conservatism
of the methods and to derive an LMI formulation for
the synthesis problem.
A very interesting problem to be explored in the con-

troller synthesis problem is the partitioning of the op-
erating regions Ri into smaller cells in which di�erent
state-feedback gains are used. The hope is that by in-
troducing more state-feedback gains (or extra free vari-
ables in the optimization problem) we will get better
performance for the closed loop system.
Finally, it should be noted that the same ideas in

this paper can be extended to the analysis of hybrid
dynamical systems. Hybrid dynamical systems are sys-
tems that incorporate both discrete and continuous dy-
namics, with the discrete dynamics governed by �nite
automata and the continuous dynamics usually repre-
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(d) A piecewise-quadratic Lyapunov function
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Figure 3: Lyapunov function construction for an electrical
circuit having multiple equilibria.

sented by ordinary di�erential equations. The two in-
teract at \event times" determined by the continuous
state hitting certain event sets in the continuous state
space. Hybrid dynamical systems can model a vast ar-
ray of important practical systems for which piecewise-
linear systems is just one of the simplest. Some exam-
ples are: systems with hysteresis, multi-modal systems,
systems with logic, timing circuits, automated highway
systems [15], computer disk drives [16], transmissions
and stepper motors [17], and systems with both digi-
tal and analog components. Even hybrid systems with
very simple continuous dynamics, e.g., only integrators,
can have many practical applications and very complex
behavior.
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