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Necessary and Sufficient Conditions for Parameter 
Convergence in Adaptive Control* 

S T E P H E N  BOYD~" and S. S. SASTRY:~ 

A complete description of  parameter convergence in model reference adaptive control 
may be given in terms o f  the spectrum of  the exogenous reference input signal. 
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Abstract--Using Generalized Harmonic Analysis, a complete 
description of parameter convergence in Model Reference 
Adaptive Control (MRAC) is given in terms of the spectrum of 
the exogenous reference input signal. Roughly speaking, if 
the reference signal "contains enough frequencies" then the 
parameter vector converges to its correct value. If not, it 
converges to an easily characterizable subspace in parameter 
space. 

1. INTRODUCTION AND PROBLEM STATEMENT 
IN RECENT work (Narendra  and Valavani, 1978; 
Na rdend ra  et al., 1980; Morse, 1980) on cont inuous 
time model  reference adaptive control,  it has been 
shown that  under a suitable adaptive control  law 
the output  ye of the plant asymptotically tracks the 
output  yM of a stable reference model,  despite the 
fact that  the parameter  error  vector may  not  
converge to zero (indeed, it may  not  converge at 
all). Results that  have appeared in the literature 
on parameter  error  convergence (Morgan,  1977; 
Anderson,  1977; Kriesselmeier, 1977; Yuan and 
W o n h a m ,  1977) have established the exponential  
stability of adaptive schemes under  a certain persist- 
ent excitation (PE) condition. As is widely reco- 
gnized (e.g. in Anderson and Johnson,  1982) the 
drawback  to this condit ion is that  it applies to a 
certain vector of  signals w(t) appearing inside the 
non-l inear feedback loop a round  the unknown 
plant. 

In earlier work (Boyd, 1983) this shortfall was 
remedied by showing that  the persistent excitation 
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condit ion can be moved  from w to w M, a vector of 
signals analogous to w but  appearing in the linear, 
time invariant (LTI) model  loop. Unlike w, wM is 
simply the output o f  a L T !  system driven by the 
reference signal r, and it is thus much easier to 
determine whether or  not  it is persistently exciting. 

In Boyd (1983) one simple condit ion was given 
which ensures that  w u is PE: 
If the reference input r(t) contains as many  
spectral lines as there are unknown parameters,  
then w M is PE and consequently the model-plant  
output  error and the parameter  error  converge 
exponentially to 0. 

Note  that  a real reference signal with a spectral line 
at frequency v also has a spectral line at - v .  Thus, 
for example, a reference signal with a (non-zero) 
average (d.c.) value and at least one other spectral 
line will guarantee exponential  convergence of  the 
parameter  error  vector to zero in a three parameter  
M R A C  system. Related results for the scheme of 
Morse (1980) have appeared in Dasgupta  et al. 
(1983). 

These results made precise the following intuitive 
argument:  assuming the parameter  vector does 
converge (but perhaps to the wrong value) the 
plant loop is "asymptotical ly time invariant". If the 
reference input r has spectral lines at frequencies 
v I . . . .  , v k, one expects Ye will also; since Ye ~ YM, 
one "concludes" that  the asymptot ic  closed loop 
plant transfer function matches the model  transfer 
function at s = jv 1 . . . . .  jvk. If k is large enough, this 
implies that  the asymptot ic  closed loop transfer 
function is precisely the model  transfer function so 
that the parameter  error  converges to zero. 

In this paper, this idea that  the reference signal 
must  be "rich enough",  i.e. "contain enough frequen- 
cies" for the parameter  error to converge to zero is 
pursued further. Simple necessary and sufficient 
conditions on the reference input r for the parameter  
error  to converge to zero are derived. Roughly 
speaking, the condit ion is: 
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A reference input r(t) results in parameter error 
convergence to zero unless its spectrum is concen- 
trated on k < N lines, where N is the number of 
unknown paramters in the adaptive scheme. 

Precisely what is meant by spectrum is detailed in 
the sequel. The results have been announced with- 
out proof in Boyd and Sastry (1984). Related work 
appears in Narendra and Annaswamy (1983a, b). 

In Section 2 the MRAC system is briefly 
described when the plant has relative degree one. 
In Section 3 the basic notions of Generalized 
Harmonic Analysis: autocovariance and spectral 
measure, are reviewed. In Section 4 the main result, 
on necessary and sufficient conditions for parameter 
convergence, is stated and proved. 

In Section 5, partial convergence, i.e. behaviour 
of the parameter error vector when w is not PE is 
discussed. This will be the case when the reference 
signal has its spectrum concentrated on k < N lines, 
where N is the number of unknown parameters: 
then the parameter vector can be shown to converge 
to an affine subspace of dimension N -  k. The 
Partial Convergence Theorem of Section 5 also 
implies the results of Morgan and Narendra (1977) 
and Anderson (1977), but gives a greatly simplified 
proof. 

In Section 6 higher relative degree cases are 
considered and the results of the previous sections 
are shown to hold, despite the more complicated 
control strategies. It is shown that one can never 
guarantee convergence of the gain parameter 
associated with the augmented error signal. This 
clarifies the misleading statement in Boyd and 
Sastry (1983) that "the extension of the results 
presented (there) to higher relative degree cases is 
straightforward". 

The appendix contains proofs of the theorems of 
Generalized Harmonic Analysis used in the paper. 
Although some of these theorems are analogous to 
results from the theory of wide-sense stationary 
stochastic processes, these proofs are not, to the 
authors' knowledge, in the literature. 

2. THE MODEL REFERENCE ADAPTIVE SYSTEM 
To fix notation, the model reference adaptive 

system of Narendra and Valavani (1978) and Naren- 
dra et al. (1980) is reviewed. The single input single 
output plant is assumed to be represented by a 
transfer function 

tip(s) (2.1) 

where fi~, al~ are relatively prime monic polynomials 
of degree n -  l ,n respectively and kp is a scalar. 
The following are assumed known about the plant 
transfer function: 

i 

I 
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FIG. 1. The  a d a p t i v e  s y s t e m  for the  r e l a t ive  deg ree  o n e  case.  

(A1) the degree of the polynomial alp, i.e. n, is 
known; 

(A2) the sign of kp is known (say, + without loss 
of generality); 

(A3) the transfer function W~ is assumed to be 
minimum phase, i.e. ~p is Hurwitz. 

The objective is to build a compensator so that 
the plant output asymptotically matches that of a 
stable reference model ~M(s) with input r(t) and 
output yM(t) and transfer function 

VVM(s) = " au ( s )  "M ~ - ~ ,  (2.2) 

where kM > 0 and t~ u,  dM are monic polynomials 
of degree n - 1 and n, respectively (tim and alM need 
not be relatively prime). If the input and output of 
the plant are denoted u(t) and yp(t), respectively, 
the objective may be stated: find u(t) so that 
yp(t) - yu( t )  --* 0 as t --, ~ .  By suitable prefiltering, 
if necessary, one may assume that the model WM(s) 
is strictly positive real. 

The scheme proposed by Narendra et al. is shown 
in Fig. 1. The dynamic compensator blocks F1 and 
F2 are identical one input, (n - 1) output systems, 
each with transfer function 

( s l - A ) - l b ;  A ~ R , - I × ,  1 b ~ R "  1 

where A is chosen so that its eigenvalues are the 
zeros of riM. Assume that the pair (A,b) is in 
controllable canonical form so that 

~t(s~ ' (2.3) 

S n 2 

The parameters c e R  "-1 in the precompensator 
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block serve to tune the closed loop plant zeros, 
d E R"-  ~, do ~ R in the feedback compensator  assign 
the closed loop plant poles. The parameter  Co 
adjusts the overall gain of the closed loop plant. 
Thus, the vector of 2n adjustable parameters 
denoted 0 is 

Narendra (1977). Second, since r is bounded, there 
a fl such that 

s + 6  

flI >_ f ww r dt >_ ~I, 

s 

O r = [Co, c r, do, dr]. 

If  the signal vector w E R 2n is defined by 

w r = [r, v I1)r, Ye, v~Z)r]. (2.4) 

we see that the input to the plant is given by 

u = Orw. (2.5) 

It may be verified that there is a unique constant 
0* ~ R 2" such that when 0 = 0", the transfer function 
of the plant plus controller equals l#M(s).'~ If r(t) is 
bounded (an assumption henceforth made) it Can 
be shown that under the parameter  update law 

0 = - e l w  = - ( y p ,  yM)w (2.6) 

all signals in the loop, i.e. u ,  v (1) ,  v (2) ,  Ye, YM are 
bounded, and in addition lim e~(t) = 0, i.e. the plant 

t---~ oo 

output matches the model output and thus the 
overall objective has been achieved. However the 
convergence need not be exponential. 

Despite the fact that e~( t )~  O, the parameter  
vector 0 does not necessarily converge to 0* (it may 
not converge at all). Various authors (Morgan and 
Narendra,  1977; Anderson, 1977; Kriesselmeier, 
1977) have established that ca(t) ~ 0 and O(t) ~ O* 
(i.e. the parameter  error converges to 0) exponen- 
tially iff the signal vector w(t) is persistently exciting 
(PE). If ~ is bounded (an assumption henceforth 
made) then PE can be simply stated: there are 
6, ~ > 0 such that for all s > 0 

s+fi  

f ww r dt 

s 

> ~I. (2.7) 

Several comments are in order here. First, if f is 
not bounded then the PE condition is similar to 
but not exactly equivalent to (2.7). A complete 
discussion of this can be found in Morgan and 

which is the form in which the PE condition often 
appears in the literature. 

Since w(t) contains the signals vtl)(t), Ot2)(t), ye(t) 
generated inside the non-linear plant loop, translat- 
ing the PE condition (2.7) on w into an equivalent 
condition on the exogenous reference input r(t) 
would seem difficult if even possible. This is precisely 
what will now be done. Amazingly enough, the 
condition is very simple when expressed in the 
frequency domain. 

3. R E V I E W  O F  G E N E R A L I Z E D  H A R M O N I C  A N A L Y S I S  

The integral (2.7) appearing in the definition of 
PE reminds one of an autocovariance. 

Definition 3.1 (Autocovariance). A function u: R+ 
R" is said to have autoeovariance Ru(z)~ R "×" iff 

s + T  

lim --1 f u(t)u(t 

s 

+ z)rdt  = Ru(z ) (3.1) 

with the limit uniform in s. 
This concept is well known in the theory of time 

series analysis. There is a strong analogy between 
(3.1) and RSt°ch(z) = Eu(t)u(t + z) for u a wide sense 
stationary stochastic process. Indeed, for a wide 
sense stationary ergodic process u(t, co), Ru(z, co) 
exists and is nstoch, , n ,  iV) for almost all co. An auto- 
covariance is a completely deterministic notion. Its 
relation to the notion of PE is simple. 

Lemma 3.2 (PE lemma). Suppose w has auto- 
covariance Rw(z ). Then w is PE iff Rw(O ) > O. 

Proof. The "if" part  is clear. Suppose now that w 
has an autocovariance R w and is PE. Let c~R", 
c ¢ 0. From (3.1), for all n 

s + n ~  

n6 (wrc) 2 dt >_ ~ IIc[I 2. 

s 

Hence 

s + T  

lim 1 (wrc)2dt  > 6 tlcll2" 
r~o~ T 

s 

(3.2) 

t I ndeed  0* cons is t s  o f  kM/k  e a n d  the  coefficients of  the 
p o l y n o m i a l s  ~e --  ~M a n d  a e --  d M. Because  w has  an  au tocova r i ance ,  



632 S. BOYD and S. S. SASTRY 
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FI(;. 2. The adaptive system of Fig. 1 with a new representation 
for the model. 

s + T  

lim --1 f (wTc) 2 dt  = crR~(O)c .  
r ~  T 

s 

(3.3) 

From (3.2) and  (3.3), c r R w ( O ) c ~ / 6 1 t c l l  2, thus 
R,,(O) >_ c~/6 > O. 

A few more  simple lemmas concerning au to-  
covar iances  are required.  The proofs  and a more  
deta i led discussion of Genera l i zed  H a r m o n i c  
Analysis  appea r  in the Appendix .  

L e m m a  3.3. R,(T) is a posit ive semi-definite function. 
Thus,  p rov ided  R,(T) is con t inuous  at  r = 0 (an 

a s sumpt ion  henceforth made ' t )  it has a Bochner  
representa t ion:  

R,(T) = (3.4) 

where S, is a posi t ive semi-definite mat r ix  of 
bounded  measures,  which is called the spec t ra l  

measure  of u. If u is scalar  valued, then S, is jus t  a 
posi t ive bounded  measure;  2S,([O9o,¢O~]) can then 
be in terpre ted  as the average  e n e r g y  conta ined  in u 
in the frequency band  [~o 0, to~]. Thus, for example ,  
if a scalar  valued u has a spectral  line of ampl i tude  
av at v, then S, has a poin t  mass  at  v of size la~ll 2. 

S,, and  h is an m x n matr ix  of bounded  measures.  
Then y = h*u has an au tocovar iance  R r. Its spectral  
measure  is given by: 

St(dr) = H ( j v ) S , ( d v ) H ( j v ) * .  (3.5) 

In par t icular ,  

Rr(O ) = f H(jv)&(dv)H(jv)*, (3.6) 

where H ( j v )  is the Four i e r  t ransform of h. 
The reader  should  note  that  these formulas  are 

identical  to those from the theory  of  s tochast ic  
processes. 

L e m m a  3.5. If u - v e L  2 and u has an auto-  
covar iance  R., then v has au tocovar iance  R.. 

Thus  t ransients  of finite energy do not  affect the 
au tocovar iance  of a signal. 

The main  result can now be proved.  

4. NECESSARY AND SUFFICIENT CONDITIONS FOR 
PARAMETER CONVERGENCE 

As in Boyd and Sastry (1983), redraw Fig. 1 as 
Fig. 2 with the model  represented in non-min ima l  
form as the p lan t  with c o m p e n s a t o r  and  0 = 0". 
The signal wM e R 2" in the model  loop  is given by 

= [r, v g  yM, 

It is shown in N a r e n d r a  and Valavani  (1978); 
N a r e n d r a  et  al. (1980) that  w - W M e L  2 .  

Note  that  w M is the ou tpu t  of a s table LTI system 
driven by r(t) and its t ransfer  function is 

l Q(s) = lTCM12VT" l ( s l  - A ) - l b  

¢¢. 

W ~ ( s l  -- A)-  lb 

The only p rope r ty  of Q which will be needed is that  
there is a cons tan t  invert ible mat r ix  M such that  

1 
(~r(s)M - _ • [aTe(s) . . . .  

~p(s)d~(s)  " ' 

dp(s)s" - z, fie(s) . . . . .  he(s)s,].  (4.1) 

L e m m a  3.4 (L inear  f i l t e r  lemma).  Suppose  u: R+ --* 
R" has au tocovar iance  Ru(z ), its spectral  measure  

(This is shown in Boyd and Sast ry  (1983).) 
The following is assumed: r has an autocovar iance . ,  

t A discontinuity in R, at z = 0 means, roughly speaking, that 
u contains energy at "infinite frequency", which does not happen 
in practice. An example: u(t) = e u. 

:~Not all rs taave autocovariances (e.g. r(t)= cos log(1 + t)) 
but reasonable ones, whose general characteristics do not change 
drastically over time, do. 
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Let the spectral  measure  of  r be denoted S,. An 
explicit formula  will now be derived for Rw(0). 

By L e m m a s  3.4 and 3.5 and the discussion above,  
w~t has an autocovar iance ,  with spectral measure  

of  S~. Thus  for all v E Supt(S,), 

0 = Q(jv)*c = Q( jv )*M(M- 'c ) ,  (4.5) 

SwM(dv ) = O(jv)S,(dv)Q(jv)*. 
where M is the constant  non-singular  matr ix  

referred to in (4.1). If  g = M - ~ c ,  noting that  
dp(jv)t~u(jv) ~ O, (4.5) says for all v e Supt(S,), 

Since w - w M ~ L 2, ano ther  appl icat ion of L e m m a  
3.5 shows that  w has an autocovar iance,  its spectral 
measure  also given by 

0 = O(jv)*M? = a(jv)cTa~(jv) + b(jv)~te(jv), (4.6) 

where the polynomials  a(s) and b(s) are defined by 

Sw(dv) = O(jv)S,(dv)Q(jv)* 

and autocovar iance  at 0 given by 

Rw(O) = f OUv)S,(dv)OUv)* (4.2) 

By the PE  lemma,  then: 

w is P E  iff R~(0) = JO(jv)S,(dv)O(jv)* > o. 

(4.3) 

Main Theorem. w is PE  iff the spectral  measure  of 
r is not concentra ted  on k < 2n points. 

Proof. Suppose  first that  S, is concentra ted at 
v l , . . . ,  Vk, where k < 2n. Then  

Rw(O) = f O(jv)S,(dv)O(jv)* 

k 
= E O(JVm)Sr({Vra} )O(jVra)*" 

r a = l  

Being the sum of k < 2n dyads, Rw(0) is singular so 
by (4.3) w is not  PE. • 

Suppose  now that  w is not  PE. Then by the PE 
l emma  there is a non-zero  c ~ R 2n such that  

0 : crRw(O)c : flOUv)*cl%(dv). (4.4) 

n -  1 2 n  

a ( s ) =  ~ Cm sm-1, b(s )=  ~ ?,.s "-n .  (4.7) 
t t l=  1 n l : n  

N o w  if Supt(S,) contains 2n or more  points, (4.6) 
vanishes identically since its right hand  side is a 
polynomial  of degree < 2n, that  is 

aa e + bt~p = 0. (4.8) 

But this contradicts  coprimeness  of de and he, since 
(4.8) implies ~e/ap = - a / b  and t3a < n - 2 < t~  e. 
So Supt(S,) must  contain k < 2n points, and  the 
Main  Theorem is proved. 

4.1. Discussion 
The following has been proved:  
Suppose the reference input r(t) to the M R A C  
system of Section 2 has an autocovar iance.  Then 
the model -p lant  mismatch  error  Ye - YM and the 
pa ramete r  error  0 - 0* tend to 0 exponential ly 
iff the spectral measure  of r is not  suppor ted  on 
k < 2n points. 

Thus  in general, one has pa ramete r  convergence: 
only for very special reference signals (which unfor-  
tunately sometimes include analytical favourites 
such as l(t), cos(ogt)) does one not  have 0 ~ 0". 

It  is instructive to see how previous (Boyd and 
Sastry, 1983) sufficient condit ions on r(t) fit into the 
theory above.  If  r has an autocovar iance  and has 
2n spectral  lines, then its spectral  measure  Sr has 
point  masses at the 2n frequencies. Thus 

Rw(O) = f ouv)S,(dv)OUv)* 
2n 

>- Z O_(jv,)S,({v,})OUv,)* > o 
1 = 1  

Since IO(jv)*cl 2 is cont inuous  in v, (4.4) implies that  
Q(jv)*c vanishes for all v in Supt(Sr), the suppor t  

since the vectors O(jvl) are linearly independent  by 
the a rgument  above. 

The  terms sufficiently rich (SR) and persistently 
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exciting (PE) have been used somewhat  inter- 
changeably in the literature. It is proposed that PE  
refers to property (2.7) for a vector of  signals, and 
that sufficient richness be a property of the reference 
signal (scalar valued). A vector of signals is thus PE 
or not, but whether or not  a reference signal is 
SR depends on the M R A C  being studied. More  
specifically it depends only on the number  of 
unknown parameters in the system, so it is proposed 
that a reference signal which results in a P E w  in 
an N-parameter  M R A C  be referred to as sufficiently 
rich of order N. Then the following characterization 
results. 

If r has an autocovariance,  then it is SR of order 
N iff the support  of its spectral measure Sr 
contains at least N points. 

Thus, for example, if r has any continuous spectrum 
(see Wiener, 1930 for examples of such rs) then r is 
SR of all orders. 

5. PARTIAL CONVERGENCE 
If W is not PE, then the parameter  error need not 

converge to zero (it may  not converge at all). In 
this case S r is concentrated on k < 2n frequencies 
va,. . . ,  v k. Intuit ion suggests that  a l though 0 need 
not  converge to 0", it should converge to the set of 
0s for which the closed loop plant matches the model 
at the frequencies s = jva . . . . .  jv k. This is indeed the 
case. 

Before starting the theorem, this idea is discussed 
more formally. Suppose that  the parameter  vector 
0 is constant. Then the plant loop of the M R A C  
system is LTI: w is in this case Qr. Since the input 
to the plant is u = OTw, the overall closed loop 
plant transfer function is lTCe(s)OTQ(s). This transfer 
function matches WM at s =jv~ . . . . .  jv k iff 

simple description 

0 e O  iff Rw(0)~b = 0. (5.3) 

The verification of this is left to the reader; recall 
that  here 

k 

R~,(O) = ~ S,({vm})O.(jvm)Q(jvm)*. 
r n = l  

Partial Convergence Theorem. Bearing the above 
discussion in mind, suppose that i is bounded,  then 

lim Rw(O)O(t ) = O. ( 5 . 4 )  
t ~ o o  

Remark. If Rw(O ) > 0, then this theorem tells us 
nothing more  than Theorem 1 : q5 ---, 0. But if w is 
not PE, the conclusion (5.4) can be interpreted as: 

O ( t ) ~ ®  as t ~ ,  

which means dist(0(t), ®) --* 0, not O(t)~ 0(~)  for 
some 0 ( ~ ) e  ®. In particular, 0 need not  converge 
to any point as t ~ ~ .  

ProoJ~ Since q~ and w are bounded,  find K such 

that 114~(t)ll, Ilw(t)ll < K. 

Let ~ > 0 be given. Find To such that for t > T o , 
tl Rw(O)qb(t)II < e. 

First choose T1 large enough that for all s, 

t 
(5.1) 

Call the set of 0s for which (5.1) holds ®. Since 
0 " ~ 0 ,  

9vAjv  OO_(jv , ) "r 

® = 0* + Nullspace " (5.2) 

¢VAjv~)O_tjvk) T 

Thus ® has dimension 2 n - k .  In terms of the 
parameter  error vector q5 = 0 - 0 " ,  ® has the 

s +  T 1 

Rw(O ) 1 f w(t)w(t)T d t e, 

s 

(5.5) 

Thus for all t 

c~ T(t)Rw(O)c~(t) 1 - ~ ( t ) ~  × 

t + T  1 

l 

(5.6) 

F rom our  update law q~ = 0 = -we1;  since el 
0, 4~(t)~ 0 as t--+ ~ .  The hypothesis i bounded  
implies that ck(t)Tw(t) --, 0 (Narendra and Valavani, 
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1978). Now find To so that for t > To 

e (5.7a) (dp(t)Tw(t)) 2 < 

and 

/3 

II~(t)ll ~ -  (5.7b) 
3K3T1" 

Then for t > To, 

~b(t)r ~--~ 

t + T l  

f w(r)w(z)Tdzc~(t) 

t 

t + T  1 

t 

t+T~ 

= ~ f W(z)T(~p(t)--~)(Z))W(Z) T X 
t 

q~(Z)) dz /3 (,~(t) + _< 

using (5.7b). From (5.7a), for t > T o, 

I + T  1 

~-I f dz /3 1 ~(~)~w(~)w(~)~(~) -< 5" 

t 

(5.8a) 

(5.8b) 

(5.9) 

Remark 3. As mentioned above, if w is PE then 
Rw(0) > 0 and consequently this theorem yields the 
original parameter  convergence results of Morgan 
and Narendra (1977) and Anderson (1977): uniform, 
asymptotic convergence of q5 to zero (and conse- 
quently exponential convergence). This proof, how- 
ever, is considerably simpler than the original 
proofs. 

6. PLANT RELATIVE DEGREE >2 
The scheme of Section 2 needs to be modified 

(Narendra and Valavani, 1978) when the relative 
degree of the plant to be controlled is > 2, i.e. the 
plant has the transfer function (2.1) with tie, de 
relatively prime monic polynomials of degree m, n 
respectively. In addition to the assumptions (A1)- 
(A3) the new assumption (A4) is added:t  

(A4) The relative degree of the plant, i.e. (n - m), 
is known. 

The model has the form (2.2) with the difference 
that ti M has degree m. The objective of the adaptive 
control is as before: to get el = Ye - YM to converge 
to zero as t ~ ~ .  

Although the control scheme in this case is 
considerably more complicated, it will be shown 
that the necessary and sufficient conditions for 
exponential parameter  error convergence to zero 
are identical to those given in Section 4 for the 
relative degree one case: namely, that Supt(S,) 
contain at least 2n points. 

From (5.6), (5.8) and (5.9), for t > T O 

[dp(t)Y Rw(O)q6(t)l ~ /3, 

which completes the proof of the Partial Conver- 
gence Theorem. 

Remark 1. The proof  relies only on the assumptions 
(5.7), which state, roughly speaking, that the par- 
ameter error eventually becomes orthogonal to w 
and that the updating slows down. These are nearly 
universal properties of adaptive systems, so this 
theorem actually applies quite generally, not just 
to Narendra 's  scheme. For  example, it applies to 
all of the schemes described in Goodwin et al. 
(1980). 

Remark 2. While the 2n - k dimensional set ® to 
which O(t) converges depends only on the frequenc- 
ies vl . . . . .  v k and not on the average powers Sr({vl}), 
. . . . .  Sr({Vk}) contained in the reference signal at 
those frequencies, the rate of  convergence of 0 to ® 
depends on both. 

6.1. The relative degree 2 case 

Consider first the scheme of Fig. 1 with the 
difference that A is chosen exponentially stable so 
that its eigenvalues (there are n - 1 of them) include 
the zeros of tim (there are m of them). It may again 
be verified that there is a unique constant 0* ~R 2" 
such that when 0 = 0* the transfer function of the 
plant plus controller equals I?VM(S ). The relationship 
between 0* and the coefficients of tie and a?e is more 
complex in this case than in Section 2. In this case 
since I?¢ M has relative degree 2 it cannot be chosen 
positive real; however, it may be assumed (using 
suitable prefiltering, if necessary) that there is 
L(s) = (s + 6) with 6 > 0 such that ITVML is strictly 
positive real. 

Now, modify the scheme of Fig. 1 by replacing 
each of the gains 0i, i.e. e o, do, c, d, with the gains 

t Of course, (A4) appears implicitly in the relative degree one 
case. 
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LolL- 1 which in turn are given by 

Lo,L ~ = o, + O,L ~ i =  1 . . . . .  2n. (6.1) 

Now define the signal vector 

~rtt) ~= [L- lr ,  L -~v~ ' ,L - l yp ,  L-~v~2~]. (6.2) 

r t ,  

W ~  

^ 

W p  

! 

. . . .  Y_P_ . . . . . . . . . . . .  

Then 
FIG. 3. Modification of the adaptive scheme when the relative 

degree > 3. 

yields that e~( t )~O as t ~  ~ provided r(t) is 
bounded. The persistent excitation condit ion for 
exponential parameter  and error convergence is on 
the signal vector ((t) of (6.2): there are ~, 6 > 0 such 
that for all s > 0, 

s + ? J  

f ~(t)~(t) T dt >_ ~I. 

s 

(6.3) 

Now, define the analogous signal vector for the 
model 

~rM= [L ' r ,L  ' v ~ ' r , L - ' y M , L - ' v ~ ' r ] ,  

i.e. ffM is obtained by filtering each component  of 
w M through the stable system with transfer function 
L ~. 

Suppose now that r has an autocovariance.  The 
output  of a LTI filter driven by r is (M, so it has 
an autocovariance;  since ( - (M ~ L2 (see [Narendra  
and Valavani, 1978]), ( has an autocovariance 
identical to that of (M" In fact 

R~(O) = f bL- ~(jv)12Q(jv)S,(dv)Q(jv) *. 

Thus R~(0) > 0 iffR~(0) > 0 and hence the necessary 
and sufficient conditions on r for exponential par- 
ameter convergence are exactly the same as in the 
relative degree one case. 

6.2. Relative degree >_ 3 
As in Section 6.1, pick a Hurwitz polynomial  L 

so that L W  M is strictly positive real. The trick used, 
namely, to replace each 0~ by LGL-1 ,  is no longer 
possible since LolL -1 depends on second (and 
possibly higher) derivatives of 0~. To obtain a 
positive real error  equation, retain the configuration 

of Fig. 1 and at tempt to augment  the model output  
by 

k~ f f~L[o~L_ ~ _ L-lO~]w. 
kM 

(6.4) 

The difficulty in implementing (6.4) arises from the 
fact that k e is unknown.  Consequently the model 
output  is augmented,  not by (6.4) but by 

ITvMLo2.+,(t)[orL -~ - L - 'Or]w (6.5) 

with 02,+ 1 being a new adaptive parameter  
expected to converge to kp/k M. To obtain q~ ~ L 2 
and prove stability of the augmented scheme an 
additional quadrat ic  term is also added as shown 
in Fig. 3 to (6.5) to get 

I~vMLoz.+ I(t){(oTL - ~ - L-  'Or)w + ~(Tffe,} (6.6) 

where c~ > 0 and ( is as defined in (6.2). If ~ is 
defined to be (oTL -1 - -L -~OT)w  then the update 
law 

(~ = _ e 1 

02,+1 = el~ 

yields that as t --, ~ ,  e,(t) ~ 0, that  is YM ~ YP. 
For  the scheme of Fig. 3, there are 2n + 1 par- 

ameters to be considered and the sufficient richness 
condit ion for parameter  convergence reads: there 
are ~, 6 > 0 such that for all s > 0, 

s + 6  

s 

dt >_ ~I, (6.7) 

where ~ __4 (orL - ' _ L 'Or)w. However,  condit ion 
(6.7) can never be satisfied since ( ~ 0 as t --, ~J as 
pointed out  by Anderson and Johnson (1982). F rom 
the preceding discussion, it follows that the addition 
of the new parameter  02,+ 1 in the augmented 
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output  signal is what  causes this difficulty. If  kp is 
known,  of  course, 02,+ ~, ~ are unnecessary and the 
parameter  convergence condit ion (6.7) reduces to 
(6.3), which is satisfied if r(t) is sufficiently rich of 
order >__ 2n. 

When  ke is unknown,  and when r(t) is SR of 
order  _>2n if follows that the autocovar iance at 
zero of  the signal vector [~r, ~]r  is given by 

with Re(0)> 0. By the Partial Convergence The- 
orem of Section 5, it follows that the parameter  
error  converges to the null space of the matrix in 
(6.8). Thus  all but the (2n + 1)th parameter  errors 
converge to zero. But the (2n + 1)th parameter  
is inconsequential  since it is the gain parameter  
associated with the augmented model  output  y,. 

7. A SIMPLE SIMULATION 
In this section the simplest simulation which will 

illustrate the results above is presented: a two 
parameter  M R A C  system, with plant 2/(s + 1) and 
reference model 3/(s + 3), as shown in Fig. 4. The 
correct values of  the adjustable parameters are 
cJ = 1.5 and d~ = - 1.0. The parameter  update law 
(2.6), 

Co = --er, d o = --eyp 

was used. 
In the first simulation the constant  reference 

input r ( t )= 2 was used, and all initial conditions 
were zero. This r has spectral measure 46(v), that  
is, one spectral line at v = 0. Since there are two 
parameters,  here w r = [r, ye] is not PE, and hence 
the parameters  need not  converge to their correct 
values. In fact the parameters  do converge, to 0.85 
and - 0 . 3 5 ,  respectively, which yields an asymptot ic  
closed loop response 1.7(s + 1.7)-t. This is not  the 
model  transfer function 3(s + 3) -~, but it does 
match the model transfer at s = 0, as required by 
the Partial Convergence Theorem. Figure 5 shows 
Co and do f o r 0 < t <  10. 

In the second simulation (Fig. 6) the reference 
input r(t) = 2 was kept, but the parameter  initial 
condit ions were changed: C o ( 0 ) = - 0 . 7 5  and 
do(0 ) = 0.75. Once again c o and do converge, but 
this time to 1.25 and -0 .75 ,  respectively, yielding 
an asymptotic closed loop response of 2.5(s + 2.5)- 1. 
As in the first simulation, this matches the model 
transfer function at s = 0. 

In the third simulation (Fig. 7) reference input 
r(t) = 4 sin 1.5t was used, which has spectral mea- 
sure 4 5 ( v -  1 .5)+ 46(v+  1.5) and thus is SR of 
order two. Of  course Co(t)~ 1.5 and do( t ) - -* -  1, 

Model 

3 

S + 3  

i Plant 

2 

S + I  

m @  

Y, 

Yp 

FIG. 4. Simple two parameter MRAC system simulated. 

I 
2 2 5  L 

r 

1 5 r  

L 

- 0 . 7 5  a 

%(t) 

d o ( t )  

- I . 5 !  

2.25 [ 
0 25  50 75 I00 

FIG. 5. Plot of Co and d o for 0 < t < 10, with reference input 
r(t) = 2, all initial conditions zero. 

I 

-1"5 i 
-2 25 I I 

0 25  5~0 ' 7'5 ' i . I 0 0  

Co(t) 

do(t) 

FIG. 6. Plot of c o and d o for 0 < t < 10, with reference input 
r(t) = 2, with non-zero parameter initial conditions. 

yielding asymptotic closed loop response 3(s + 3)- t. 
Even this simplest example imparts something 

useful: when M R A C  systems are used in regulator 
applications, and thus have constant  reference 
inputs (as in the first two simulations) only par- 
ameter convergence to the set of parameters which 
yield unity closed loop gain (an affine space of 
dimension 2n - 1, if there are 2n parameters) can 
be expected. 
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2 ~ 5 -  

0 7 ¢ L  

O 

- 0  7 5  

- I  5 -  

Co( t } = C o 

z 
d o ( t ) = d  o 

- 2  2 5 - -  ~ ~ : - * ~ .  

C 2 L, 5 0 /" 5 !,0 0 

FI(;. 7. Plot of c0 and do for0 < t _< 10, with SR reference input 
r(tl = 4sin 1.5t. 

8. CONCLUDING REMARKS 

We have shown that a complete description of 
parameter convergence can be given in terms of the 
spectrum of the reference input signal. 

Specifically, regardless of the relative degree: 
(1) the parameter error ~b converges exponentially 

to zero iff Supt(&) contains at least 2n points; 
(2) if Supt(&) contains only k < 2n points, then q5 

need not converge to zero. Instead it converges 
to a subspace of dimension 2 n -  k, which 
corresponds precisely to the set of parameter 
values for which the closed loop plant matches 
the model at the frequencies contained in 
Supt(S,). 
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APPENDIX: GENERALIZED HARMONIC ANALYSIS 

The first careful treatment of the notion of autocovariance 
was Wiener (19301. The idea is well known in the theory of time 
series analysis (see e.g. Koopmans, 1974), and is usually presented 
in the context of stochastic processes. A clear modern discussion 
of autocovariances which does not make use of the connection 
with wide sense stationary stochastic processes could not be 
found. Since the proofs of the various lemmas used here are 
neither difficult nor long, they are given below. 

The analogy between autocovariance and stochastic autocova- 
riance mentioned in Section 3 is not complete for example the 
limit in the definition of R, makes the proof of the linear filter 
lemma trickier than the proof of its stochastic analogue (which 
is little more than interchanging integrals and expectation via 
the Fubini theorem) and there is no stochastic analogue of 
Lemma 3.5. 

For the remainder of this section it is assumed that u: R ~ 
R" has autocovariance R,. Note that the integral (3.11 in the 
definition of autocovariance makes sense iff u is locally square 
integrable, i.e. ucL~,~. 

Lemma 3.3. R, is a positive semi-definite function. 

Prool. Suppose r 1 . . . . .  TKcR, ('~ . . . . .  cKC(7". It must be shown 
that 

~ ¢'~'Ru{rj Zik' J ~_ O, 
i,i 

Define the scalar valued function v by: 

i'll) ~ ~ c~ult + rkl. 
k = l  

tAI) 

Then for all T > 0 

1 ̧  

0 _< Iv(t)l dt (A2) 

1' 

c~ = iult + rOult 

r * 1 

,,j L r ., 

Since u has an autocovariance, as T - ,  ~c (A3) converges to 

c*RJrj zi)('r 
i,j 

From (A2), (A3) is non-negative, so (AI) follows. 
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Proposition (AI) implies that R, is the transform of a positive 
semi-definite matrix S, of bounded measures, that is 

R.(z) = fe"'S,(dv). (A4) 

(This is the matrix analogue of Bochner's theorem.) S, is 
symmetric, both in v and as a matrix, since R,(r) is a real 
symmetric matrix. 

Lemma 3.4 (Linear filter lemma). Suppose that y = h'u, where h 
is an m × n matrix of bounded measures. Then y has an 
autocovariance Ry given by 

Rr(r ) = ffh(dz,)Ro(z + r, - z2)h(dz2)  T (A5) 

and spectral measure Sr given by 

St(dr ) = H(jv)S,(dv)H(jv)*. (A6) 

ProoJ~ First, establish that y has an autocovariance: 

i~+? 
l Y(t)y(t + r ) rd t  (A7) 
, t  
x 

= 1 I [h(dzOu(t -- rl)] [u(t + z -- z2)Th(dz2)  T] dt. (A8) 

s 

For each T, the integrals in (A8) exist absolutely so the order 
of integration may be changed: 

s - r t + T  

s r~ 

(A9) 

The bracketed expression in (A9) converges to R.(T + r~ -- ~2) 
as T ~  oo, uniformly in s. Furthermore the bracketed expression 
in (A9) is bounded as a function of T, s, zl and r2, for T >  1, 
since by Cauchy-Schwartz? 

s t I + T  

l f u ( t ) u ( t + Z + Z l - - Z 2 ) T d t  

s e I 

< sup u(t)llZdt < oo. (A10) 
--  s.T~_1 

s 

So by dominated convergence (A9) converges, uniformly in s, 
as T--* 0% to 

f fh(dzOR.(z  + rl - 1) z2)h(dz2)  T. (A1 

Thus y has an autocovariance, given by (A11). This establishes 
(A5); to finish the proof, substitute the Bochner integral for R, 
in CAll): 

R,(o=ffh(dz,)fe'"+~,-'~'S,(dv)h(d*2.) r (A12) 

=fe'"[fe 
(since all the measures are finite) 

= felV~H(jv)Su(dv)H(jv) *. (AI4) 

This is the Bochner representation of Ry, so 

S,(dv) = H(jv)Su(dv)H(jv)* (AI5) 

establishing the linear filter lemma. 

Lemma 3.5 (Transient lemma). Suppose e(t) = u(t) - v(t)~ L 2 (and 
u has autocovariance R,.). Then v also has autocovariance R.. 

Proof. 

u(t)u(t + z)rdt  - v(t)v(t + (A16) 

s s 

= 1 e(t)u(t + "r)rdt + ~ Ju(t)e(t  + z)rdt  

s s 

1 '+? z)rd t + ~ J e(t)e(t + 
s sy 

1 ,:2 
~ Plellz Ilu(t + z)rl z 

s 

l + ~ Ilel12 i]u(t),] 2 + 1 Ilell 2 (A17) 

using the Cauchy-Schwartz inequality. The two bracketed 
expressions in (AI7) converge uniformly in s as T---, oo to 
TraceR,(0), so the entire expression (A17), and thus (A16), 
converges to zero, uniformly in s, as T ~  ~ .  Thus 

j t~t)v(t +z)  r d t ~ R . ( z )  as T ~  

s 

uniformly in s, and Lemma 3.5 is proved. 

t The restriction T >  1 is required if u is not bounded but Remark. Actually the hypothesis can be weakened to R e = 0, 
only in L2o¢. that is, e has zero average energy. 


