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ABSTRACT

It is shown that robust stability and
robust performance questions for control sys-
tems with nonparametric uncertainties can be
turned into those with a particularly simple
parametric description, It is pointed out that
there exist Routh-like procedures which
determine whether a system containing uncer-
tain subsystems is robustly stable (or robustly
meets performance requirements).

1. Parametric and Nonparametric Uncertainty
Consider a linear time-invariant (LTI) control sys-

tem containing uncertain subsystems. Subsystems
could have uncertain parameters, e. g.

Hmotor(s) = a(s+a) amin s a S amax (1)

A common method of expressing modeling errors
is to specify frequency domain error bounds, as in

- 1 - 1-2 jw/I3+ 1
Hsensor(JO) -g+j 1 j.w/10+ I

which we reexpress as

Hsensor +1 {o+"ll' 5 1
s+1 s/3+1

2. Robustness Questions
The robust stability question is:
Is our system stable for all possible choices of
subsystems?
A harder question is the robust performance ques-

lion:
Does our system meet the performance require-
ments for all possible choices of subsystems?
Doylel has pointed out that if we express our per-

formance requirements as a collection of inequalities
like (2), for example,

||H rc
+10

| 1Ftrack-err los (3)

then the robust performance question can be reduced
to a robust stability question for the system augmented
by one uncertain subsystem for each performance
requirement of the form (3).

Considering for simplicity only the nonparametric
uncertainties, we may transform our original system S
into the now well known standard form S,d for a sys-
tem with uncertainties of the form (3):

(2)

where I11I1= AsupH(ico)I is the usual Rx norm.

This is a nonparametric uncertainty since the class
of all subsystems specified by (2) cannot be
parametrized with a fini'te number of real or complex
parameters. One of the purposes of this note is to
point out that for the purposes of checking robust sta-
bility of a system, the uncertain subsystem (2) can be
replaced with a simple parametric one like (1). System S5
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The robustness of our original system S can be
expressed simply as:
Definition: System S is ROBUST iff S,t is stable for
all I AA11s1.

Using the notion of structured singular value ,(Q)
developed by Doyle and Safonov1'2 we can say:

S ROBUST iff sup4(H(jw)) < 1 (4)
w

Much work has focused on the computation of p. For
k> 3 the computation of t.(H) for just a single com-
plex matrix H is far from straightforward and is a
topic of active research. The problem of verifying that
the p of a whole transfer function lies below one, as
required in (4), is of course even harder. Nevertheless
we will-show that this question can be turned into a
simple appearing parameter stability problem, and in
fact that there is a decision procedure (finite algo-
rithm) which can answer it.

3. Turning a Nonparametric Uncertainty into a
Parametric One

Theorem: S is ROBUST if and only if S,td is stable for
all Ai of the form

AP(s) - + -d or ±1 (5)

for di>0.
Note that the third and fourth cases are limiting

cases as d,-O or di-=.
Thus it suffices to check stability with the very

special A's given by single pole all-passes: if the sys-
tem SJW can be destabilized for some perturbations
satisfying JJA,jJs 1, then it can be destabilized by some
single pole allpass perturbations. For a smilar obser-
vation, see Vidyasagar[3,p282].

4. Some Notes on the Resulting Parameter Stability
Problem

Consider the case A(s) =(s-dt)(s+d,)1' for
i= 1,...k. Let

x = Ax + Bu y = Cx

be a realization of H with no hidden unstable modes
(we take H strictly proper for simplicity). The A's
may be realized as

i= -Dz + y U = y - 2Dz

where D = diag[dl,...,dk]. Thus our question is
whether the system

Lx] =[A-+BC -2BD1 [xJ

[ c - 1 D1 z

is stable for all D diagonal and positive.

(6a)

(6b)

Note that the parameters enter in a particularly
simple form: the matrix in (6) is affine in the parame-
ter vector [dl, . d.kdf]7'. The matrices in (6) form a
positive cone, thus the original robustness question can
be transformed to a set of questions of the form:

Given matrices Al, .. . p,A,m determine
whether all matrices in the positive cone
{X d,A1 I di0} are stable.

In our case, A2, . . .,,A, have rank 1.
This last problem may be turned into an

equivalent problem which appears even simpler, by
considering a Lyapunov equation. Provided A1 is
stable, then the cone of matrices described above is
stable iff for every matrix A in the cone, the only sym-
metric solution of ATP+PA=O is P=O. Viewing this
Lyapunov equation as a homogeneous linear equation
in the n(n+ 1)/2 variables Pij with coefficient matrix L,
we can restate the problem above as:

Given matrices Ll, ... Ln,, determine
whether all matrices in the positive cone
{Z d1Lj I d210} are nonsinguadr.

Of course, the L's are bigger matrices than the A's, but
nonsingularity has been substituted for stability.
4.1. Positivity of a Real Polynomial

In this section we point out that the problem of
deciding whether a cone of k matrices is stable can be
cast as a problem of deciding whether a real nonnega-
tive polynomial of k real variables is in fact positive.
The cone generated by A1, . . . ,A is stable iff

det(sl-djAd *-dmAA,,) # 0

for Rew x 0, di ; 0
(7a)
(7b)

If the polynomial in (7) vanishes for some di? 0 and s
in the closed RHP, then in fact it will do so with the s
on the jw-axis, that is, (7) is equivalent to (8):

det(d - djA I * * -dAm) * 0 for di 2 0 (8)
Define

P(xo, . . 4g,) A jdet(xj -x2A- * X x2Am)1F(9)
Thus our problem is one of determining whether the
real nonnegative polynomial P is in fact positive.
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4.2. A Decision Procedure
The question of whether the polynomial P in (9)

is positive can be determined by a decision procedure,
or finite algonrthm. In fact, there arc a finite number
of polynomials of the coefficients of the matrices A,,
such that they are all positive iff (9) is always posi-
tiveA4 Thus a Routh-like procedure can determine the
robust stability (or performance) of a system with unc-
ertain subsystems. Anderson et al.5 have pointed out
that other hard problems, for example, the stabiliza-
tion by constant output feedback problem, can also be
decided with a Routh-like algorithm.
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