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Analysis and Synthesis of State-Feedback
Controllers With Timing Jitter

Joëlle Skaf and Stephen Boyd

Abstract—We consider a continuous-time linear system with sampled
constant linear state-feedback control and a convex quadratic performance
measure. The sample times, however, are subject to variation within some
known interval. We use linear matrix inequality (LMI) methods to derive a
Lyapunov function that establishes an upper bound on performance degra-
dation due to the timing jitter. The same Lyapunov function can be used in
a heuristic for finding a bad timing jitter sequence, which gives a lower
bound on the possible performance degradation. Numerical experiments
show that these two bounds are often close, which means that our bound is
tight. We show how LMI methods can be used to synthesize a constant state-
feedback controller that minimizes the performance bound, for a given level
of timing jitter.

Index Terms—Linear matrix inequality (LMI), timing jitter.

I. INTRODUCTION

We consider a continuous-time linear time-invariant control system,
with plant given by

(1)

where is the state of the system, is the input to
the system, , and .

The plant is controlled by a sampled controller, with sample times
, where we assume as . The

input is piecewise constant, given by

(2)

From (1) and (2) we can derive the equation

(3)

where

(4)

and

(The matrix can be computed either numerically or analytically, in
terms of the matrix exponential; see Appendix A. For more on the ma-
trix exponential, see [1].)
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In particular, (3) can be used to derive the equations for a discrete-
time, linear time-varying system that describes the state at the sample
times

(5)

where is the th intersample time, , and
.

Timing Model: In the case of a perfect clock with sampling period
, we have , and (5) reduces to the linear time-invariant system

, where and
. We will refer to this as the nominal closed-loop system.

We are interested, however, in the case where jitter and clock inac-
curacies are present, where is near, but not exactly equal to,

. We will use the following model for sample times: they must satisfy

(6)

but are otherwise unknown. Here , which is a parameter in our timing
jitter model, gives the maximum possible jitter. (We assume .)
This model includes changes in sampling rate: The sample time se-
quences and , which correspond to uni-
form sampling with lower and higher periods, both satisfy (6). Another
commonly used model for the sample times is the pure jitter model,
described by

(7)

The pure jitter model is a special case of our timing model (6).
Performance Measure: We are interested in bounding the worst-

case performance of the system under our timing model (6). We will
use the traditional linear-quadratic regulator (LQR) continuous-time
cost

(8)

Here and are parameters in our cost func-
tion. We make the standard assumptions on and : is symmetric
positive definite, is symmetric positive semidefinite and
is observable. The cost , which depends on the sample time
sequence as well as the initial state and input sequence , can be
infinite.

Using (2) and (3), the cost can be expressed as

(9)

where

and

(Like , the matrices , , and can be computed
either numerically or analytically, in terms of the matrix exponential;
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see Appendix A.) It follows from our standard assumptions that the
matrix is positive definite.

For a given timing sequence, is a convex functional in and
the sequence .

Linear State-Feedback Controller: We take the controller to be a
state-feedback controller given by

(10)

where is the (constant) state feedback gain. The equations
for the discrete-time, linear time-varying system that describes the state
at the sample times becomes

(11)

We will assume that this system is stable, i.e., the eigenvalues of
have magnitude smaller than one.

The cost (9), now only a function of the initial state and the sample
time sequence, becomes

(12)

For a fixed sample time sequence, the cost is a convex quadratic
function in the initial state .

We define the worst-case cost as

(13)

Like , can be infinite. Since is a supremum of a
family of convex quadratic functions of , it is convex, and also ho-
mogeneous of degree 2.

For the nominal system, i.e., when , the cost is

where is the (unique) solution of the Lyapunov equation

Here , , and .
The relative performance degradation, compared to the nominal

system, is

(assuming ). This gives the relative increase in the cost due to
jitter, for a specific initial state . We define the worst-case relative
performance degradation as

(14)

This number is always nonnegative, since

for any .
Upper and Lower Bounds: Our goal is to find a (computable) upper

bound on , given the problem data , , , , , , and . By
computable we mean that the upper bound is obtained with modest
computational complexity, e.g., solving a semidefinite program (SDP)
or a standard problem involving LMIs.

We are also interested in obtaining lower bounds on . A lower
bound can be obtained by choosing a specific and a finite timing
sequence that satisfies our timing model (6). We then con-

tinue the chosen finite sequence infinitely, adding
for . This sample time sequence results in the
cost

(15)

where propagates according to (11). This cost is, of course, a lower
bound on . We thus have

(If the timing sequence is chosen poorly, the right-hand side can be neg-
ative; in any case, it is a valid lower bound on .) The challenge in get-
ting a good lower bound is finding a ‘bad’ timing sequence ,
i.e., one that leads to large cost. We will address this question as well.

Previous and Related Work: For basic references on digital control
of continuous time systems, see [2]–[4]; [5] describes the problem of
timing jitter. There have been several approaches to analyzing the per-
formance of systems in the presence of varying delays or jitter: early
work on the subject of randomly sampled systems can be found in [6]
and [7], information theoretic studies were presented in [8]; “Jitterbug,”
a computational toolbox for performance analysis, was described in
[9]. A related topic is jitter compensation, which consists of adding a
“compensator” to the existing control system to guarantee stability or a
certain performance level in the presence of jitter; see, e.g., [10]–[12].
Other researchers have used LMIs, and robust control analysis and syn-
thesis methods, to achieve stabilization of discrete uncertain systems
[13], [14], or switched systems with unknown time-varying delays [15].
Recent work has also discussed the use of time-varying delay to model
sample-and-hold circuits [16]. The issue of control in the presence of
jitter has also been of interest in the field of scheduling: see [17] on the
topic of jitter compensation in scheduling tasks and [18] on the design
of real-time controllers under scheduling and timing constraints. The
methodology we descibe in this technical note was subsequently used
by Bhave and Krogh [19] in the context of state-feedback controllers
with network delay.

II. UPPER BOUND

Semi-Infinite SDP Formulation: Our method is based on finding a
quadratic (Lyapunov) function , which satisfies

for all , and all timing sequences that satisfy our timing model
(6). It follows that for all , and therefore

(16)

The supremum of the right-hand side is , where
is the largest generalized eigenvalue of the pair ,

for symmetric and symmetric positive definite

(Here denotes matrix inequality.) From (16), we see that

(17)

provided holds for all , and all possible timing
sequences that satisfy our timing model (6).

A sufficient condition for the inequality to hold
for all is and

(18)
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where

The inequality (18) is a semi-infinite LMI in the matrix , i.e., a family
of LMIs parametrized by the real number , which ranges over an
interval. For more on representing control system specifications via
LMIs, see, e.g., [20]–[22].

To establish our claim, consider the Lyapunov function
, defined as . Since is positive semidefinite,
for all . For any

Now using (18)

Reordering the terms in the inequality leads to

where the last inequality follows because . Letting tend
to infinity, we get

i.e., for all and for all timing sequences
. Therefore, it follows that for all and that (17)

holds.
We can choose to obtain the smallest possible upper bound on ,

by solving the convex optimization problem

(19)

The variable here is . For more on convex problems, see [23].
The problem (19) can be expressed as a (semi-infinite) SDP by in-

troducing a new scalar variable :

(20)

Here the variables are and .
Discretization: We first describe a simple method for approximately

solving (19) by discretizing (18). This approach is certainly adequate

for any practical problem; in any case, we describe below a conserva-
tive discretization.

We define the discretized values of to be

(21)

where is the number of discretized values of . Using this simple
discretization, the problem (19) becomes

(22)

where and . This is a tractable convex problem,
readily transformed to an SDP and solved. Taking is sufficient
for any practical problem; in any case, the computational complexity
grows linearly in , so larger (if it were needed) would not impose
much computational burden.

Conservative Discretization: The simple discretized LMIs

do not imply the semi-infinite LMI (18). We can however modify the
discretization slightly so the resulting convex inequalities do imply
(18).

We define

which is an analytic function of over the interval .
Let for . Then we have

, for all . It follows that with
our uniform discretization (21), for any , there is
an for which .

From this we conclude that if the LMIs

hold, then the semi-infinite LMI

must hold.
In Appendix B we show that can be chosen in the form

, where and are constants that depend on the problem
data. It follows that the convex inequalities

imply the semi-infinite LMI (18). Using these convex inequalities in the
place of the LMIs appearing in (22) yields a tractable convex problem,
readily transformed to an SDP, which gives an absolute guarantee.

III. LOWER BOUND

We describe a heuristic algorithm for generating a good lower bound
on . This algorithm follows the guidelines described in Section I:
it generates an initial state and a ‘bad’ timing sequence that
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result in a good lower bound of the form (15) on the worst-case cost
. The basic idea behind the heuristic is to choose a sample time

sequence that greedily maximizes the rate of increase of the Lyapunov
function at each time, i.e., that maximizes the quantity

at each time .
The algorithm sets to be the eigenvector associated with the max-

imum generalized eigenvalue of the pair . It starts with
, , and . As long as , it sets , where

and updates as follows:

It then propagates the state forward according to
, and increments . When , the algorithm adds a final

cost term to :

and exits. The final value of is and is a lower bound on
. We therefore have

IV. STATE-FEEDBACK CONTROLLER SYNTHESIS

So far, the state feedback gain matrix has been considered
problem data, i.e., fixed and given. In this section we describe a
method for synthesizing that minimizes the performance degrada-
tion coefficient , for some given . The optimization problem
that needs to be solved is (19) with variables , , and . We will
work with the discretized version (18), which is

(23)

where the optimization variables are now both and .
The controller synthesis problem (23) is not convex as stated, but

a change of variables yields an equivalent convex (and therefore
tractable) problem. Let and . Problem (23) is
equivalent to the convex problem

(24)

with optimization variables , , and , for . Here
is the smallest generalized eigenvalue of the pair ,

for symmetric and symmetric positive definite:

Fig. 1. Top two curves. Lower (dashed) and upper (solid) bounds on with
. Bottom two curves. Lower (dashed) and upper (solid) bounds on ,

for , synthesized to minimize the bound on (for each value of ).

Let and be solutions of (24). A solution of (23) can then be
recovered as follows:

The controller minimizes the upper bound on that we derived in
Section II.

V. EXAMPLE

In this section we present a simple example to illustrate the methods
described above. Our example has dimensions and . We
generated the problem data and by choosing all entries indepen-
dently from a standard normal distribution. We take LQR cost matrices

, , and sampling time . For discretizing the
semi-infinite LMI, we use (repeating the example with larger
values of had no effect on the results.) In our heuristic for finding a
bad timing sequence, we use steps before reverting to uni-
form nominal sampling.

In our first experiment, we choose the state-feedback controller to
be the LQR-optimal feedback controller (for the nominal timing) ,
which minimizes for any . With this choice of controller,

represents the worst-case suboptimality of the LQR cost, over all
possible timing sequences. For example, means that for the
given value , the increase in LQR cost, due to the timing jitter, is at
most 10%.

For each value of , we compute an upper bound and
a lower bound on as described in Section II and Section III, respec-
tively. The results are shown in the two upper plots in Fig. 1, with solid
for the upper bound on and dashed for the lower bound on . These
curves are almost on top of each other, which means that our method
has (almost) exactly determined the value of . It is a testament to the
extraordinary robustness of LQR that the LQR cost rises only 27% over
its optimal value, with extreme timing variations, for which varies
over a factor of 3 (from to ).

In our second experiment, we synthesize the feedback controller
as described in Section IV, for each value of . This pro-
cedure gives the controller and an upper bound on (referenced to
the original nominal LQR controller); we also compute a lower bound
using the method described in Section III. These results are shown as
the two lower curves in Fig. 1, with the solid curve denoting the upper
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bound, and the lower curve denoting the lower bound. As in the pre-
vious experiment, the two curves are (almost) the same, meaning that
we have determined to within a very small interval. The plot shows
that in this case, modifying the controller to take into account timing
jitter leads to a reduction by a factor around two in the worst-case per-
formance degradation due to jitter.

VI. CONCLUSION

We have described a computationally tractable method for bounding
an LQR performance criterion in a state feedback controller with timing
jitter. In many examples, the lower and upper bounds are very close,
which means that we have actually computed (within a small approx-
imation) the worst-case LQR cost under all possible timing sequences
consistent with out timing model.

Some variations and extensions are simple; many others are not
obvious, at least to us, at this time. The analysis can be extended to
include constant linear dynamic controllers, and any set of perfor-
mance measures that can be cast in the form of LMIs (e.g., a weighted

-norm gain). The synthesis problem with a general dynamic con-
troller, though, would seem to be difficult.

In this technical note we have assumed that the timing jitter is the
same for all actuators (or sensors; in this case we get the same model). If
this were not the case, and individual actuators and sensors could have
separate jitter values, the problem is much more difficult; in particular,
the semi-infinite LMI we encounter is now parametrized by multiple
parameters, instead of the one we have in this technical note. If the
number of these parameters is small, we can still discretize (especially
since 3 values of each jitter parameter is likely to be enough in practice);
beyond that, the methods described here would have trouble.

APPENDIX A
CLOSED-FORM EXPRESSIONS

We make one simple assumption: the eigenvalues of , denoted by
, , satisfy the property

(25)

This assumption implies that has no zero eigenvalues and is therefore
invertible.

We know that

The closed-form expressions of , , and are therefore

(26)

(27)

(28)

where

and

Property (25) is equivalent to the Lyapunov operator
being nonsingular. Therefore, is the (unique) solution of the

Lyapunov equation

If (25) doesn’t hold, formulas (26), (27), and (28) are obviously not
valid, but alternative formulas can be derived.

APPENDIX B
CONSTANTS IN CONSERVATIVE DISCRETIZATION

To derive expressions for and , we start by finding upper bounds
on and over the interval . We will use
the following facts in our derivation:

and for any matrices , , , of appropriate sizes,

From

we have

(29)

where . From

we obtain

(30)

(31)

where .
By computing the maximum of the right-hand sides of (29) and (31)

over the interval , we obtain the parameters
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Inverse Agreement Protocols With Application to
Distributed Multi-Agent Dispersion

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos, Member, IEEE

Abstract—We propose a distributed inverse agreement control law for
multiple kinematic agents that forces the team members to disperse in
the workspace. Both the cases of an unbounded and a circular, bounded
workspace are considered. In the first case, we show that the closed-loop
system reaches a configuration in which the minimum distance between
any pair of agents is larger than a specific lower bound. It is proved that
this lower bound coincides with the agents’ sensing radius. In the case of a
bounded circular workspace, the control law is redefined to force the agents
to remain within the workspace boundary. Moreover the proposed control
design guarantees collision avoidance between the team members in all
cases. The results are supported through relevant computer simulations.

Index Terms—Cooperative control, distributed multi-agents systems,
swarm dispersion.

I. INTRODUCTION

The emerging use of large-scale multi-robot/vehicle systems in var-
ious applications has raised recently the need for the design of control
laws that force a team of multiple vehicles/robots (from now on called
“agents”) to achieve various goals. As the number of agents increases,
centralized designs fail to guarantee robustness and are harder to im-
plement than decentralized ones, which also provide a reduce in the
computational complexity of the feedback scheme. Among the various
objectives of the control design, convergence of the team to a common
configuration, also known as the agreement problem, is a design spec-
ification that has been extensively pursued. Many distributed control
schemes that achieve multi-agent agreement are found in literature; see
[1], [2], [4], [8], [9], [14]–[16] for some recent results. In this technical
note, we propose an algorithm for swarm dispersion which can be con-
sidered as an inverse agreement problem. Each agent follows a flow,
whose inverse leads the multi-agent team to agreement. The design is
distributed, since each agent only knows the relative positions of agents
located within its sensing zone at each time. The sensing zone is a cir-
cular area around each agent whose radius is common for all agents.
The application of this inverse agreement strategy is dispersion of the
team members in the workspace, i.e., convergence to a configuration
where the minimum distance between the swarm members is bounded
from below by a controllable lower bound. It is shown that this lower
bound coincides with the radius of the sensing zone of the agents in the
case of an unbounded workspace. Furthermore, the results are extended
in order to take into account the workspace boundary for the case of a
circular bounded workspace.

Applications of the dispersion algorithm include coverage control
[5], [11], [12], and optimal placement of a multi-robot team in small
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