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Abstract

“Robust stability” of a linear multivariable system, in the
sense of robustness under multiplicative transfer function perturba-
tions, is necessarily preserved under sufficiently small perturbations
in the model parameters (i.e., it is a robust property). In this paper,
parameter perturbation bounds ensuring the persistence of the
robust stability property are derived.

L INTRODUCTION

The frequency domain analysis of robust performance and sta-
bility of feedback systems with uncertainties is a subject which has
attracted significant interest, prompted by the work of Doyle and
Stein (1] . The early work resulted in necessary and sufficient condi-
tions for robustness with respect to unstructured perturbations.
These were expressed in terms of singular values of system transfer
function matrices. Recently, Doyle [2] and Safonov [3] have ini-
tiated work on the case of structured uncertainties. Necessary and
sufficient conditions for the satisfaction of robust performance and
stability requirements in this setting are expressed in terms of the
“structured singular value” [2] . Computational tools for checking
these conditions for broad classes of systems are emerging.

Structured robust stability! involves large (but bounded) per-
turbations in certain loops of a multivariable system. That is, struc-
tured robust stability entails stability in the face of large, structured
perturbations. In this paper, we study the persistence under small,
unstructured parametric perturbations of the robust stability (struc-
tured or unstructured) of a system. The main goal is to derive
parameter perturbation bounds which, when respected, ensure the
robust stability of the perturbed models. The analysis of the paper

employs results of [4] and [5,[6].

II. BACKGROUND

Consider a linear multivariable system subjected to structured
uncertainty. That is, independent norm-bounded uncertainties, or
perturbations, are assumed present in some, but not all, elements of
the system. Denote by H(s) the nominal transfer function matrix,
which would completely characterize the system dynamics in the
absence of the uncertainties. The transfer function matrix H(s) is
assumed to be a stable, proper, and rational representation of a
causal linear system, all of whose entries have real coefficients. By
rearranging the system, the hypothesized uncertainties may be
grouped into a single block diagonal perturbation matrix [2]

A(s ) = block diag (A(s),...,A,,(s)). (1)

This transforms the original uncertain system representation S into
the now well known standard block diagram representation S, dep-
icted in Figure 1.

The notion of robust stability of system § with respect to
structured uncertainty may be succinctly expressed in terms of the
representation S,. The following definition employs the norm

Al = sup (A (jw)), (2)

Doyle [2] has observed that s large class of robust performance questions may be res-

tated as ones of robust stability. Therefore, we restrict our attention to the (structured)

robust stability problem.
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where (F ) denotes the largest singular value of the matrix F.

Definition 1. By structured robust stability of the system S, one
means stability of system S, for any block diagonal A(s) as in (1)
with |[A;| <1, ¢ =1,..m.

Following convention, the upper bound on JA;], s =1,...,m, in
this definition is taken to be 1; this simplifies notation while not
resulting in a loss of generality. The uncertainty A is a non-
parametric uncertainty, i.e. the class of all perturbations satisfying
lA;l <1, § =1,.,m cannot be parametrized by a finite number of
scalar parameters. In [4] , it is shown that structured robust stabil-
ity relative to nonparametric uncertainty as in Definition 1 is
equivalent to structured robust stability relative to certain
parametric uncertainties, for the case of scalar blocks A;(e). (The
result may also be generalized to nonscalar blocks.) We recall the
following theorem from Boyd [4] .

Theorem 1 [4]. Let the blocks A;(s) be scalars. Then system S
possesses the structured robust stability property of Definition 1 if
and only if 5, is stable for all A(s) = diag (Ay(s),....Ap (2)), where
each A;(s) is of the form

A.-(a)=:t: ;_:"

and each d; > 0,¢ =1,..m.

or +1 (3)

H(s)

diag(Ay, -+ Ap)

Figure 1

Theorem 1 allows us to study a parametric stability problem,
parametrized by d;, ¢ = 1,...,m, in place of the original robust sta-
bility problem, which involved nonparametric uncertainties. Note
that the third and fourth cases in Theorem 1 result from taking the
limit as d; — 0 in the first and second cases, respectively.

The results of Abed [5] deal with parametric stability problems,
and were motivated by problems in multiparameter singular pertur-
bation theory. The notion of D-stability of a matrix, introduced by
Enthoven and Arrow [6] in the context of competitive market equili-
brium, arises naturally in this context as well. Recall (7] that a
matrix F € R™*™ is said to be D-stable if DF is stable for each
diagonal matrix D with positive diagonal entries. Khalil and Koko-
tovic [8] generalized this concept to one of “block D-stability,”
wherein D is restricted to be of the form (dy/, , ..., dyl,,). In this
case, we say F is block D-stable with respect to the index
(my, ..., my). Abed [5] showed by example that D -stability need
not be robust to arbitrarily small perturbations of a matrix, and
introduced the following related concept.
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Definition 2. The matrix F € R™*™ is strongly D-stable if there is
a p > 0 such that F+G is D-stable for each G € R™*™ with
lal< u.

The following notion of strong block D-stability generalizes the
strong D-stability idea in the same way that block D-stability
relates to D -stability.

Definition 3. The matrix F € R™*™ is strongly block D-stable
(with respect to the multi-index (m,, ..., my) ) if there is a p > 0
such that F+G is block D-stable (with respect to the same multi-
index) for each G € R™*™ with |G| < p.

A theorem from [5] is now recalled, to illustrate the implica-
tions of strong D-stability in multiparameter singular perturbation
problems. Although this result is not used explicitly in this paper,
its relationship with the current problem will become clear in the
next section. Consider a linear time-invariant system

F=Ayz + Ay

(42)
(4b)
where E () := diag (¢, . . . , ¢, ). Here z € R", y €R™, and the Ay

are real matrices of conformable dimension. The singular perturba-
tion parameters ¢;, i = 1,..,m are small and positive.

Theorem 2 (5] Suppose  that all  eigenvalues of
Ao = Ay-ApAntAy have strictly negative real parts, and let Ay
be strongly D -stable. Then there is a u > 0 such that the null
solution of system (4) is asymptotically stable for a

& >0,i=1,.m, | < g
III. EXPLICIT FINITE
DIMENSIONAL REALIZATION

Consider the system S with transfer function matrix H(s)
strictly proper. Let H(s) have a realization

E()y =Auz + Amy,

(52)
(5b)

containing no unstable hidden modes. To derive general parameter
perturbation bounds for robust stability, we first explicate Theorem
1 as it applies to (5).

¢z =Az +Bu

y =0z

The following notation will be needed. Denote by o the ordered
set of integers ¢ for which A;(s) = %1, and write

a={kky ..., k} (6)
where ¢ < m and k, < k; < -+ < k,. Similarly, denote by 8 the
ordered set of integers ¢ for which A;(s) = :L-: ; a: . Write

i
B={lyls ..., b} (7

where b =m-a and I, <, < --- </,. Denote by C; the i-th
rowof C, and by B; the i-th column of B. Let u, (respectively y,)
be the vector of components of u (respectively y) whose index
belongs to a, and analogously for the notation u4, ys Denote by B,
the matrix of columns of B (respectively, rows of C) whose index
belongs to a, arranged according to increasing order of the index.
Similarly, introduce the notation By, Cj, for the remaining columns
and rows, respectively, of B and C, respectively. Finally, use J, to
denote any diagonal e Xa matrix all of whose diagonal entries are 1
or -1; similarly, J4; denotes any diagonal b Xt matrix all of whose
diagonal entries are 1 or -1.

For i € a, 4; = xy = +C;z. Hence, using the notation intro-
duced above, we have

gy = JoCo2. (®)

- d:
® % This implies, for 1 < § < 8,
4

Fori €8, Ai(s) = 2~

v, + dy =2y, - dw) (9)
Define

(10)

where ¥ means that the — sign is used if the -+ sign prevails in (9),
and the + sign is used otherwise. This yields

2= di(y, - %)

1y

regardless of the sign appearing on the right side of (9). Define
Dy=diag(dy, . .., dy), which is simply an arbitrary positive diago-

=d;(Gz - z)

nal matrix, and denote by z the column vector z := (zy, - . ., %)7.
Then (11) implies z is governed by the dynamics
2 =DfChp - z). (12)
Eq. (10) also implies that for 1 < i <5,
o=ty F 2. (13)
Hence, the vector uy is given by
ug=Jgyp - 22)
= JCpz - 2z). (14)
Now, z is governed by the dynamics
z =Az + Bu
= Az + Bau, + Bguy
= Az + BoJ,Cox + Bgly(Cpz - 2z)
—(A + BoJoCo + ByJsCplz - 2Bylpz (15)
Summarizing, the overall system dynamics is given by
2 =(A + BoJ,Cq + BgJsChlz — 2ByJgz (16a)
 =DKCpz - z). (16b)
Eg. (16) may be written more compactly as follows:
2) (A + BoJ,Cu + BslsCp -2Bslg) (2
[z'] - [ DsCp -Dy (Z} (172)
The coefficient matrix in Eq. (17a) can be factored as '
I 0) (A + BoduCqo + BsJsCy —2Byl,
[o D,] [ Cp I (17b)

We are now in a position to give a more explicit restatement of
Theorem 1 in terms of block D-stability. We then use this state-
ment to derive parameter perturbation bounds for the persistence of
structured robust stability. The following result is obtained easily
from the preceding analysis using the notion of block D-stability.
Here n is the dimension of z.

Corollary 1. System S is robustly stable with respect to the struc-
tured uncertainty A(s) = diag (A,(8 ),-..,An (3)) f and only if the fol-
lowing matriz is block D-stable with respect to the indez (n,1,1,..,1),
for all ordered partitions a, B of the set {1,..m} = aUB, anf =19,
and for all choices of the diagonal mairices J,, J5 with only 1 and -1
occurring in the diagonals:

A + BoJ,Cq + BalsCy
Cs

{18)

-2BgJg)
Zorﬁ = _Iﬂ }
Since the structured robust stability property addressed in
Corollary 1 persists under all sufficiently small perturbations in the
system matrices A,B,C, we have the following additional result,
interesting in its own right.
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Corollary 2. If the matriz Z,4 is block D-stable with respect to the
indez (n,1,1,...,1), for all ordered partitions a, 8 of the set {1,..,m}
= aUB, anNB =0, and for all choices of the diagonal matrices J,, Jg4
with only 1 and -1 occurring in the diagonals, then this property is
preserved under sufficiently small perturbations of the system
matrices A ,B,C.

IV. PARAMETER PERTURBATION BOUNDS

By Corollary 2, the matrix Z.s of Eq. (18) is block D-stable
and remains so under small perturbations of the matrices A ,B,C for
each « if and only if the original system is robustly stable. This sug-
gests that Z,, may indeed be strongly block D -stable. It was shown
by Abed [5] that a matrix F is strongly block D-stable if there

exists a symmetric positive definite block diagonal matrix
P =(P,, ..., Py)such that Q given by
PF + FTP =-@ (19)

is positive definite. Moreover, an upper bound on the norm of the
perturbation G' to F ensuring retention of block D-stability is given
by
[]]

lol < Jel.
Here the norm is any symmetric matrix norm. Applying this to the
matrix Z,s for each « and Jp, and taking the minimum over a and
J, we arrive at an upper bound for robust stability. The details of
this are worked out next, and a computation using the Kalman-

(20)

Yacubovitch Lemma is introduced.

If, for each partition (e,B), there is a positive definite matrix
P15 8nd a positive diagonal matrix Py, s such that Q.4 given by

P Puas 0
(M5 p2,) 2+ 23 [P45,) =0 )

P22,a P22,aﬂ
is positive definite, then Eq. (19) is satisfied for each ,8, J,,J5, and
Eq. (20) gives an upper bound on parameter perturbations for
robust stability. Namely, if each perturbation matrix G, now
understood as a perturbation of the matrix Z,4, is bounded in norm
as follows:

1Q.4

G ol <
I a’" 2(1P 1,08l +

) (22)
22,0pl)

then robust stability of the perturbed system is ensured. Moreover,
it is straightforward to state upper bounds on the perturbations of
the system matrices A ,B,C which guarantee the inequality (22).

Eq. (21) may be interpreted in terms of positive real functions
using the Kalman-Yacubovitch Lemma. To see this, rewrite (21) as

‘Pll,a A ‘Z-TPII,a _Pll,ag - 5TP22,0
Qal = [ _ET Pp:,nﬂ —Pﬁ,gﬁg l’?Pﬁ_aﬂ ﬁ] (28)
where A := A +B,J,0, + BgJsCp B = -2ByJp and C := Cp.

In the case a = {l,.,m}, the existence of a positive definite
matrix P, .4 ensuring positive definiteness of Q.4 reduces to a study
of the Liapunov matrix equation Py 34 + AT Py 5 = - Qup The
analysis of this equation, including derivation of associated pertur-
bation bounds, is standard. Now assume that for each proper sub-
set a of {1,...,m} and matrix J,, the pair (A + B,J,C,, By) is con-
trollable, and the pair (A + BoJ,Ca, Cp) is observable. (Recall that
B is determined once o has been specified.) Then using the PBH
rank tests, it is straightforward to show that, for each such «, the
pairs (4,B), (4,C) are controllable and observable, respectively.
This implies that for each such «, the representation
(A,B,- PyagC ,Pyyg) is also minimal, for any positive diagonal
Pygas From the Kalman-Yacubovitch Lemma, it follows that if

there exists a positive diagonal matrix Pgg,s such that the transfer
function

R(s):=Poyap{l - C(sI-A)'B} (24)

is strictly positive real, then there is a positive definite Py, such
that Q,s given by (23) is positive definite. The multivariable
Kalman-Yacubovitch Lemma in the form presented by Anderson, or
more simply that given by Boyd [9] , may be used to obtain this
result.

V. CONCLUSIONS

We have shown how parameter perturbation bounds for the
classical frequency domain notion of robust stability with respect to
multiplicative perturbations may be computed. The derivation of
the bounds was performed in the time domain, using results on
strongly block D-stable matrices. The assumption needed to apply
the computation was related to the positive realness of a related
multivariable transfer function.
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