
Chapter 4
Parameter Selection and Preconditioning
for a Graph Form Solver

Christopher Fougner and Stephen Boyd

Abstract In the chapter “Block splitting for distributed optimization”, Parikh and
Boyd describe a method for solving a convex optimization problem, where each
iteration involves evaluating a proximal operator and projection onto a subspace. In
this chapter, we address the critical practical issues of how to select the proximal
parameter in each iteration, and how to scale the original problem variables, so as to
achieve reliable practical performance. The resulting method has been implemented
as an open-source software package called POGS (Proximal Graph Solver), that
targets multi-core and GPU-based systems, and has been tested on a wide variety of
practical problems. Numerical results show that POGS can solve very large problems
(with, say, a billion coefficients in the data), to modest accuracy in a few tens of
seconds, where similar problems take many hours using interior-point methods.

4.1 Introduction

We consider the convex optimization problem

minimize f (y)+ g (x)

subject to y = Ax,
(4.1)

where x ∈ Rn and y ∈ Rm are the variables, and the (extended real-valued) func-
tions f : Rm → R ∪ {∞} and g : Rn → R ∪ {∞} are convex, closed and proper.
The matrix A ∈ Rm×n, and the functions f and g are the problem data. Infinite values
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of f and g allow us to encode convex constraints on x and y, since any feasible point
(x, y) must satisfy

x ∈ {x | g (x) < ∞}, y ∈ {y | f (y) < ∞}.

We will be interested in the case when f and g have simple proximal operators, but
for now we do not make this assumption. The problem form (4.1) is known as g raph
form [39], since the variable (x, y) is constrained to lie in the graph G = {(x, y) ∈
Rn+m | y = Ax} of A. We denote p⋆ as the optimal value of (4.1), which we assume
is finite.

The graph form includes a large range of convex problems, including linear and
quadratic programming, general conic programming [8, Sect. 11.6], and many more
specific applications such as logistic regression with various regularizers, support
vector machine fitting [29], portfolio optimization [8, Sect. 4.4.1] [25] [4], signal
recovery [16], and radiation treatment planning [38], to name just a few.

In [39], Parikh and Boyd described an operator splitting method for solving (a
generalization of) the graph form problem (4.1), based on the alternating direction
method of multipliers (ADMM) [5]. Each iteration of this method requires a projec-
tion (either exactly or approximately via an iterative method) onto the graph G , and
evaluation of the proximal operators of f and g . Theoretical convergence was estab-
lished in those papers, and basic implementations were demonstrated. However, it
has been observed that practical convergence of the algorithm depends very much on
the choice of algorithm parameters (such as the proximal parameter ρ), and scaling
of the variables (i.e., preconditioning).

The purpose of this chapter is to explore these issues, and to add some critical
variations on the algorithm that make it a relatively robust general purpose solver,
at least for modest accuracy levels. The algorithm we propose, which is the same
as the basic method described in [39], with modified parameter selection, diagonal
preconditioning, and modified stopping criterion, has been implemented in an open-
source software project called POGS (for Proximal Graph Solver), and tested on
a wide variety of problems. Our CUDA implementation reliably solves (to modest
accuracy) problems 103× larger than those that can be handled by interior-point
methods; and for those that can be handled by interior-point methods, 100× faster.

4.1.1 Outline

In Sect. 4.1.2 we describe related work. In Sect. 4.2 we derive the graph form dual
problem, and the primal-dual optimality conditions, which we use to motivate the
stopping criterion and to interpret the iterates of the algorithm. InSect. 4.3wedescribe
the ADMM-based graph form algorithm, and analyze the properties of its iterates,
giving some results that did not appear in [39]. In Sect. 4.4 we address the topic
of preconditioning, and suggest novel preconditioning and parameter selection tech-
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niques. In Sect. 4.5 we describe our implementation POGS, and in Sect. 4.6 we report
performance results on various problem families.

4.1.2 Related Work

Many generic methods can be used to solve the graph form problem (4.1), includ-
ing projected gradient descent [12], projected subgradient methods [42, Chap. 5]
[47], operator splitting methods [32] [20], interior-point methods [35, Chap. 19] [7,
Chap. 6], and many more. (Of course many of these methods can only be used when
additional assumptions are made on f and g , e.g., differentiability or strong convex-
ity.) For example, if f and g are separable and smooth, the problem (4.1) can be
solved by Newton’s method, with each iteration requiring the solution of a set of lin-
ear equations that requiresO(max{m,n}min{m,n}2) floating point operations (flops)
when A is dense. If f and g are separable and have smooth barrier functions for their
epigraphs, the problem (4.1) can be solved by an interior-pointmethod,which in prac-
tice always takes no more than a few tens of iterations, with each iteration involving
the solution of a system of linear equations that requires O(max{m,n}min{m,n}2)
flops when A is dense [8, Chap. 11] [35, Chap. 19].

We now turn to first-order methods for the graph form problem (4.1). In [1]
Briceño-Arias and Combettes describe methods for solving a generalized version of
(4.1), including a forward–backward–forward algorithm and one based on Douglas–
Rachford splitting [17]. Their methods are especially interesting in the case when A
represents an abstract operator, and one only has access to A through Ax and ATy. In
[37] O’Connor and Vandenberghe propose a primal-dual method for the graph form
problemwhereA is the sum of two structuredmatrices. They contrast it withmethods
such as Spingarn’s method of partial inverses [49], Douglas–Rachford splitting, and
the Chambolle–Pock method [14].

Davis and Yin [18] analyze convergence rates for different operator splitting
methods, and in [24] Giselsson proves the tightness of linear convergence for the
operator splitting problems considered [22]. Goldstein et al. [26] derive Nesterov-
type acceleration, and show O(1/k2) convergence for problems where f and g are
both strongly convex.

Nishihara et al. [34] introduce a parameter selection framework for ADMM with
over relaxation [19]. The framework is based on solving a fixed-size semidefinite
program (SDP). They alsomake the assumption that f is strongly convex. Ghadimi et
al. [27] derive optimal parameter choices for the casewhen f and g are both quadratic.
In [22], Giselsson and Boyd show how to choosemetrics to optimize the convergence
bound, and in [21]Giselsson andBoyd suggest a diagonal preconditioning scheme for
graph form problems based on semidefinite programming. This scheme is primarily
relevant in small to medium scale problems, or situations wheremany different graph
form problems, with the same matrix A, are to be solved. It is clear from these papers
(and indeed, a general rule) that the practical convergence of first-order methods
depends heavily on algorithm parameter choices.
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GPUs are used extensively for stochastic gradient descent-based optimization
when training neural networks [11, 31, 33], and they are slowly gaining popularity
in convex optimization as well [13, 41, 52].

4.2 Optimality Conditions and Duality

4.2.1 Dual Graph Form Problem

The Lagrange dual function of (4.1) is given by

inf
x,y

f (y)+ g (x)+ νT (Ax − y) = −f ∗(ν) − g ∗(−ATν),

where ν ∈ Rn is the dual variable associated with the equality constraint, and f ∗ and
g ∗ are the conjugate functions of f and g respectively [8, Chap. 4]. Introducing the
variable µ = −ATν, we can write the dual problem as

maximize − f ∗(ν) − g ∗(µ)

subject to µ = −ATν.
(4.2)

The dual problem can be written as a graph form problem, if we negate the objective
and minimize rather than maximize. The dual graph form problem (4.2) is related to
the primal graph form problem (4.1) by switching the roles of the variables, replacing
the objective function terms with their conjugates, and replacing A with −AT .

The primal and dual objectives are p(x, y) = f (y)+ g (x) and d(µ, ν) = −f ∗(ν)
− g ∗(µ), respectively, giving us the duality gap

η = p(x, y) − d(µ, ν) = f (y)+ f ∗(ν)+ g (x)+ g ∗(µ). (4.3)

We have η ≥ 0, for any primal and dual feasible tuple (x, y, µ, ν). The duality gap η

gives a bound on the suboptimality of (x, y) (for the primal problem) and also (µ, ν)
for the dual problem:

f (y)+ g (x) ≤ p⋆ + η, −f ∗(ν) − g ∗(µ) ≥ p⋆ − η.

4.2.2 Optimality Conditions

The optimality conditions for (4.1) are readily derived from the dual problem. The
tuple (x, y, µ, ν) satisfies the following three conditions if and only it is optimal:
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Primal feasibility:

y = Ax. (4.4)

Dual feasibility:

µ = −ATν. (4.5)

Zero g ap:

f (y)+ f ∗(ν)+ g (x)+ g ∗(µ) = 0. (4.6)

If both (4.4) and (4.5) hold, then the zero gap condition (4.6) can be replaced by
the Fenchel equalities

f (y)+ f ∗(ν) = νT y, g (x)+ g ∗(µ) = µT x. (4.7)

We refer to a tuple (x, y, µ, ν) that satisfies (4.7) as Fenchel feasible. To verify the
statement, we add the two equations in (4.7), which yields

f (y)+ f ∗(ν)+ g (x)+ g ∗(µ) = yTν + xTµ = (Ax)Tν − xTATν = 0.

The Fenchel equalities (4.7) are also equivalent to

ν ∈ ∂f (y), µ ∈ ∂g (x), (4.8)

where ∂ denotes the subdifferential, which follows because

ν ∈ ∂f (y) ⇔ sup
z

(
zTν − f (z)

)
= νT y − f (y) ⇔ f (y)+ f ∗(ν) = νT y.

In the sequel we will assume that strong duality holds, meaning that there exists
a tuple (x⋆, y⋆, µ⋆, ν⋆) which satisfies all three optimality conditions.

4.3 Algorithm

4.3.1 Graph Projection Splitting

In [39] Parikh et al. apply ADMM [5, Sect. 5] to the problem of minimizing f (y)+
g (x), subject to the constraint (x, y) ∈ G . This yields the g raph projectionsplitting
Algorithm 1.
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Algorithm 1 Graph projection splitting
Input: A, f , g
1: Initialize (x0, y0, x̃0, ỹ0) = 0, k = 0
2: repeat
3: (xk+1/2, yk+1/2) :=

(
proxg (xk − x̃k ), proxf (yk − ỹk )

)

4: (xk+1, yk+1) := Π(xk+1/2 + x̃k , yk+1/2 + ỹk )
5: (x̃k+1, ỹk+1) := (x̃k + xk+1/2 − xk+1, ỹk + yk+1/2 − yk+1)
6: k := k + 1
7: until converged

The variable k is the iteration counter, xk+1, xk+1/2 ∈ Rn and yk+1, yk+1/2,∈ Rm

are primal variables, x̃k+1 ∈ Rnand ỹk+1 ∈ Rm are scaled dual variables, Π denotes
the (Euclidean) projection onto the graph G ,

proxf (v) = argmin
y

(
f (y)+ (ρ/2) ∥y − v∥22

)

is the proximal operator of f (and similarly for g ), and ρ > 0 is the proximal param-
eter. The projection Π can be explicitly expressed as the linear operator

Π(c, d) = K−1
[
c + ATd

0

]
, K =

[
I AT

A −I

]
. (4.9)

Roughly speaking, in steps 3 and 5, the x (and x̃) and y (and ỹ) variables do not
mix; the computations can be carried out in parallel. The projection step 4 mixes the
x, x̃ and y, ỹ variables.

General convergence theory for ADMM [5, Sect. 3.2] guarantees that (with our
assumption on the existence of a solution)

(xk+1, yk+1) − (xk+1/2, yk+1/2) → 0, f (yk )+ g (xk ) → p⋆, (x̃k , ỹk ) → (x̃⋆, ỹ⋆), (4.10)

as k → ∞.

4.3.2 Extensions

We discuss three common extensions that can be used to speed up convergence in
practice: over-relaxation, approximate projection, and varying penalty.

Over-relaxation. Replacing xk+1/2 by αxk+1/2 + (1 − α)xk in the projection and
dual update steps is known as over-relaxation if α > 1 or under-relaxation if α < 1.
The algorithm is guaranteed to converge [19] for any α ∈ (0, 2); it is observed in
practice [36] that using an over-relaxation parameter in the range [1.5, 1.8] can
improve practical convergence.
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Approximate projection. Instead of computing the projection Π exactly one can
use an approximation Π̃ , with the only restriction that

∑∞
k=0∥Π(xk+1/2, yk+1/2) − Π̃(xk+1/2, yk+1/2)∥2 < ∞

must hold. This is known as approximate projection [36], and is guaranteed to con-
verge [1]. This extension is particularly useful if the approximate projection is com-
puted using an indirect or iterative method.

Varying penalty. Large values of ρ tend to encourage primal feasibility, while small
values tend to encourage dual feasibility [5, Sect. 3.4.1]. A common approach is to
adjust or vary ρ in each iteration, so that the primal and dual residuals are (roughly)
balanced in magnitude. When doing so, it is important to re-scale (x̃k+1, ỹk+1) by a
factor ρk/ρk+1.

4.3.3 Feasible Iterates

In each iteration, Algorithm 1 produces sets of points that are either primal, dual, or
Fenchel feasible. Define

µk = −ρx̃k , νk = −ρỹk , µk+1/2 = −ρ(xk+1/2 − xk + x̃k ), νk+1/2 = −ρ(yk+1/2 − yk + ỹk ).

The following statements hold.

1. The pair (xk+1, yk+1) is primal feasible, since it is the projection onto the graph
G .

2. The pair (µk+1, νk+1) is dual feasible, as long as (µ0, ν0) is dual feasible and
(x0, y0) is primal feasible. Dual feasibility implies µk+1 + ATνk+1 = 0, which
we show using the update equations in Algorithm 1:

µk+1 + ATνk+1 = −ρ(x̃k + xk+1/2 − xk+1 + AT (ỹk + yk+1/2 − yk+1))

= −ρ(x̃k + AT ỹk + xk+1/2 + ATyk+1/2 − (I + ATA)xk+1),

where we substituted yk+1 = Axk+1. From the projection operator in (4.9) it fol-
lows that (I + ATA)xk+1 = xk+1/2 + ATyk+1/2, therefore

µk+1 + ATνk+1 = −ρ(x̃k + AT ỹk) = µk + ATνk = µ0 + ATν0,

where the last equality follows from an inductive argument. Since we made the
assumption that (µ0, ν0) is dual feasible, we can conclude that (µk+1, νk+1) is
also dual feasible.
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3. The tuple (xk+1/2, yk+1/2, µk+1/2, νk+1/2) is Fenchel feasible. From the definition
of the proximal operator,

xk+1/2 = argmin
x

(
g (x)+ (ρ/2)

∥∥∥x − xk + x̃k
∥∥∥
2

2

)
⇔ 0 ∈ ∂g (xk+1/2)+ ρ(xk+1/2 − xk + x̃k )

⇔ µk+1/2 ∈ ∂g (xk+1/2).

By the same argument νk+1/2 ∈ ∂f (yk+1/2).

Applying the results in (4.10) to the dual variables, we find νk+1/2 → ν⋆ and
µk+1/2 → µ⋆, fromwhichwe conclude that (xk+1/2, yk+1/2, µk+1/2, νk+1/2) is primal
and dual feasible in the limit.

4.3.4 Stopping Criteria

In Sect. 4.3.3 we noted that either (4.4, 4.5, 4.6) or (4.4, 4.5, 4.7) are sufficient for
optimality. We present two different stopping criteria based on these conditions.

Residual-based stopping. The tuple (xk+1/2, yk+1/2, µk+1/2, νk+1/2) is Fenchel fea-
sible in each iteration, but only primal and dual feasible in the limit. Accordingly,
we propose the residual-based stopping criterion

∥Axk+1/2 − yk+1/2∥2 ≤ εpri, ∥ATνk+1/2 + µk+1/2∥2 ≤ εdual, (4.11)

where the εpri and εdua are positive tolerances. These should be chosen as a mixture
of absolute and relative tolerances, such as

εpri = εabs + εrel∥yk+1/2∥2, εdual = εabs + εrel∥µk+1/2∥2.

Reasonable values for εabs and εrel are in the range [10−4, 10−2].
Gap-based stopping. The tuple (xk , yk , µk , νk) is primal and dual feasible, but only
Fenchel feasible in the limit. We propose the gap-based stopping criteria

ηk = f (yk)+ g (xk)+ f ∗(νk)+ g ∗(µk) ≤ εgap,

where εgap should be chosen relative to the current objective value, i.e.,

εgap = εabs + εrel|f (yk)+ g (xk)|.

Here too, reasonable values for εabs and εrel are in the range [10−4, 10−2].
Although the gap-based stopping criteria is very informative, since it directly

bounds the suboptimality of the current iterate, it suffers from the drawback that
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f , g , f ∗, and g ∗ must all have full domain, since otherwise the gap ηk can be infinite.
Indeed, the gap ηk is almost always infinite when f or g represent constraints.

4.3.5 Implementation

Projection. There are differentways to evaluate the projection operatorΠ , depending
on the structure and size of A.

One simplemethod that can be used ifA is sparse and not too large is a direct sparse
factorization. The matrix K is quasi-definite, and therefore the LDLT decomposition
is well defined [51]. Since K does not change from iteration to iteration, the factors
L and D (and the permutation or elimination ordering) can be computed in the first
iteration (e.g., using CHOLMOD [9]) and reused in subsequent iterations. This is
known as factorizationcaching [5, Sect. 4.2.3] [39, Sect.A.1]. With factorization
caching, we get a (potentially) large speedup in iterations, after the first one.

If A is dense, and min(m,n) is not too large, then block elimination [8, Appendix
C] can be applied to K [39, Appendix A], yielding the reduced update

xk+1 := (ATA+ I)−1(c+ ATd)

yk+1 := Axk+1

if m ≥ n, or

yk+1 := d + (AAT + I)−1(Ac − d)

xk+1 := c − AT (d − yk+1)

if m < n. Both formulations involve forming and solving a system of min(m,n)
equations with min(m,n) unknowns. Since the coefficient matrix is symmetric posi-
tive definite, we can use the Cholesky decomposition. Forming the coefficient matrix
ATA+ I or AAT + I dominates the computation. Here too, we can take advantage
of factorization caching.

The regular structure of dense matrices allows us to analyze the computational
complexity of each step. We define q = min(m,n) and p = max(m,n). The first
iteration involves the factorization and the solve step; subsequent iterations only
require the solve step. The computational cost of the factorization is the combined
cost of computing ATA (or AAT , whichever is smaller), at a cost of pq2 flops, in
addition to the Cholesky decomposition, at a cost of (1/3)q3 flops. The solve step
consists of two matrix-vector multiplications at a cost of 4pq flops and solving a
triangular system of equations at a cost of q2 flops. The total cost of the first iteration
isO(pq2) flops, while each subsequent iteration only costsO(pq) flops, showing that
we obtain savings by a factor of q flops, after the first iteration, by using factorization
caching.
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For very large problems direct methods are no longer practical, at which point
indirect (iterative) methods can be used. Fortunately, as the primal and dual variables
converge, we are guaranteed that (xk+1/2, yk+1/2) → (xk+1, yk+1), meaning that we
will have a good initial guess we can use to initialize the iterative method to (approx-
imately) evaluate the projection. One can either apply CGLS (conjugate gradient
least-squares) [28] or LSQR [45] to the reduced update or apply MINRES (mini-
mum residual) [44] toK directly. It can be shown the latter requires twice the number
of iterations as compared to the former, and is therefore not recommended.

Proximal operators. Since the x, x̃ and y, ỹ components are decoupled in the prox-
imal step and dual variable update step, both of these can be done separately, and
in parallel for x and y. If either f or g is separable, then the proximal step can be
parallelized further. Combettes and Pesquet [15, Sect. 10.2] contains a table of prox-
imal operators for a wide range of functions, and the monograph [40] details how
proximal operators can be computed efficiently, in particular for the case where there
is no analytical solution. Typically, the cost of computing the proximal operator will
be negligible compared to the cost of the projection. In particular, if f and g are
separable, then the cost will be O(m+ n), and completely parallelizable.

4.4 Preconditioning and Parameter Selection

The practical convergence of the algorithm (i.e., the number of iterations required
before it terminates) can depend greatly on the choice of the proximal parameter
ρ, and the scaling of the variables. In this section we analyze these, and suggest
a method for choosing ρ and for scaling the variables that (empirically) speeds up
practical convergence.

4.4.1 Preconditioning

Consider scaling the variables x and y in (4.1), by E−1 and D respectively, where
D ∈ Rm×m and E ∈ Rn×n are non-singular matrices. We define the scaled variables

ŷ = Dy, x̂ = E−1x,

which transforms (4.1) into

minimize f (D−1ŷ)+ g (Ex̂)

subject to ŷ = DAEx̂.
(4.12)
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This is also a graph form problem, and for notational convenience, we define

Â = DAE, f̂ (ŷ) = f (D−1ŷ), ĝ (x̂) = g (Ex̂),

so that the problem can be written as

minimize f̂ (ŷ)+ ĝ (x̂)

subject to ŷ = Âx̂.

We refer to this problem as the preconditioned version of (4.1). Our goal is to choose
D and E so that (a) the algorithm applied to the preconditioned problem converges
in fewer steps in practice, and (b) the additional computational cost due to the pre-
conditioning is minimal.

Graph projection splitting applied to the preconditioned problem (4.12) can be
interpreted in terms of the original iterates. The proximal step iterates are redefined
as

xk+1/2 = argmin
x

(
g (x)+ (ρ/2)∥x − xk + x̃k∥2(EET )−1

)
,

yk+1/2 = argmin
y

(
f (y)+ (ρ/2)∥y − yk + ỹk∥2(DTD)

)
,

and the projected iterates are the result of the weighted projection

minimize (1/2)∥x − xk+1/2∥2
(EET )−1 + (1/2)∥y − yk+1/2∥2

(DTD)

subject to y = Ax,

where ∥x∥P =
√
xTPx for a symmetric positive-definite matrix P. This projection

can be expressed as

Π(c, d) = K̂−1
[
(EET )−1c + ATDTDd

0

]
, K̂ =

[
(EET )−1 ATDTD
DTDA −DTD

]
.

Notice that graph projection splitting is invariant to orthogonal transformations
of the variables x and y, since the preconditioners only appear in terms of DTD
and EET . In particular, if we let D = UT and E = V , where A = UΣV T , then
the preconditioned constraint matrix Â = DAE = Σ is diagonal. We conclude that
any graph form problem can be preconditioned to one with a diagonal nonnegative
constraint matrix Σ . For analysis purposes, we are therefore free to assume that A is
diagonal. We also note that for orthogonal preconditioners, there exists an analytical
relationship between the original proximal operator and the preconditioned proximal
operator.Withφ(x) = ϕ(Qx), whereQ is any orthogonalmatrix (QTQ = QQT = I ),
we have

proxφ(v) = QTproxϕ(Qv).



52 C. Fougner and S. Boyd

While the proximal operator of φ is readily computed, orthogonal preconditioners
destroy separability of the objective. As a result, we cannot easily combine them
with other preconditioners.

Multiplying D by a scalar α and dividing E by the same scalar has the effect of
scaling ρ by a factor of α2. It however has no effect on the projection step, showing
that ρ can be thought of as the relative scaling of D and E.

In the case where f and g are separable and both D and E are diagonal, the
proximal step takes the simplified form

xk+1/2
j = argmin

xj

(
g j(xj)+ (ρE

j /2)(xj − xkj + x̃kj )
2
)

j = 1, . . . ,n

yk+1/2
i = argmin

yi

(
fi(yi)+ (ρD

i /2)(yi − yki + ỹki )
2) i = 1, . . . ,m,

where ρE
j = ρ/E2

jj and ρD
i = ρD2

ii. Since only ρ is modified, any routine capable of
computingproxf andproxg can also be used to compute the preconditioned proximal
update.

4.4.1.1 Effect of Preconditioning on Projection

For the purpose of analysis, we will assume that A = Σ , where Σ is a nonnegative
diagonal matrix. The projection operator simplifies to

Π(c, d) =
[
(I + ΣTΣ)−1 (I + ΣTΣ)−1ΣT

(I + ΣΣT )−1Σ (I + ΣΣT )−1ΣΣT

] [
c
d

]
,

which means the projection step can be written explicitly as

xk+1
i = 1

1+ σ 2
i

(xk+1/2
i + x̃ki + σi(y

k+1/2
i + ỹki )) i = 1, . . . ,min(m,n)

xk+1
i = xk+1/2

i + x̃ki i = min(m,n)+ 1, . . . ,n

yk+1
i = σi

1+ σ 2
i

(xk+1/2
i + x̃ki + σi(y

k+1/2
i + ỹki )) i = 1, . . . ,min(m,n)

yk+1
i = 0 i = min(m,n)+ 1, . . . ,m,

where σi is the ith diagonal entry of Σ and subscripted indices of x and y denote the
ith entry of the respective vector. Notice that the projected variables xk+1

i and yk+1
i are

equally dependent on (xk+1/2
i + x̃ki ) and σi(y

k+1/2
i + ỹki ). If σi is either significantly

smaller or larger than 1, then the terms xk+1
i and yk+1

i will be dominated by either
(xk+1/2

i + x̃ki ) or (y
k+1/2
i + ỹki ). However if σi = 1, then the projection step exactly

averages the two quantities
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xk+1
i = yk+1

i = 1
2
(xk+1/2

i + x̃ki + yk+1/2
i + ỹki ) i = 1, . . . ,min(m,n).

As pointed out in Sect. 4.3, the projection step mixes the variables x and y. For this
to approximately reduce to averaging, we need σi ≈ 1.

4.4.1.2 Choosing D and E

The analysis suggests that the algorithm will converge quickly when the singular
values of DAE are all near one, i.e.,

cond
(
DAE

)
≈ 1, ∥DAE∥2 ≈ 1. (4.13)

(This claim is also supported in [23], and is consistent with our computational expe-
rience.) Preconditioners that exactly satisfy these conditions can be found using the
singular value decomposition of A. They will, however, be of little use, since such
preconditioners generally destroy our ability to evaluate the proximal operators of f̂
and ĝ efficiently.

So we seek choices of D and E for which (4.13) holds (very) approximately, and
for which the proximal operators of f̂ and ĝ can still be efficiently computed.We now
specialize to the special case when f and g are separable. In this case, diagonal D
and E are candidates for which the proximal operators are still easily computed. (The
same ideas apply to block separable f and g , where we impose the further constraint
that the diagonal entries within a block are the same.) So we now limit ourselves to
the case of diagonal preconditioners.

Diagonal matrices that minimize the condition number of DAE, and therefore
approximately satisfy the first condition in (4.13), can be found exactly, using
semidefinite programming [3, Sect. 3.1]. But this computation is quite involved, and
may not be worth the computational effort since the conditions (4.13) are just a
heuristic for faster convergence. (For control problems, where the problem is solved
many times with the same matrix A, this approach makes sense; see [21].)

Aheuristic that tends tominimize the condition number is to equilibrate thematrix,
i.e., choose D and E so that the rows all have the same p-norm, and the columns all
have the same p-norm. (Such a matrix is said to be equilibrated.) This corresponds
to finding D and E so that

|DAE|p1 = α1, 1T |DAE|p = β1T ,

where α,β > 0. Here the notation | · |p should be understood in the elementwise
sense. Various authors [6, 13, 36] suggest that equilibration can decrease the num-
ber of iterations needed for operator splitting and other first-order methods. One
issue that we need to address is that not every matrix can be equilibrated. Given
that equilibration is only a heuristic for achieving σi(DAE) ≈ 1, which is in turn a
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heuristic for fast convergence of the algorithm, partial equilibration should serve the
same purpose just as well.

Sinkhorn and Knopp [48] suggest a method for matrix equilibration for p < ∞,
and A is square and has full support. In the case p = ∞, the Ruiz algorithm [46]
can be used. Both of these methods fail (as they must) when the matrix A cannot be
equilibrated.We give below a simplemodification of the Sinkhorn–Knopp algorithm,
modified to handle the case when A is non-square, or cannot be equilibrated.

Choosing preconditioners that satisfy ∥DAE∥2 = 1 can be achieved by scaling
D and E by σmax(DAE)−q and σmax(DAE)q−1 respectively for q ∈ R. The quan-
tity σmax(DAE) can be approximated using power iteration, but we have found it
is unnecessary to exactly enforce ∥DAE∥2 = 1. A more computationally efficient
alternative is to replace σmax(DAE) by ∥DAE∥F/

√
min(m,n). This quantity coin-

cides with σmax(DAE)when cond(DAE) = 1. IfDAE is equilibrated and p = 2, this
scaling corresponds to (DAE)T (DAE) (or (DAE)(DAE)T when m < n) having unit
diagonal.

4.4.2 Regularized Equilibration

In this section, we present a self-contained derivation of our matrix-equilibration
method. It is similar to the Sinkhorn–Knopp algorithm, but also works when the
matrix is non-square or cannot be exactly equilibrated.

Consider the convex optimization problem with variables u and v,

minimize
m∑

i=1

n∑

j=1

|Aij|peui+vj − n1T u − m1T v + γ

⎡

⎣n
m∑

i=1

eui + m
n∑

j=1

evj

⎤

⎦,

(4.14)

where γ ≥ 0 is a regularization parameter. The objective is bounded below for any
γ > 0. The optimality conditions are

n∑

j=1

|Aij|peui+vj − n+ nγ eui = 0, i = 1, . . . ,m,

m∑

i=1

|Aij|peui+vj − m+ mγ evj = 0, j = 1, . . . ,n.

By defining Dii = eui/p and Ep
jj = evj/p, these conditions are equivalent to

|DAE|p1+ nγD1 = n1, 1T |DAE|p + mγ 1TE = m1T ,
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where 1 is the vector with all entries one. When γ = 0, these are the conditions for
a matrix to be equilibrated. The objective may not be bounded when γ = 0, which
exactly corresponds to the case when the matrix cannot be equilibrated. As γ → ∞,
both D and E converge to the scaled identity matrix (1/γ )I , showing that γ can be
thought of as a regularizer on the elements of D and E. If D and E are optimal, then
the two equalities

1T |DAE|p1+ nγ 1TD1 = mn, 1T |DAE|p1+ mγ 1TE1 = mn

must hold. Subtracting the one from the other, and dividing by γ , we find the rela-
tionship

n1TD1 = m1TE1,

implying that the average entry in D and E is the same.
There are various ways to solve the optimization problem (4.14), one of which

is to apply coordinate descent. Minimizing the objective in (4.14) with respect to ui
yields

n∑

j=1

eu
k
i +vk−1

j |Aij|p + nγ eu
k
i = n⇔ eu

k
i = n

∑n
j=1 e

vk−1
j |Aij|p + nγ

and similarly for vj
ev

k
i = m

∑n
i=1 e

uk−1
i |Aij|p + mγ

.

Since the minimization with respect to uki is independent of u
k
i−1, the update can be

done in parallel for each element of u, and similarly for v. Repeated minimization
over u and v will eventually yield values that satisfy the optimality conditions.

Algorithm 2 summarizes the equilibration routine. The inverse operation in steps
4 and 5 should be understood in the element-wise sense.

Algorithm 2 Regularized Sinkhorn-Knopp
Input: A, ε > 0, γ > 0
1: Initialize e0 := 1, k := 0
2: repeat
3: k := k + 1
4: dk := n(|A|pek−1 + nγ 1)−1

5: ek := m (|AT |pdk + mγ 1)−1

6: until ∥ek − ek−1∥2 ≤ ε and ∥dk − dk−1∥2 ≤ ε
7: return D := diag(dk )1/p, E := diag(ek )1/p
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4.4.3 Adaptive Penalty Update

The projection operator Π does not depend on the choice of ρ, so we are free to
update ρ in each iteration, at no extra cost. While the convergence theory only holds
for fixed ρ, it still applies if one assumes that ρ becomes fixed after a finite number
of iterations [5].

As a rule, increasing ρ will decrease the primal residual, while decreasing ρ will
decrease the dual residual. The authors in [5, 30] suggest adapting ρ to balance the
primal and dual residuals. We have found that substantially better practical conver-
gence can be obtained using a variation on this idea. Rather than balancing the primal
and dual residuals, we allow either the primal or dual residual to approximately con-
verge and only then start adjusting ρ. Based on this observation, we propose the
following adaptive update scheme.

Algorithm 3 Adaptive ρ update
Input: δ > 1, τ ∈ (0, 1],
1: Initialize l := 0, u := 0
2: repeat
3: Apply graph projection splitting
4: if ∥AT νk+1/2 + µk+1/2∥2 < εdual and τk > l then
5: ρk+1 := δρk

6: u := k
7: else if ∥Axk+1/2 − yk+1/2∥2 < εpri and τk > u then
8: ρk+1 := (1/δ)ρk

9: l := k
10: until ∥AT νk+1/2 + µk+1/2∥2 < εdual and ∥Axk+1/2 − yk+1/2∥2 < εpri

Once either the primal or dual residual converges, the algorithm begins to steer ρ

in a direction so that the other residual also converges. By making small adjustments
to ρ, we will tend to remain approximately primal (or dual) feasible once primal
(dual) feasibility has been attained. Additionally by requiring a certain number of
iterations between an increase in ρ and a decrease (and vice versa), we enforce that
changes to ρ do not flip-flop between one direction and the other. The parameter τ

determines the relative number of iterations between changes in direction.

4.5 Implementation

Proximal Graph Solver (POGS) is an open-source (BSD-3 license) implementation
of graph projection splitting,written inC++. It supports bothGPUandCPUplatforms
and includes wrappers for C, MATLAB, and R. POGS handles all combinations of
sparse/densematrices, single/double precision arithmetic, and direct/indirect solvers,
with the exception (for now) of sparse indirect solvers. The only dependency is a
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tunedBLAS library on the respective platform (e.g., cuBLASor theAppleAccelerate
Framework). The source code is available at

https://github.com/foges/pogs

In lieu of having the user specify the proximal operators of f and g , POGS contains
a library of proximal operators for a variety of different functions. It is currently
assumed that the objective is separable, in the form

f (y)+ g (x) =
m∑

i=1

fi(yi)+
n∑

j=1

g j(xj),

where fi, g j : R → R ∪ {∞}. The library contains a set of base functions, and by
applying various transformations, the range of functions can been greatly extended.
In particular we use the parametric representation

fi(yi) = cihi(aiyi − bi)+ diyi + (1/2)eiy2i ,

where ai, bi, di ∈ R, ci, ei ∈ R+, and hi : R → R ∪ {∞}. The same representation
is also used for g j. It is straightforward to express the proximal operators of fi in
terms of the proximal operator of hi using the formula

proxf (v) =
1
a

(
proxh,(e+ρ)/(ca2)

(
a (vρ − d) /(e + ρ) − b

)
+ b

)
,

where for notational simplicity we have dropped the index i in the constants and
functions. It is possible for a user to add their own proximal operator function, if
it is not in the current library. We note that the separability assumption on f and g
is a simplification, rather than a limitation of the algorithm. It allows us to apply
the proximal operator in parallel using either CUDA or OpenMP (depending on the
platform).

The constraint matrix is equilibrated using Algorithm 2, with a choice of p = 2
and γ = m+n

mn

√
εcmp, where εcmp is machine epsilon. Both D and E are rescaled

evenly, so that they satisfy ∥DAE∥F/
√
min(m,n) = 1. The projection Π is com-

puted as outlined in Sect. 4.3.5. We work with the reduced update equations in all
versions of POGS. In the indirect case, we chose to use CGLS. The parameter ρ is
updated according to Algorithm 3. Empirically, we found that (δ, τ ) = (1.05, 0.8)
workswell.We also use over-relaxationwithα = 1.7. POGS supports warm starting,
whereby an initial guess for x0 and/or ν0 may be supplied by the user. If only x0 is
provided, then ν0 will be estimated, and vice versa. The warm-start feature allows
any cached matrices to be used to solve additional problems with the same matrix A.
POGS returns the tuple (xk+1/2, yk+1/2, µk+1/2, νk+1/2), since it has finite primal and
dual objectives. The primal and dual residuals will be nonzero and are determined by
the specified tolerances. Future plans for POGS include extension to block-separable
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f and g (including general cone solvers), additional wrappers for Julia and Python,
support for a sparse direct solver, and a multi-GPU extension.

4.6 Numerical Results

To highlight the robustness and general purpose nature of POGS,we tested it on 9 dif-
ferent problem classes using random but realistic data. We considered the following
9 problem classes: basis pursuit, entropy maximization, Huber fitting, lasso, logistic
regression, linear programming, nonnegative least-squares, portfolio optimization,
and support vector machine fitting. For each problem class, the number of nonzeros
in A was varied on a logarithmic scale from 100 to 1 Billion. The aspect ratio of A
also varied from 1:1.25 to 1:10, with the orientation (wide or tall) chosen depending
on what was reasonable for each problem. We report running time averaged over
all aspect ratios. These problems and the data generation methods are described in
detail in a longer version of this chapter [10]. All experiments were performed in
single precision arithmetic on a machine equipped with an Intel Core i7-870, 16GB
of RAM, and a TitanXGPU. Timing results include the data copy fromCPU to GPU.

We compare POGS to SDPT3 [50], an open-source solver that handles lin-
ear, second-order, and positive semidefinite cone programs. Since SDPT3 uses an
interior-point algorithm, the solution returned will be of high precision, allowing us
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Fig. 4.1 POGS (GPU version) versus SDPT3 for dense matrices (color represents problem class)
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to verify the accuracy of the solution computed by POGS. Problems that took SDPT3
more than 200 seconds (of which there were many) were aborted.

The maximum number of iterations was set to 104, but all problems converged
in fewer iterations, with most problems taking a couple of hundred iterations. The
relative tolerance was set to 10−3, and where solutions from SDPT3 were available,
we verified that the solutions produced by both solvers matched to 3 decimal places.
We omit SDPT3 running times for problems involving exponential cones, since
SDPT3 does not support them.

Figure4.1 compares the running time of POGSversus SDPT3, for problemswhere
the constraint matrix A is dense. We can make several general observations.

• POGS solves problems that are 3 orders of magnitude larger than SDPT3 in the
same amount of time.

• Problems that take 200 s in SDPT3 take 0.5 s in POGS.
• POGS can solve problems with 1 Billion nonzeros in 10–40 s.
• The variation in solve time across different problem classes was similar for POGS
and SDPT3, around one order of magnitude.

In summary, POGS is able to solve much larger problems, much faster (to moderate
precision).
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