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Multi-period investment problem

e manage portfolio of n assets over discrete time periods ¢t = 0,1, ...

e x; € R™ vector of portfolio positions at time ¢ (in dollars)
e u; € R™ vector of trades at time ¢ (in dollars)
e post-trade portfolio: :rz“ =z + Uy

e starting portfolio g is given
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Asset returns

e portfolio propagates as
QIJt+1ZRt+1{E;r, t:07,T—1

(] Rt+1 = diag(rt+1) € R"*"
e 1,11 € R" is vector of asset returns over time period [¢,t + 1]

® rq,...,rr are independent random variables, with known first and
second moments

E(’I’t) = ft, E(’]"t — 7715)(7} — ’Ft)T = Zt

e 7.1 is (of course) not known when wu; is chosen
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Stochastic control problem

e total expected cost is
T

J = Ez&(zt,ut)

t=0
e /,:R" x R™ — RU {00} is convex stage cost function
e —J is expected revenue from the portfolio

e goal: find trading policies ¢y, ..., ¢ : R® — R", with

Uy = ¢t($t)

that minimize J

¢ a convex stochastic control problem
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Stage cost

e stage cost has form

1Tu+y(z,u) z+u €y
%) otherwise

tew) = {

17w, is gross cash put into portfolio
(1Tuy < 0 means revenue extracted from portfolio)

1y includes transaction cost, risk cost, position costs, ...

C; is the post-trade portfolio constraint set

Multi-period investment problem



Example post-trade constraints

position limits PPN < g L pimax
total value minimum 1Tzt > ppin

terminal portfolio constraint as; = gherm

leverage limits 17zt <n1Tat
sector exposure limits spin < pypt < gmax
sector neutrality Fat =0
concentration limits S (@) < B1Tat
variance risk limits () T8t <y
homogeneous risk limits ||Eiﬁx+||2 <61 Tat
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Example transaction and position costs

broker commission

(my™ )+ (55T

bid-ask spread

ki [ul

quadratic price impact

T, 2
S; U

3/2 power price impact

STl

borrowing/shorting fee

cl'(zt)_

quadratic risk penalty

)\t($+)TEt.'L'+

std. dev. risk penalty

MlE 22t
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Dynamic programming ‘solution’

e Bellman recursion: Vpry1 =0,

Vi(z) = ir&f (li(z,u) + EVip (Repr(x +w))), t=T,T—1,...

e abstractly V; = T;V;1 (Bellman operator)

e optimal policy

¢;(z) € arginin (be(z,u) + EVip1 (R (z + u)))

e optimal cost J* = V(zo)
e in general, intractable to compute (indeed, even represent) V;

Solution via dynamic programming

,0
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Exception: The quadratic problem

e suppose /; are convex quadratic (can include linear equality constraints)

e multi-period trading problem is quadratic stochastic control problem

e V; are convex quadratic, via recursion:

— Vr41 = 0 is convex quadratic
— convex quadratic functions preserved under expectation and partial
minimization, so Bellman operator 7; preserves convex quadratic

e optimal policy affine is affine: ¢} (z) = Jux + k¢
e can compute J;, k; from problem data

Solution via dynamic programming 12
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Approximate dynamic programming

replace V; with (convex) approximation V, to get ADP policy

adp (1) ¢ argmin (Et(x, w) + E Vit (Regr (2 + u))

choose V' so

— policy evaluation is easy (minimization above can be done fast)
— performance is good (hopefully, J ~ J*)

e one reasonable choice: exact value function of related quadratic problem

we'll see another choice later

Suboptimal policies 14



Model predictive control

a.k.a. receding (or shrinking) horizon control
at time ¢, solve (open loop) control problem using mean returns

ST (2, 0r)

minimize
subject to  z,y1 = diag(7r41)(2r +v.), 7=¢t,...,T—1
Zt = Xt
over z;, vy, T=1,...,T

e we interpret v}, ..
their mean values

Suboptimal policies

., v} as trading plan, assuming future returns take on

policy is ¢;"P“(x;) = vy (first trade in trading plan)
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Evaluating ADP and MPC policies

e evaluating ADP and MPC policies reduce to solving

— convex optimization problems in general
— QPs when ¢; are QP-representable and V; are quadratic

e O(n) variables for ADP, O(n(T —t)) variables for MPC

e new methods (code generation) allow us to solve both very quickly
- O(n?®) flops for ADP, O(n?*(T — t)) flops for MPC
— for n = 30 assets, T' = 99: 50us for ADP, 10ms for MPC
— 1000-10000x faster than generic methods

Suboptimal policies
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Performance of ADP and MPC policies

e can evaluate J2P and J™P¢ by Monte Carlo
e fast evaluation of policies critical for Monte Carlo simulations
e suboptimal policies appear to do well (with good choice of V; for ADP)

o leads to obvious question:
how suboptimal are ADP and MPC policies?

o we'll address this by computing a numerical lower bound on optimal
objective value, J® < J*

e if J2dP  JMPC gre not far above J'®, we know they are nearly optimal

Suboptimal policies 17
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Performance bound from Bellman inequalities

e suppose V!® <V, (elementwise)

yields performance bound

Jlb — V01b<x0) S ‘/O(x()) — J*

sufficient condition for V'® < V;: Bellman inequalities

1b 1b 1b
Vikla =0, V7 < 72Vt+1

cf. Bellman equalities

Vrt1 =0, Vi=TVisa

follows from monotonicity of Bellman operators

Performance bounds
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Optimizing performance bound via convex optimization

general approach:

o linearly parametrize candidate V> = SV | 0, V@
(V@ are basis elements)

e derive convex condition on «y; that implies Bellman inequalities

maximize (linear function of ay;) J'™ via convex optimization

yields best performance bound (for basis, Bellman inequality condition)

e maximizer of performance bound is excellent candidate for V, in ADP

Performance bounds 20



Bellman inequality condition

(simplified case)

e assume stage cost function of form

| Y(zu) (x,u) €C
be(z,u) = { 00 otherwise

1y convex quadratic

e constraint set described by quadratic inequalities

C:{(m,u) | fl(xﬂu) 207~-~>f1V1(x7u) 20}

f1s-++, far (not necessarily convex) quadratic

Performance bounds
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Bellman inequality condition Il

e parameterize V/” as general convex quadratic function

v;lb@)—(l/z)[f]T[Pt pllv] o

T
by Tt

Bellman inequality has form
Vit (@) < vl w) + BV (Reya (x4 ), V(w,u) €C

o write inequality as fo(z,u) > 0, with fy quadratic

coefficients of fy are affine in parameters Py, P11, Pt, Det1,7t, Tt41

Bellman inequality has form
folz,u) >0 whenever fi(z,u)>0,..., fa(z,u) >0
i.e., a quadratic function is nonnegative whenever a set of M others are
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S-procedure

a sufficient condition (called S-procedure): IA,..., Ay >0
folz,u) > A fi(z,u) + -+ A fu(z,w)  V(z,u)

e equivalent to a matrix inequality in the coefficients of fy,..., fir

e this matrix inequality is an affine function of A and the parameters
Py, Piy1, Pty Pri1,Te, Tey1, 1€, it is a linear matrix inequality (LMI)

e maximizing J'® subject to our (S-procedure based) sufficient condition
for Bellman inequalities is a semidefinite program (SDP)

¢ hence, we can effectively solve it

Performance bounds
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Numerical examples

e n = 30 assets
T = 99 periods

.:EO:‘TT:O

returns 11D log-normal: log(r:) ~ N (p, X)
e we consider quadratic case and four others

Numerical examples
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Transaction cost and constraints

e for quadratic example:
Y(x,u) = sTu? + NaH) TS

(price impact, risk penalty)

e for other cases:
(e, u) = (0 )= + KT ] + 87 uf + May

(includes additional shorting cost, bid-ask spread)
e constraint sets:

n

— unconstained: Ct
— long-only: C: =

— leverage limit: Ct ={z" |17 (z")- <0317z ™)}

— sector neutral: C; = {z" | Fz™ =0}, F € R**"

Numerical examples
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Results

e evaluate J24P and J™P¢ via Monte Carlo

— for ADP, 50000 samples (5 million QPs, 3 minutes on 8 cores)
— for MPC, 5000 samples (0.5 million QPs, a few hours)

Example Jb | gadp | jmpe
quadratic -450.1 | -450.3 | -4443
unconstrained | -132.6 | -131.9 | -130.6
long-only -41.3 -41.0 | -40.6
leverage limit -875 | -856 | -84.7
sector neutral | -121.3 | -118.9 | -117.5

e conclusion: ADP and MPC are nearly optimal

Numerical examples



Time traces (leverage limit example, ADP policy)
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Cost histogram (leverage limit example, ADP policy)
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6. Summary

Summary
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Summary

e by using value of assets as variables, dynamics is linear (but random)

hence get convex stochastic control problem
— even with complicated practical constraints and transaction costs

e can solve exactly in quadratic case

using SDP we compute a numerical bound on performance
ADP and MPC suboptimal policies

— rely on solving convex optimization problem in each step
— often achieve provably near-optimal performance

Summary
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Final comments on numerical performance bounds

e no, we cannot guarantee that J*¥ — J'* is small

¢ and we do not apologize

e we can only compute it for any given problem
e it is exceedingly useful in practice (and we think, in theory)

e we doubt a generic theoretical type bound would have any practical value

Summary 32
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