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Abstract
Mean–variance portfolio optimization problems often involve separable nonconvex
terms, including penalties on capital gains, integer share constraints, and minimum
nonzero position and trade sizes. We propose a heuristic algorithm for such problems
based on the alternating directionmethod ofmultipliers (ADMM). Thismethod allows
for solve times in tens to hundreds of milliseconds with around 1000 securities and
100 risk factors. We also obtain a bound on the achievable performance. Our heuristic
and bound are both derived from similar results for other optimization problems with
a separable objective and affine equality constraints. We discuss a concrete implemen-
tation in the case where the separable terms in the objective are piecewise quadratic,
and we empirically demonstrate its effectiveness for tax-aware portfolio construction.
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1 Introduction

The mean–variance portfolio optimization problem of Markowitz (1952) has a
quadratic objective and linear equality constraints, allowing for a simple analytical
solution. The problem can be extended by including position limits or a long-only
constraint (Markowitz 1955; Sharpe 1963; Grinold and Kahn 1999). Although the
resulting problem no longer has an analytical solution, it can be efficiently solved as a
quadratic program (Boyd andVandenberghe 2004, pp. 55–156).Many extensions have
been proposed that take into account investment restrictions, risk or leverage limits,
and trading costs (Boyd et al. 2017). When these extensions preserve the convexity of
the portfolio optimization problem, the extended problems can be solved quickly and
reliably (Boyd and Vandenberghe 2004, Sect. 1.3.1).

Some important portfolio optimization problems involve nonconvex constraints
and objective terms. For example, we may require that asset holdings be in integral
numbers of shares, or we may want to penalize realized capital gains (Moehle et al.
2021) or the number of securities traded (Lobo et al. 2007). These extensions are often
irrelevant or negligible for large institutional accounts, but they can be important for
small accounts such as those arising in separately managed account (SMA) platforms
(Benidis et al. 2018). Some of these nonconvex portfolio optimization problems can
be reformulated as mixed-integer convex optimization problems (Mansini et al. 2015)
and solved exactly using commercial or open source solvers. Such solvers are often
fast, but occasionally have very long solve times, often hundreds of times more than
for similar convex problems.

This article focuses on nonconvex portfolio optimization problems with nonconvex
penalties and constraints that separate across assets. This problem is a special case of
the separable–affine problem, i.e., the problem of minimizing a separable objective
function with affine equality constraints. We propose a heuristic algorithm for solving
such problems based on the alternating direction method of multipliers (ADMM).
This method solves problems to moderate accuracy quickly, even when the separable
functions are very complicated. This speed is obtained because each separable function
is interfaced only through its proximal operator, which only involves a few arithmetic
operations. This separable–affine form also makes it easy to compute a lower bound
on the problem value by replacing the separable functions by their convex envelopes
and solving the resulting convex optimization problem. We give a fast algorithm for
constructing these convex envelopes for piecewise quadratic functions, which often
appear in portfolio optimization.

This article is structured as follows. In Sect. 2, we introduce the portfolio opti-
mization problem with separable nonconvex holding and trading costs. In Sect. 3, we
introduce the separable–affine problem and show how the portfolio optimization prob-
lem can be expressed in this form. In Sect. 4, we discuss lower bounds on the optimal
value of the separable–affine problem. In Sect. 5 we show how to solve separable–
affine problems using ADMM. In Sect. 6, we discuss implementation details when the
separable functions are piecewise quadratic. Section 7 concludes with an application
to tax-aware portfolio construction.
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2 Portfolio optimization

2.1 Basic portfolio optimization problem

We first present mean–variance portfolio optimization with separable holding and
trading costs. The problem is to decide how much to invest in each of l assets. This
decision is represented by h ∈ Rl , where hi is the fraction of the portfolio value to be
invested in asset i .

We choose h by solving the optimization problem

maximize αT h − γ riskhT V h − γ trdφtrd(h − hinit) − γ hldφhld(h)

subject to ηlb ≤ 1T h ≤ ηub.
(1)

The objective of (1) trades off expected return, risk, trading costs, and holding costs,
with positive tradeoff parameters γ risk, γ trd, and γ hld. The vector α ∈ Rl is the
expected return forecast for the n assets, meaning αT h is the expected portfolio return.
The matrix V ∈ Sl++ (the set of symmetric positive definite l × l matrices) is the asset
return covariancematrix,making hT V h the variance of the portfolio return.Weassume
V has the traditional factor model form

V = XΣ X T + D, (2)

where X ∈ Rn×k is the factor exposure matrix, Σ ∈ Sk++ is the factor covariance
matrix, and D ∈ Sn++ is the diagonal matrix of idiosyncratic variances with Dii > 0
(Grinold and Kahn 1999; Boyd et al. 2017).

The constraint specifies that the fraction of the account value that is invested (given
by 1T h) is between ηlb and ηub. Setting ηlb = 0.98 and ηub = 0.99, for example,
means that between 98 and 99% of the account value must be invested after the trade
is carried out, leaving 1–2% in cash.

The trading cost φtrd(h −hinit) is the cost of trading from the initial portfolio hinit to
h, and φhld(h) is the cost of holding portfolio h. We do not assume these two functions
are convex, but we do assume they are separable, i.e.,

φtrd(u) =
l∑

i=1

φtrd
i (ui ), φhld(h) =

l∑

i=1

φhld
i (hi ).

Becauseφtrd andφhld are not convex, problem (1) is difficult to solve exactly in general.
One way to solve it is to reformulate it as a mixed-integer convex problem, typically a
mixed-integer quadratic program or a mixed-integer second-order cone program, both
of which can be solved using standard methods. In practice, these methods often solve
problem instances quickly, but sometimes the solution times can be extremely long.

In this paper, we propose a different approach, which exploits the fact that the
nonconvex terms are separable. Problems with separable nonconvex terms have been
studied extensively, andmany effective solutionmethods have been proposed for them.
We discuss problems of this type in more detail in Sect. 3.
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2.2 Examples of separable trading costs

We give some examples of trading cost functions φtrd. Although we discuss each
individually, in practice these functions would be combined together into a single
composite trading cost function.
Transaction cost The traditional transaction cost model is

φtrd
i (u) = si |u| + di |u|3/2.

The first term models the cost of crossing the bid–ask spread, where si ≥ 0 is one-
half the bid-ask spread of asset i , and | · | denotes the element-wise absolute value.
The second term models the cost of price impact, where di ≥ 0 is the market impact
parameter for asset i . The 3/2 power is applied elementwise.
Minimum trade size A minimum trade size is a constraint that for each asset i , we
either do not trade it, or we trade at least umin

i of it. In this case, we have

φtrd
i (ui ) =

{
0 if |ui | ≥ umin

i orui = 0

∞ otherwise.

Per-trade cost. A per-trade cost has the form

φtrd
i (ui ) =

{
0 if ui = 0

ctrdi otherwise,

where ctrdi is the cost of trading asset i . If these costs are the same for all assets, the
portfolio-level trading cost is proportional to the cardinality card(u), i.e., number of
nonzero elements in u. This can be used to model a per-trade commission levied on
all trades.
Tax liability Let L : Rl → R denote the tax liability function, such that L(h − hinit) is
the immediate tax liability incurred from realized capital gains by trading into portfolio
h. This function is separable across the assets, i.e., it has the form

φtrd
i (ui ) = Li (ui ),

where Li (ui ) is the tax liability from trading asset i . It is also piecewise affine and has
domain [−hinit

i ,∞). An explicit description of Li is complicated (Moehle et al. 2021,
Sect. 3). (The function Li is especially complicated when the asset i has been traded
within the past 30 days because of the wash sale rule, but it is always a piecewise
affine function.)

2.3 Examples of separable holding costs

In this section, we provide some examples of trading cost functions φhld. Although we
discuss each individually, they are combined into a composite holding cost function.
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Position limits Asset-level position limits have the form

φhld
i (hi ) =

{
0 if hlb

i ≤ hi ≤ hub
i

∞ otherwise,
(3)

where limits for asset i satisfy hlb
i ≤ hub

i .
Minimum holding size A minimum holding size is a constraint that for each asset i ,
we either do not hold it, or we hold at least hmin

i of it. In this case, we have

φhld
i (hi ) =

{
0 if |hi | ≥ hmin

i orhi = 0

∞ otherwise.

Per-asset holding cost A per-asset holding cost has the form

φhld
i (hi ) =

{
0 if hi = 0

chldi otherwise,
(4)

where chldi is the cost of holding asset i . If these costs are the same for all assets, the
portfolio-level holding cost is proportional to the cardinality card(h), i.e., the number
of nonzero elements in h. Penalizing this valuemodels the account overhead associated
with maintaining a portfolio with many assets.
Integer share constraint We can restrict the portfolio to hold an integer number of
shares of each asset, i.e., hi/pi ∈ Z, where pi is the per-share price of asset i . In this
case, we have

φhld
i (hi ) =

{
0 if hi/pi ∈ Z
∞ otherwise.

3 Separable–affine problem

We propose to solve the portfolio optimization problem (1) as a separable–affine
problem (SAP). In this section, we introduce the SAP problem and discusses some of
its properties.
Definition The separable–affine problem is

minimize
∑n

i=1 fi (xi )

subject to Ax = b,
(5)

with variable x ∈ Rn . The parameters are A ∈ Rm×n and b ∈ Rm , as well as
the separable functions fi : R → R ∪ {∞}. The (separable) objective is f (x) =∑n

i=1 fi (xi ),
We use infinite values of fi to encode constraints, and define dom fi = {xi |

fi (xi ) < ∞} and dom f = dom f1 × · · · × dom fn . We will assume that for each i ,
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dom fi is a non-empty union of a finite number of intervals. We also assume each fi

is closed. We say that x is feasible if x ∈ dom f and Ax = b, and define the (equality
constraint) residual associated with x as r = Ax − b. We denote the optimal value of
the SAP (5) as p� and a solution (if one exists) as x�.
Scaling We observe here for future use that both the variables and constraints in the
SAP (5) can be scaled, yielding another (equivalent) SAP. Let E ∈ Rn×n be diagonal
and invertible, and D ∈ Rm×m be invertible. With the change of variable x̃ = E−1x ,
and scaling the equality constraints by the matrix D, we obtain the problem

minimize
∑n

i=1 fi (Eii x̃i )

subject to D AEx̃ = Db,
(6)

with variable x̃ , which is also an SAP with data

Ã = D AE, b̃ = Db, f̃i (x̃i ) = fi (Eii x̃i ), i = 1, . . . , n.

From a solution x̃� of this problem, we can recover a solution of the original SAP as
x� = Ex̃�.

3.1 Portfolio optimization as a SAP

To express problem (1) as a separable–affine problem, we introduce two additional
variables: the cash fraction c = 1 − 1T h and the factor exposure vector y = CT Xh,
where C is a Cholesky factor of Σ , i.e., CCT = Σ . Problem (1) is then

maximize αT h − γ risk(yT y + hT Dh) − γ trdφtrd(h − hinit) − γ hldφhld(h)

subject to y = CT Xh
c + 1T h = 1
1 − ηub ≤ c ≤ 1 − ηlb.

(7)

The variables are h ∈ Rl , c ∈ R, and y ∈ Rk . Minimizing the negative of the objective
yields a separable–affine problem; the exact values of the parameters f , A, and b are
given in Appendix A.

3.2 Solving SAPs

Convex case If the functions fi are all convex, the SAP (5) is a convex optimization
problem that is readily solved.
Exhaustive search If the number of degrees of freedom n − m is very small (say,
no more than 3 or 4), we can solve the SAP by exhaustive search, which involves
evaluating f (x) on a grid of points in the subspace {x ∈ Rn | Ax = b}.
Divide and conquer When m is very small (say, no more than 3), we can use variations
on dynamic programming or divide and conquer to solve the SAP. For a subset S ⊆
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{1, . . . , n}, we define the value function

VS(z) = inf

{ ∑

i∈S

fi (xi )

∣∣∣∣
∑

i∈S

xi ai = z

}
,

where ai are the columns of A. When m is very small, we can represent VS by its
values on a grid, or by the coefficients in a suitable basis.

We have V{k}(z) = fk(x�
k ) if x�

k ak = z for some x�
k , and V{k}(z) = ∞ otherwise.

We also have V{1,...,n}(b) = p�, as well as the dynamic programming property

VS∪T (z) = inf
u,v

{VS(u) + VT (v) | u + v = z},

for disjoint S and T . When m is very small, we can form VS∪T by brute force search
over a grid of values u inRm . Thus, we can form VS∪T , given VS and VT (modulo our
gridding or basis approximation).

This suggests the following divide and conquer method.We start with the collection
of n value functions VS with S a singleton (which are the same as the functions fi ).
We then combine pairs, using the combining formula above, to obtain around n value
functions VS , with |S| = 2. We continue this way around log2 n times to obtain
V{1,...,n}. Evaluating this function at z = b gives p�.

Examining the portfolio problem (1) (or its separable–affine form (7)), note that
m = k + 1, where k is the number of factors in the risk model. This implies that
portfolio optimization problems with separable nonconvexities can be solved exactly
if the number of risk factors is small.
The general case is hard SAP includes mixed-integer linear programs as a special
case, which in turn includes as a further special case the 3-SAT problem, which is
NP-complete. Thus, we do not expect to develop a global optimization method that is
efficient in the worst case; we only hope for efficiency of a global method on many
(or even just some) problem instances that arise in practice.

3.3 Special cases

The SAP includes a number of well-known problem classes as special cases.
LP and MILP With fi (xi ) = ci xi + I+(xi ), where I+ is the indicator function of R+,

I+(u) =
{
0 if u ≥ 0

∞ if u < 0,

the SAP reduces to the generic linear programming (LP) problem.Adding the indicator
function of {0, 1} to fi we obtain a general mixed-integer linear program (MILP).
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Indefinite quadratic programming. The SAP generalizes the indefinite quadratic pro-
gramming problem (IQP)

minimize xT Px + qT x
subject to Ax = b

x ≥ 0,
(8)

where P is a symmetric matrix. We factor P as P = F DFT , where D is r × r
diagonal with nonzero diagonal entries and F ∈ Rn×r . This can be obtained from an
eigendecomposition of P . Thus, we have xT Px = ∑n

i=1 Dii z2i for z = FT x . Adding
this new variable, we obtain the SAP

minimize
∑n

i=1(qi (xi ) + I+(xi )) + ∑r
i=1 Dii z2i

subject to

[
A 0

FT −I

] [
x
z

]
=

[
b
0

]
,

with variable (x, z). This is equivalent to the IQP above. Adding the indicator function
of {0, 1} to each fi yields a general mixed-integer IQP.
Limitations The feasible set of a SAP consists of the Cartesian product of unions of
intervals (i.e., dom fi ) and the affine set {x | Ax = b}. The feasible set of an SAP is
therefore the union of a finite number of convex polyhedra. This observations tells us
that optimization problems with non-polyhedral feasible sets, such as problems with
quadratic constraints, cannot be exactly represented as SAPs.

4 Bounds

In this section, we describe a lower bound on p� obtained by solving a convex relax-
ation of (5).
Convex envelope The convex envelope of f is

f ∗∗(x) = sup{g(x) | g ≤ f , g convex},

i.e., its value at a point x is the greatest value of g(x) obtained for any convex function g
that minorizes f . The convex envelope is also the (Fenchel) conjugate of the conjugate
of f , i.e., ( f ∗)∗, where the superscript ∗ denotes conjugation (Rockafellar 1970, Sect.
5). (This explains why we denote the convex envelope of f as f ∗∗.) If f is convex,
then we have f ∗∗ = f . An example is shown in Fig. 1.
Bound from convex relaxation. By replacing the separable functions fi in problem (5)
with their convex envelopes f ∗∗

i , we obtain the problem

minimize
∑n

i=1 f ∗∗
i (xi )

subject to Ax = b,
(9)

which we call the convex relaxation of (5). The relaxed problem (9) is a convex
separable–affine problem. The optimal value of this relaxation is denoted d�. (The
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Fig. 1 A nonconvex function f
(solid black line) and its convex
envelope f ∗∗ (dashed blue line).
(Color figure online)

f (x)
f ∗∗(x)

reason for this notation will become clear later.) Because f ∗∗
i ≤ fi , we have d� ≤ p�.

Indeed, if fi is convex for all i , then fi = f ∗∗
i and therefore d� = p�.

Dual problem The dual problem of (5) is

maximize λT b − ∑n
i=1 f ∗

i (−νi )

subject to AT λ = ν.
(10)

The variables are ν ∈ Rn and λ ∈ Rm . Because the linear term in (10) is separable,
the dual problem is itself a separable–affine problem.

The dual problem is always a convex optimization problem, even when the primal
problem (5) is not. The optimal value of the dual problem is d�, which is the optimal
valueof the relaxedproblem (9).Weakduality,which alwaysholds, states thatd� ≤ p�.
If (5) is convex, then strong duality holds, which means that d� = p� (Bertsekas 1999,
Prop. 5.2.1).

5 ADMM

We can apply the alternating direction method of multipliers (ADMM) to the
separable–affine problem (5).
ADMM-form problem We start with the equivalent problem

minimize IA(z) + ∑n
i=1 fi (xi )

subject to x = z
(11)

with variables x ∈ Rn and z ∈ Rn . Here IA is the indicator function over the affine
constraints of (5), i.e.,

IA(z) =
{
0 if Az = b

∞ otherwise.

Augmented Lagrangian The augmented Lagrangian of (11) is

L(x, z, λ) = f (x) + IA(z) + 1

2
‖x − z + λ‖2.
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Our definition of the augmented Lagrangian lacks the parameter ρ > 0 from the
standard definition given by Bertsekas (1999). Including this parameter is equivalent
to using problem scaling parameter D = ρ I , as discussed in Sect. 3.
ADMM iterations The ADMM algorithm iterates xk , zk , and λk , for k = 0, 1, 2, . . . ,
are

xk+1 = argminx L(x, zk, λk)

zk+1 = argminz L(xk+1, z, λk)

λk+1 = λk + xk+1 − zk+1.

(12)

The initial values are z0 and λ0.
Convergence If f is convex and a solution to (5) exists, then as k → ∞, we have
f (xk) → p�, Axk → b, and λk → λ�, where λ� is an optimal dual variable to (5). In
the general case when f is nonconvex, there is no such guarantee.
Solving the linear system Here we describe the zk+1 update in (12). Minimizing the
augmented Lagrangian involves solving the equality-constrained least-squares prob-
lem

minimize ‖z − xk+1 + λk‖2
subject to Az = b

with variable z. The minimizing z (which becomes zk+1) can be found by solving the
linear system of equations

[
I AT

A 0

] [
zk+1

ν

]
=

[
xk − λk

b

]
. (13)

For each iteration in the ADMM algorithm, we solve (13) for different values of the
the right-hand side (i.e., for different values of xk and λk .)We can do this efficiently by
factorizing this matrix before the first iteration and caching it for repeated use (Stellato
et al. 2020, Sect. 3.1).
Separable update The update rule for xk+1 in (12) can be written

xk+1 = argminx

(
f (x) + 1

2
‖x − zk + λk‖2

)
.

Because f is separable, we can perform this update by solving n univariate optimiza-
tion problems. The update for each component xi is given by

xk+1
i = argminxi

(
fi (xi ) + 1

2

(
xi − zk

i + λk
i

)2)
.

These updates can be expressed using the proximal operator of fi :

xk+1
i = prox fi

(
zk

i − λk
i

)
.
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(For more information, see Boyd et al. (2011).) Several methods can be used to solve
these small problems, including exhaustive search. For the portfolio problem (1), fi

is piecewise quadratic, and the proximal operator can be readily computed, as shown
in Sect. 6.2.
Initialization If f is convex, theADMMiterates converge to a solution of (5) regardless
of the initialization. However, if f is not convex, the choice of initialization can have
a large impact on the result of ADMM.

In this case, one good choice is to initialize the iterates using the solution to the
relaxed problem (9). This has the added benefit of providing a lower bound on the
optimal problem value, which can be used to judge the quality of the iterates produced
by ADMM.
Scaling Although the scaling parameters D and E do not change the solution of (5),
they can have a large impact on the rate of convergence of ADMM. (When (5) is not
convex, they can also affect the quality of the iterates.) One effective method to choose
D and E is through a simple hyperparameter search, in which we and tune D and E to
minimize the run time over a sampling of similar problems. This requires expressing
D and E in terms of a small number of free parameters, as in done for example in
Sect. 7.1. Another approach is to choose D and E to reduce the condition number of
A, e.g., through equilibration (Stellato et al. 2020, Sect. 5).
Termination criteria We need termination criteria that work well in the case when f
is not convex. Termination criteria for ADMM, when applied to convex problems, are
discussed in (Boyd et al. 2011, Sect. 3.3).

For any candidate point x ∈ Rn satisfying Ax = b, we define the pseudo-objective
and residual values as

o(x) = f
(
Πdom( f )(x)

)

r(x) = dist(x,dom( f )).

We use the following procedure to check for termination:

1. From the current iterates, find a point x satisfying Ax = b.
2. Compute o(x) and r(x).
3. If r(x) < εres and o(x) < obest, then update obest and the best iterates.
4. Terminate if the best objective obest has not improved by more than εobj in more

than N iterations.

There are several ways to carry out step 1. For example, we can take the iterate xk ,
which satisfies Axk = b. For the portfolio optimization problem (1), we can take
the elements of the iterate zk that represent the asset holdings h and compute the
corresponding cash amount c and factor exposures y. Then the vector x = (h, c, y)

satisfies Ax = b.

6 Implementation

Carrying outADMMrequires evaluating the proximal operator of univariate functions,
and computing the bound from 4 requires computing the convex envelope. In this
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section, we show how to carry out these two operations for the specific case in which
the univariate functions are piecewise quadratic. We use the notation ϕ for a generic
univariate function, which stands in for fi in (5).

6.1 Piecewise quadratic functions

Consider the piecewise quadratic function ϕ with k pieces, defined as

ϕ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1x2 + q1x + r1 if x ∈ [a1, b1]
...

...

pk x2 + qk x + rk if x ∈ [ak, bk]
+∞ otherwise

(14)

with a1 ≤ b1 ≤ a2 ≤ · · · ≤ ak ≤ bk . We denote by ϕi the i th piece of ϕ, i.e.,

ϕi (x) =
{

pi x2 + qi x + ri ifx ∈ [ai , bi ]
+∞ otherwise.

(15)

Because we do not require ϕ to be continuous, and each piece is defined over a closed
interval, ϕ may be multiply defined for some values of x (at the boundaries of some
intervals). To remedy this, we use the convention that ϕ(x) is the minimum over all
such candidate values, i.e., ϕ(x) = min{ϕi (x) | ∀i s.t. x ∈ [ai , bi ]}. We also assume
the description of ϕ is irreducible, i.e., none of the k pieces can be dropped without
changing the function value at some point.

6.2 Proximal operator

The proximal operator of ϕ is

proxϕ(u) = argminx

(
ϕ(x) + 1

2
(x − u)2

)
. (16)

Evaluating the proximal operator is done in two steps. First, we compute the piecewise
quadratic function ϕ(x) + (x − u)2/2, which is done by adding 1/2, −u, and u2/2 to
the coefficients pi , qi , and ri , for all i . Computing the minimizer of this function can
be done by computing the minimum value of each piece, taking the minimum over
these values, and then finding a value of x that attains this minimum.
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If ϕ is convex, its proximal operator of ϕ can be expressed as

proxϕ(u) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 ifu ∈ (−∞, (2p1 + 1)a1 + q1]
(u − q1)/(1 + 2p1) if u ∈ [(2p1 + 1)a1 + q1, (2p1 + 1)b1 + q1]

...
...

a j if u ∈ [(2p j−1 + 1)b j−1 + q j−1, (2p j + 1)a j + q j ]
(u − q j )/(1 + 2p j ) if u ∈ [(2p j + 1)a j + q j , (2p j + 1)b j + q j ]

...
...

ak if u ∈ [(2pk−1 + 1)bk−1 + qk−1, (2pk + 1)ak + qk]
(u − qk)/(1 + 2pk) if u ∈ [(2pk + 1)ak + qk, (2pk + 1)bk + qk]
bk ifu ∈ [(2pk + 1)bk + qk,∞).

We note that some of these intervals may be degenerate.

6.3 Convex envelope

In this section we show how to compute the convex envelope of ϕ, which is required
for computing the bound discussed in Sect. 4. This follows the same lines as Gardiner
and Lucet (2010). To do this, first note that the convex envelope ϕ∗∗ can be computed
recursively:

ϕ∗∗ = min{ψ i , ϕi }∗∗

ψ i = min{ψ i−1, ϕi−1}∗∗

...

ψ2 = min{ψ1, ϕ1}∗∗

ψ1 = ϕ1.

(17)

Here min is the pointwise minimum operation between functions. An example of this
recursion for the function

ϕ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x2 − 3x − 3 if x ∈ [−∞, 3]
−x + 3 if x ∈ [3, 4]
2x2 − 20x + 47 if x ∈ [4, 6]
x − 7x if ∈ [6, 7.5]
4x + 29 if x ∈ [7.5,∞],

(18)

is shown in Fig. 2.
We now discuss how to carry out each line in the recursion (17), i.e., how to compute

ψ i+1 given ψ i . Note that ψ i and ϕi are convex functions. The graph of ψ i lies to the
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3 4

i= 1

4 6

i= 2

6 7.5

i= 3

7.5

i= 4

ϕ(x) ψ ψi(x) i+1(x)

Fig. 2 Recursive computation of the convex envelope for the function shown in Fig. 1

Fig. 3 The three components
that make up ψ i+1 according to
Eq. (20), with ϕ given in (18)
and i = 2

xϕ x b2

ψ i �x+β ϕi

ψ

left of the graph of ϕi , meaning that x ≤ z for all x ∈ domψ i and z ∈ domϕi .
Therefore ψ i+1 has the simple form

ψ i+1(x) =

⎧
⎪⎨

⎪⎩

ψ i (x) if x ∈ [a1, xψ ]
αx + β if x ∈ [xψ, xϕ]
ϕi (x) if x ∈ [xϕ, bi ]

(19)

for some α ∈ R, β ∈ R, xϕ ∈ domϕi , and xψ ∈ domψ i . This is shown in Fig. 3.
We allow for the case when xϕ = −∞ or xψ = ∞; in these cases, the first or last
interval is degenerate, and can be ignored. The parameters α and β are unique; xϕ

and xψ need not be. Finding these parameters is straightforward but tedious; further
details are given in Appendix B.

7 Numerical example

In this section we provide an example of the method applied to tax-aware portfo-
lio optimization with small account sizes. We use a passive, index-tracking strategy
with α = 2γ riskV hbm, where the elements of hbm ∈ Rl are the weights of a bench-
mark portfolio. This means that minimizing the objective term αT h + γ riskhT V h is
equivalent to minimizing the (squared) active risk (h − hbm)T V (h − hbm).

123



Portfolio construction as linearly constrained separable... 1681

The trading cost combines the bid–ask spread model with a penalty on the number
of trades and capital gains:

φtrd(u) = γ sprdsT |u| + ctrdcard(u) + γ taxL(u).

The holding cost combines the asset position limits (3) and the per-asset holding
cost (4). We use the lower bound hlb = 0, which encodes a long-only constraint, and
the upper bound for asset i is hub

i = max{3hbm
i , hinit

i }, i.e., it is the greater of the
current holdings and 3 times the benchmark weight. The combined holding cost is

φhld(h) =
{

chldcard(h) if 0 ≤ h ≤ hub

∞ otherwise.

7.1 Problem data

Backtest setup. We generate instances of problem (1) from backtests of a tax loss
harvesting strategy. Our backtest dataset consists of 204 months over a 17 year period
from August 2002 through August 2019. We use this dataset to carry out 12 staggered
six-year-long backtests, with the first starting in August 2002 and ending in July 2008,
and the the last starting in August 2013 and ends in July 2019. Every month, a single
instance of problem (1) is solved to rebalance the portfolio. We then save this problem
instance, which we use to evaluate our heuristic and bound. The full details of this
setup are described by Moehle et al. (2021), Sect. 6, including the sources of data
used and the exact timing of the rebalance trades. (The main difference between our
formulation and theirs is the addition of the per-asset holding and trading cost terms.)

When solving problem (1), we use the parameters

γ risk = 100, chld = ctrd = 3 × 10−5, γ tax = 1.

The parameters γ trd and γ hld are redundant, and were set to 1. With these values, the
portfolio maintains active risk around 0.5–1%, holds only 200–300 securities of the
S&P 500, and typically trades around 30 securities per month. The invested fraction
is maintained between ηlb = 0.98 and ηub = 0.99.
Generated problems The procedure given above resulted in 692 instances of prob-
lem (1). The mean optimal utility U � across these problems ranged from −1028 to
184 basis points (0.0001, one hundredth of one percent) with a mean and standard
deviation of 94 basis points and 57 basis points, respectively.
Algorithm parameters We used the scaling parameters

D = diag(1001l , 3, 1001k), E = diag(1001m),

where 1l and 1k are the l and k dimensional vectors with all entries one. We used the
stopping criterion parameters

εres = 3 × 10−4, εobj = 10−5.
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Fig. 5 Run time distributions for
the ADMM algorthm applied to
the original problem (1) as well
as the relaxed problem (9)
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We check the termination conditions once every 10 steps, and terminate if the objective
have not improved in more than N = 50 iterations.

7.2 Results

Heuristic quality All of the 692 problems we ran the algorithm on converged. To
evaluate the ADMM heuristic, we compare the objective values obtained by ADMM
on the 692 problem instances,whichwe denote padmm, to the lower bounds d� obtained
by solving the convex relaxation (9). The optimal problem value p� lies between these
values, i.e.,

d� ≤ p� ≤ padmm.

Figure 4 shows the differences padmm − d�. These range from 0 to 10 basis points,
with mean 0.6 basis points and standard deviation 1.1 basis points. These values are
quite small compared to the problems values p�, which range from −1028 to 184
basis points. This implies that the ADMM heuristic produces nearly optimal points
on all 692 problem instances.
Speed In addition to being accurate, ADMM was also fast. It solved the original
(nonconvex) problems in an average of 251 ms (with standard deviation 159 ms),
and solved the relaxed (convex) problems in an average of 152 ms (with a standard
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Fig. 6 The cost functions fi and
their relaxations f ∗∗

i for the
stocks of Johnson & Johnson,
Wyeth, and Medtronic, for a
single simulated trade
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deviation 67ms). Figure 5 shows the distributions of run times for original and relaxed
problems.

7.3 Single problem instance

Figure 6 shows the separable cost functions fi corresponding to the stocks of Johnson
& Johnson (JNJ), Wyeth (WYE), and Medtronic (MDT). We show the initial holdings
hinit

i , the benchmark holdings hbm
i , and the optimal post-trade holdings h�

i .
The upward curvature of all three functions is primarily due to the specific risk term

Dii (hi −hbm
i )2. Each fi has two discontinuities: one at hi = 0 that corresponds to the

holding cost (4) and one at hi = hinit
i that corresponds to the holding cost (4). Due to

the larger scale of fi for Johnson & Johnson, discontinuities are less severe, relative
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to the rest of the function, than they are for the other two assets. In addition to these
discontinuities, there is also a nonconvex kink present in all three plots around hinit

i , due
to the tax liability Li (Moehle et al. 2021, Sect. 3). Despite these nonconvexities, the
separable cost functions fi are generally well approximated by their convex envelopes
f ∗∗
i , which helps explain why the upper bound from ADMM and the lower bound

(given in Sect. 7.2) are so close.

Appendix A Portfolio construction parameters

We can convert problem (7) into the separable–affine form (5). The variable is x =
(h, c, y) ∈ Rl+k+1. The affine constraint parameters are

A =
[

CT X 0 −I
1T 1 0

]
, b =

[
0
1

]
.

The part of the separable function corresponding to asset i is

fi (hi ) = αi hi − γ riskDii h
2
i + γ trdφtrd

i (hi − hinit
i ) + γ hldφhld

i (hi )

for i = 1, . . . , l. The component of f corresponding to c is

fl+1(c) =
{
0 if 1 − ηub ≤ c ≤ 1 − ηlb

∞ otherwise.

The component of f corresponding to y is fi (yi ) = y2i , for i = l + 2, . . . , l + k + 1.

Appendix B Convex envelope details

We can compute the convex envelope of a piecewise quadratic function as discussed
in Sect. 6.3. To do this, we must compute the parameters α, β, xϕ , and xψ from (19).
We do this making use of the following two facts.

The first fact is that candidate values of α, β, xϕ , and xψ are valid if and only if the
function αx + β is tangent to ψ i at xψ and to ϕi at xϕ . This holds if and only if

α ∈ ∂ψ i (xψ), ψ i (xψ) = αxψ + β, α ∈ ∂ϕi (xϕ), ϕi (xϕ) = αxψ + β, (20)

where ∂ψ i and ∂ϕi are the subdifferentials of ψ i and ϕi . These conditions can be
easily checked given a set of candidate parameters α, β, xψ , and xϕ .
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The second fact is that (19) can be rewritten

ψ i+1(x) = min{ψ i , ϕi }∗∗ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ i
1(x) if x ∈ [ã1, b̃1]

...
...

ψ i
j−1(x) if x ∈ [ã j−1, b̃ j−1]

min{ψ i
j , ϕi }∗∗ if x ∈ [ã j , bi ],

(21)

where ã1 ≤ b̃i ≤ · · · ≤ ã j are the endpoints of the pieces of ψ i . In other words, the
function ψ i+1 matches ψ i up to the j th piece of ψ i , and after that, is equal to the
convex envelope of the pointwise minimum of ψ i

j and ϕi . This convex envelope (the

last piece in (21)) is easy to compute, as min{ψ i
j , ϕi } is a piecewise quadratic with

two pieces. (We discuss how to do this in Sect. 1.)
This means that once j is known, we can use (21) to compute ψ i+1. To find j ,

we simply try all pieces of ψ i , compute the right-hand side of (21), and check if the
resulting parameters α, β, xψ and xϕ satisfy the conditions (20).

Appendix B.1 Piecewise-quadratic functions with two pieces

The function min{ψ i
j , ϕi } in (21) is piecewise quadratic with two pieces. Here we

discuss how to compute the convex envelope of such functions.
Let g(x) be a PWQ with two pieces: g1(x) = p1x2 + q1x + r1 on [a1, b1], and

g2(x) = p2x2 + q2x + r2 on [a2, b2], with b1 ≤ a2. In this case, g∗∗ has the form

g∗∗(x) =

⎧
⎪⎨

⎪⎩

g1(x) if x ∈ [a1, x1]
h(x) = αx + β if x ∈ [x1, x2]
g2(x) if x ∈ [x2, b2]

(22)

for some α, β, x1, and x2. These parameters are real valued, but we allow for the case
when x1 = −∞ or x2 = ∞; in these cases, first or last interval is degenerate, and can
be ignored.

Similarly to (20) above, it is necessary and sufficient for the parameters α, β, x1,
and x2 to satisfy

α ∈ ∂g1(x1), g1(x1) = αx1 + β, α ∈ ∂g2(x2), g2(x2) = αx2 + β. (23)

How these checks are carried out in practice depends on whether x1 (or x2) are in the
interior or boundary of the domain of g1 (or g2), or whether x1 = −∞ (or x2 = ∞).

Appendix B.1.1 The midpoint-to-midpoint case

We first consider the case when x1 is in the interior of the domain of g1, i.e., a1 <

x1 < b1, and x2 is in the interior of the domain of g, i.e., a2 < x2 < b2. In this case,
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we must have

g1(x1) = h(x1), g2(x2) = h(x2), g′
1(x1) = h(x1), g′

2(x2) = h(x2). (24)

By plugging in the values of the functions and their derivatives, we obtain

p1x21 + q1x1 + r1 = αx1 + β

p2x22 + q2x2 + r2 = αx2 + β

2p1x1 + q1 = α

2p2x2 + q1 = α.

(25)

These four equations can be reduced to a single quadratic equation with a single
unknown. This quadratic equation has at most two solutions, each corresponding to a
set of candidate values of α, β, x1, and x2. To see if these candidate values α, β, x1,
and x2 parameterize a valid convex envelope of g, we check if our initial assumption,
that a1 < x1 < b1 and a2 < x2 < b2, holds.

Appendix B.1.2 The midpoint-to-endpoint case

Now we consider the case in which x1 is in the interior of the domain of g1, and
x2 ∈ {a2, b2}. (We note that the case in which x1 ∈ {a1, b1} and x2 in the interior of
the domain of g can be handled similarly, and we do not discuss it further.)
Finite upper bound. We start with the case when x2 < ∞. To do this, we solve a
slightly modified set of equations:

g1(x1) = h(x1), g′
1(x1) = h′(x1), g2(x2) = h(x2). (26)

These are the first three equations of (25). As before, they can be reduced to a single
quadratic equation with a single unknown. This quadratic equation has at most two
solutions, each corresponding to a set of candidate values of α, β, and x1.

To see if these candidate values parameterize a valid convex envelope, we verify
that x1 is in the interior of the domain of g1, i.e., a1 < x1 < b1, and also the second
condition of (23). In the degenerate case in which g2 is defined over a single point,
i.e., a2 = b2, this second condition always holds; in the non-degenerate case a2 < b2,
the condition is equivalent to g′

2(x2) = 2p2x2 + q2 ≤ α if x2 = a2, and g′
2(x2) =

2p2x2 + q2 ≥ α if x2 = b2.
Infinite upper bound. Next we consider the case of x2 = ∞, which may occur when
x2 = b2 = ∞, i.e., the domain of g2 is unbounded. In this case, we modify the last
equation in (26), resulting in the equations

g1(x1) = h(x1), g′
1(x1) = h′(x1), g′

2(∞) = h′(∞). (27)

The last equation is equivalent to p2 = 0 and α = q2. To find the corresponding
candidate values of β, and x1, we solve g1(x1) = h(x1) and g′

1(x1) = h′(x1). To check
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the validity of the candidate values of α, β, x1, and x2, we check that a1 < x1 < b1
and p2 = 0.

Appendix B.1.3 The endpoint-to-endpoint case

Finally, we consider the case in which x1 ∈ {a1, b1} and x2 ∈ {a2, b2}.
Finite upper bound. First suppose a1, b1, a2, and b2 are all finite. Take h to be the
line through the points (x1, g1(x1)) and (x2, g2(x2)), i.e., the parameters are α =
(g(x2) − g1(x1))/(x2 − x1) and β = αx1 − g1(x1). Note that if x1 = x2, then h is
ill-defined, and these candidate values of x1 and x2 can be skipped.

To verify that these values of α, β, x1, and x2 parameterize a valid convex envelope
of f , we check condition (23). Recall that the first condition only need hold if a1 < b1,
and the second if a2 < b2. For example, if a1 = b1 < a2 = b2, then any combination
of x1 ∈ {a1, b1} and x2 ∈ {a2, b2} are immediately valid.
Infinite upper bound. Now we consider the case when x2 = b2 = ∞. In this case, we
require h′(∞) = g′

2(∞), i.e., p2 = 0 and α = q2. We then have β = g1(x1) − q2x1.
To verify that α, β, x1, and x2 parameterize a valid envelope of f , we need only check
the first condition of (23).

References

Bertsekas D (1999) Nonlinear programming, 3rd edn. Athena Scientifc, Nashua
Benidis K, Feng Y, Palomar D (2018) Optimization methods for financial index tracking: from theory to

practice. Found Trends Optim 3(3):171–279
Boyd S, Busseti E, Diamond S, Kahn R, Nystrup P, Speth J (2017) Multi-Period Trading via Convex

Optimization. Found Trends Optim 3(1):1–76
Boyd S, ParikhN, Chu E (2011)Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found Trends Mach Learn 3(1):1–122
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Grinold R, Kahn R (1999) Active Portfolio management, 2nd edn. McGraw-Hill, New York
Gardiner B, Lucet Y (2010) Convex hull algorithms for piecewise linear-quadratic functions in computa-

tional convex analysis. Set-Valued Var Anal 18(3–4):467–482
Lobo M, Fazel M, Boyd S (2007) Portfolio optimization with linear and fixed transaction costs. Ann Oper

Res 152(1):341–365
Markowitz H (1952) Portfolio selection. J Finance 7(1):7791
Markowitz H (1955) The optimization of a quadratic function subject to linear constraints. RAND Corpo-

ration Tech rep, Santa Monica
Moehle N, Kochenderfer MJ, Boyd S, Ang A (2021) Tax-aware portfolio construction via convex optimiza-

tion. J Optim Theory Appl 189(2):364–383
Mansini R, Ogryczak W, Speranza MG (2015) Linear and mixed integer programming for portfolio opti-

mization. Springer, Cham
Rockafellar R (1970) Convex analysis. Princeton University Press, Princeton
Sharpe W (1963) A simplifed model for portfolio analysis. Manag Sci 9(2):277293
StellatoB,BanjacG,Goulart P, BemporadA,BoydS (2020)OSQP: an operator splitting solver for quadratic

programs. Math Program Comput 12:637–672

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Portfolio construction as linearly constrained separable optimization
	Abstract
	1 Introduction
	2 Portfolio optimization
	2.1 Basic portfolio optimization problem
	2.2 Examples of separable trading costs
	2.3 Examples of separable holding costs

	3 Separable–affine problem
	3.1 Portfolio optimization as a SAP
	3.2 Solving SAPs
	3.3 Special cases

	4 Bounds
	5 ADMM
	6 Implementation
	6.1 Piecewise quadratic functions
	6.2 Proximal operator
	6.3 Convex envelope

	7 Numerical example
	7.1 Problem data
	7.2 Results
	7.3 Single problem instance

	Appendix A Portfolio construction parameters
	Appendix B Convex envelope details
	Appendix B.1 Piecewise-quadratic functions with two pieces
	Appendix B.1.1 The midpoint-to-midpoint case
	Appendix B.1.2 The midpoint-to-endpoint case
	Appendix B.1.3 The endpoint-to-endpoint case


	References




