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Portfolio optimization with linear and fixed
transaction costs

Abstract

We consider the problem of portfolio selection, with transaction costs and
constraints on exposure to risk. Linear transaction costs, bounds on the vari-
ance of the return, and bounds on different shortfall probabilities are efficiently
handled by convex optimization methods. For such problems, the globally op-
timal portfolio can be computed very rapidly. Portfolio optimization problems
with transaction costs that include a fixed fee, or discount breakpoints, cannot
be directly solved by convex optimization. We describe a relaxation method
which yields an easily computable upper bound via convex optimization. We
also describe a heuristic method for finding a suboptimal portfolio, which is
based on solving a small number of convex optimization problems (and hence
can be done efficiently). Thus, we produce a suboptimal solution, and also an
upper bound on the optimal solution. Numerical experiments suggest that for
practical problems the gap between the two is small, even for large problems
involving hundreds of assets. The same approach can be used for related prob-
lems, such as that of tracking an index with a portfolio consisting of a small
number of assets.



1 Introduction

This paper deals with the problem of single-period portfolio optimization. We
consider the maximization of expected return, taking transaction costs into
account, and subject to different types of constraints on the feasible portfolios.

Our approach is based on the fact that convexr optimization problems, even if
nonlinear or of large-scale, can be numerically solved with great efficiency, using
recently developed algorithms. We show that a number of portfolio optimization
problems can be cast as convex optimization problems, and hence globally, and
efficiently, solved. This class of convex portfolio optimization problems includes
those with linear transactions costs, margin and diversification constraints, and
limits on variance and on shortfall risk.

We also consider problems with fixed transaction costs (possibly in addition
to linear transaction costs). These nonconvex portfolio optimization problems
cannot be solved directly via convex optimization, but we describe two ap-
proaches that are based on convex optimization. These problems can be solved
exactly (i.e., globally) by solving a number of convex problems which, unfortu-
nately, grows exponentially with the number of assets. This method, as well as
other more sophisticated methods of global optimization, is practical only for
portfolios with about fifteen or fewer assets.

Our main contribution is to describe a method for solving approzimately
much larger nonconvex portfolio optimization problems, by solving a small num-
ber of convex optimization problems. The method yields a possibly suboptimal
portfolio, as well as a guaranteed upper bound on the global optimum. While
there is no guarantee that the gap between the performance of the suboptimal
portfolio and the upper bound will always be small, we find that in practice
it is. Our method therefore gives an effective practical solution to nonconvex
portfolio optimization problems, even with portfolio constraints and hundreds of
assets. (If higher guaranteed accuracy is needed, our method can be embedded
in a branch and bound algorithm.)

1.1 Related work

Broadly speaking, our approach falls in the Markowitz framework, where a
tradeoff between return mean and variance is present. The genesis of the field
has been attributed to Markowitz [Mar52, Mar59] and Roy [Roy52]. Impli-
cations for the valuation of assets arose with the capital asset pricing model
(CAPM) of Sharpe [Sha64] and Lintner [Lin65]. Recent general references are,
e.g., Rudolf [Rud94], and Luenberger [Lue98]. The book from Leibowitz et
al. [LBK96] is one of many sources for the downside-risk approach, which has
been increasingly used in recent years (although already described in Roy’s 1952
paper.)

For fixed transaction costs, solutions have been found for specific structures
of the covariance matrix. Blog et al. [BHKTS83| describe a solution for a single
factor model, i.e., a diagonal plus rank-one covariance matrix. Patel and Sub-
rahmanyam [PS82]) assume an even more specific structure, namely that there



is an identical correlation coefficient between all assets and the single factor. In
contrast, we make no assumptions about the correlation matrix, and moreover,
allow the addition of any other (convex) cost terms and constraints. Bertsimas,
Darnell and Soucy [BDS99] use generic mixed-integer programming methods to
deal with fixed costs and other integer constraints in several practical cases.

Many treatments have been presented for problems with linear costs. Most
methods described in the literature are modifications of the simplex method
for quadratic programming, which can handle a quadratic objective but not
quadratic constraints. The variance is included in the program objective, weighted
by a parameter A, and the solutions on the efficient frontier are found by vary-
ing the parameter \. See, e.g., Perold [Per84], where a method for efficiently
ranging over such a parameterization of the efficient frontier is proposed.

The iterative heuristic we propose for finding a suboptimal solution was de-
veloped simultaneously and independently by Jason Schattman, whose numer-
ical results confirm the good performance of the heuristic (see [Sch00], section
3.5). Tt is also related to the one given by Delaney and Bresler [DB9S§], in the
context of image reconstruction. Meyer [Mey74] establishes the convergence of
a large class of algorithms that includes the heuristic discussed in this paper.

For branch and bound methods and integer programming see, for instance,
Lawler and Wood [LW66], and Schrijver [Sch86].

1.2 Convex optimization

Our approach is made feasible by relatively recent advances in interior-point
methods for nonlinear convex optimization. While these methods can be traced
back to the late 1960s (see, e.g., [FM68]), the modern era was initiated by
Karmarkar’s interior-point method for linear programming [Kar84], which was
shown to be more efficient than the simplex method in terms of worst-case
complexity analysis and also in practice. More recently, Nesterov and Ne-
mirovsky [NN94] observed that interior-point methods for linear programming
can be extended to handle a wide variety of nonlinear, nondifferentiable convex
optimization problems. Interior-point methods for nonlinear convex optimiza-
tion problems have been found to have many of the same characteristics of
the methods for LP. They have polynomial-time worst case complexity, and
they are extremely efficient in practice, requiring a number of iterations that
hardly varies with problem size, and is typically between 5 and 50. Each it-
eration requires the solution (or approximate solution) of a linear system of
equations. Current algorithms can solve problems with hundreds of variables
and constraints, in times measured in seconds or at most a few minutes, on a
personal computer. Larger problems can be handled if problem structure, such
as sparsity, is exploited in the solution of the linear system. The current state of
the art is described, for example, in the books by Wright [Wri97] and Ye [Ye97].
The forthcoming book by Boyd and Vandenberghe [BV] give an introduction to
the field and describe a large number of applications.

Some specific types of nonlinear convex optimization problems have recently
been the focus of much research, both in terms of algorithms and applications.



These include semi-definite programming (SDP) [VB96] and second-order cone
programming (SOCP) [LVBL9S]. In this paper, we will make use of second-order
cone programs, with the form

minimize ¢’z
subject to [|[A;x + bl < cfx+d;, i=1,...,L, (1)
Fz =g,
where || -|| denotes the Euclidean norm, i.e., ||z|| = V2T z. The numerical exam-

ples in this paper were solved using the convex optimization software SOCP, by
Lobo et al. [LVB97]. Other software packages that handle this class of problems
are now available, such as MOSEK by Andersen and Andersen [And99] (which
currently seems to be the fastest), SEDUMI by Sturm [Stu98], or SDPPACK by
Alizadeh et al. [AHNT97].

1.3 Overview

The single-period portfolio selection problem is stated in section 2. Transaction
costs functions and portfolio constraints are described in section 2.1 and section
2.2. An example of a convex problem with linear transaction costs is presented
in section 2.6. Fixed costs are included in section 3, where it is shown how
to compute a global bound on performance and how to obtain an approximate
solution. Numerical examples are given in section 4. Related problems, such
as index tracking, are briefly discussed in section 5. Our conclusions and final
comments are given in section 6.

2 The portfolio selection problem

Consider an investment portfolio that consists of holdings in some or all of n
assets. This portfolio is to be adjusted by performing a number of transactions,
after which the portfolio will be held over a fixed time period. The investor’s
goal is to maximize the expected wealth at the end of period, while satisfying a
set of constraints on the portfolio. These constraints typically include limits on
exposure to risk, and bounds on the amount held in each asset. The problem of
an investor averse to risk in terms of “mean-variance” preferences can be treated
in a similar fashion.

The current holdings in each asset are w = (wq,...,w,). The total current
wealth is then 17w, where 1 is a vector with all entries equal to one. The dollar
amount transacted in each asset is specified by z = (x1,..., 2, ), with z; > 0 for
buying, x; < 0 for selling. After transactions, the adjusted portfolio is w + z.
Representing the sum of all transaction costs associated with = by ¢(x), the
budget constraint is

17z + ¢(x) = 0. (2)

The adjusted portfolio w + x is then held for a fixed period of time. At the
end of that period, the return on asset i is the random variable a;. All random



variables are on a given probability space, for which E denotes expectation. We
assume knowledge of the first and second moments of the joint distribution of
a=(a,...,an),
Ea=a, E(a—a)(a—a)’ =X.

A riskless asset can be included, in which case the corresponding a; is equal to
its (certain) return, and the ith row and column of ¥ are zero.

The end of period wealth is a random variable, W = aT (w+z), with expected
value and variance given by

EW =a’ (w+ z), EW-EW)? = (w+2)"S (w+ ). (3)
The budget constraint (2) can also be written as an inequality,
17z + ¢(x) < 0. (4)

With some obvious assumptions (a; > 0, ¢ > 0), solving an expected wealth
maximization problem with either form of the budget constraint yields the same
result. The inequality form is more appropriate for use with numerical optimiza-
tion methods. (For example, if ¢ is convex, the inequality constraint (4) defines
a convex set, while the equality constraint (2) does not.)

We summarize the portfolio selection problem as

maximize a’ (w + x)

subject to 1Tz + ¢(z) <0 (5)
w+zeS
where
aeR"” is the vector of expected returns on each asset,
weR" is the vector of current holdings in each asset,
zeR" is the vector of amounts transacted in each asset,
¢:R"™ — R is the transaction costs function,
SCR" is the set of feasible portfolios.

A related problem is that of minimizing the total transaction costs subject to
portfolio constraints. Among all possible transactions that result in portfolios
achieving a given expected return and meeting the other portfolio constraints,
we would like to perform those transactions that incur the smallest total cost.
This problem is written as

minimize  ¢(z)
subject to  a” (w4 ) > rmin (6)
w+x €S,

where ryi, is the desired lower bound on the expected return. In this paper we
focus mostly on problem (5), but we will also consider problem (6) in section 3.

In the next two sections we describe a variety of transaction costs functions
¢ and portfolio constraint sets S.



2.1 Transaction costs

Transaction costs can be used to model a number of costs, such as brokerage
fees, bid-ask spreads, taxes, or even fund loads. In this paper, we assume the
transaction costs to be separable, i.e., the sum of the transaction costs associated

with each trade .

o(z) = Z bi(xs),
i=1

where ¢; is the transaction cost function for asset 1.

The simplest model for transaction costs is that there are none, i.e., ¢(x) = 0.
In this case the original portfolio is irrelevant, except for its total value. We
can make whatever transactions are necessary to arrive at the optimal portfolio.
A better model of realistic transactions costs is a linear one, with the costs for
each transaction proportional to the amount traded:

Jr
o) ={ e mZ0 @
Here oz;r and o are the cost rates associated with buying and selling asset i.
Linear transaction costs can be used, for example, to model the gap between bid
and ask prices. Since the linear transaction costs functions ¢; are convex, the
budget constraint (4) can be handled by convex optimization. Specifically, linear
costs can be handled by introducing new variables %, 2~ € R", expressing the
total transaction as
Jr

Ti=x; —x;,

with the constraints :cj >0, z; > 0. The transaction costs function ¢; is then

represented as
R
O =z +og ;.

Any piecewise linear convex transaction costs function can be handled in a
similar way.

In practice, transaction costs are not convex functions of the amount traded.
Indeed, the costs for either buying or selling are likely to be concave. For
example, a fixed charge for any nonzero trade is common, and there may be
one or more breakpoints above which the transaction costs per share decrease.
We will consider a simple model that includes fixed plus linear costs, but our
method is readily extended to handle more complex transaction costs functions.
Let B and 3; be the fixed costs associated with buying and selling asset i.
The fixed-plus-linear transaction costs function is given by

0, T; = 0
¢i(x;) = ﬁj‘ + a?‘xi, z; >0 (8)
B —a; x5, x; <0.

which is illustrated in Figure 1. Evidently this function is not convex, unless
the fixed costs are zero. Therefore, the budget constraint (4) cannot be handled
by convex optimization.



T4

Figure 1: Fixed plus linear transaction costs ¢;(z;) as a function of transaction amount x;. There
is no cost for no transaction, i.e., ¢;(0) = 0.

2.2 Diversification constraints

Constraints on portfolio diversification can be expressed in terms of linear in-
equalities, and therefore are readily handled by convex optimization. Individual
diversification constraints limit the amount invested in each asset ¢ to a maxi-
mum of p;,

w; +x; < py, 1=1,...,n. (9)

Alternatively, we can limit the fraction of the total (post transaction) wealth
held in each asset:

wi—i-zig%lT(w—Fz), 1=1,...,n.

These are linear, and therefore convex, inequality constraints on x.

More sophisticated diversification constraints limit the amount of the total
wealth that can be concentrated in any small group of assets. Suppose, for
example, that we require that no more than a fraction ~ of the total wealth be
invested in fewer than r assets. Letting f[;; denote the ith largest component of
the vector f, this constraint can be expressed as

T

Z(w +2) <717 (w + ). (10)

i=1

The left-hand side gives maximum wealth held in any subset of r assets. The
right-hand side is a factor 7 times the total (post transaction) wealth. To see

that the constraint (10) is convex, we can express it as a set of , linear

inequalities, one for each possible combination of r assets chosen from the n
assets. This representation is clearly impractical, however, as this number of



linear inequalities can be extremely large. The diversification constraint (10)
can be far more efficiently represented by 1 + 2n linear inequalities,
1T (w+z) > rt +1Ty
t+y; >wi+ax;, i=1,...,n (11)
y1207 i:17"’un7
where y € R" and ¢t € R are new variables.
Several extensions of this type of diversification constraint are possible. For
example, we can divide our n assets into IV classes of assets, and require that

no more than a fraction v of the total wealth be invested in fewer than R of
these classes.

2.3 Shortselling constraints

Shortselling constraints also lead to linear inequalities. Individual bounds s; on
the maximum amount of shortselling allowed on asset i are

U]Z—FCCZZ—S“ z:l,,n (12)

(In the case of a riskless asset, s; is a credit line.) If shortselling is not permitted,
the s; are set to zero. A bound S on total shortselling is

i (w; +x;)_ < S,

=1

where (§)_ = max{—¢&,0}. This can be rewritten as a set of linear constraints
by introducing an auxiliary variable t € R",
ti > —(w; + i), t; >0, i=1,...,n
i ( [ 1) [ (13)
17t < S.

Other variations can be handled in a similar fashion, among which we mention,
for its practical interest, the collateralization requirement

(wi +ai)_ < Y (witm),,
i=1 i=1

n

which limits the total of short positions to a fraction 7 of the total of long
positions.

2.4 Variance

The standard deviation of the end of period wealth W is constrained to be less
than omax by the (convex) quadratic inequality

(w4 z2)T8(w+ z) < o2

max’



which is readily handled by convex optimization. We can also express this
constraint as
1512 (w + )| < omax, (14)

where || - || is the Euclidean or £, norm, and £!/? is the (symmetric) matrix
square root of ¥. The constraint (14), which is convex, is a second-order cone
constraint, and is efficiently handled by recently developed interior-point meth-
ods [LVBL9S].

Equivalently, a maximum o g max can be imposed on the standard deviation
of the return R, defined as the ratio of end of period wealth to current wealth,
i.e., R =W/(1Tw). This constraint can be expressed as

IV2(w + 2)|| < oRmaxl"w,

which is also a second-order cone constraint.

2.5 Shortfall risk constraints

In this section we assume that the returns, the random vector a, have a jointly
Gaussian distribution, a ~ N (@, X). We impose the requirement that the end of
period wealth W be larger than some undesired level W% with a probability
(or confidence level) exceeding 7, where 1 > 0.5:

Prob (W > W) > 1. (15)

(For W'V < 1Tw, this corresponds to a value at risk per dollar invested of
VaR = 1 — W'V /17w, for a confidence level of 1.) We will show that this
probability constraint can be expressed as a second-order cone constraint.

The end of period wealth is a Gaussian random variable, W = a® (w + x) ~
N (u,0?). The constraint (15) can be written as

_ low __
W NSW M>§1—n-
o

g

Prob (

Since (W — ) /o is a zero mean, unit variance Gaussian variable, the probability
above is simply ®((W'°" — 11)/o), where

1 z
(I)(Z) = E/ €_t2/2 dt

is the cumulative distribution function of a zero mean, unit variance Gaussian
random variable. Thus, the probability constraint (15) can be expressed as

Wlow —u

<o 11—
. < (1—=mn),

or, using ®~1(1 —n) = —®~1(n),

pw— Wlow 2 @71(77)0,



JFrom p = a’'(w+ ) and 02 = (w + 2)TE(w + ), we obtain
PV (w + 2)|| < a¥(w+ x) — WV,

Now, provided n > 0.5 (and therefore ®~1(n) > 0), this constraint is a second-
order cone constraint. (If < 0.5, the shortfall risk constraint becomes concave
in z.) It follows that, under the Gaussian assumption, we can impose one
or more shortfall risk constraints, and preserve convexity of the problem. We
might impose, for example, a constraint on a merely bad return, with some
modest confidence, as well as a constraint on a truly disastrous return, with
much greater confidence.

Constraints on loss probability have a simple rectangular shape on a figure
showing the cumulative distribution of the return, as illustrated in Figure 2.
In the usual expected return versus standard deviation plane, loss probability
constraints define half-planes of feasible points, as illustrated in Figure 3.

We can optimize for any convex objective, say the expected return, under
shortfall probability constraints of the type described here. Alternatively we can
include one shortfall probability constraint and maximize W'°%. This is also a
convex problem: the objective is linear and the constraint is a second-order
cone. (In another variation, one shortfall probability constraint is included but
the objective is to maximize the confidence level . This is not a convex problem.
It is, however, a quasiconvex problem, and can be efficiently and globally solved
by bisection on 7).) These three approaches are sometimes called the Telser,
Kataoka, and Roy criteria, respectively (see Rudolf [Rud94]).

While in the rest of this paper we only assume knowledge of the first and sec-
ond moments of the joint distribution of asset returns, this treatment of shortfall
risk constraints requires the assumption of a jointly Gaussian distribution. In
practice, the observed returns are seldom Gaussian. They often are skewed, or
have “fat tails”, i.e., resemble a Gaussian distribution in the central area but
have higher probability mass for high deviations.

Nevertheless, a shortfall probability approach can be effective if used in an
informed manner. Alternatively, we can again assume no knowledge of the
distribution except for the first and second moments, and use the Chebyshev
bound to limit the shortfall probability (as suggested by Roy [Roy52]). In this
case, the factor ®~1(n) in the formulas above is replaced by (1 —7)~/2. Other
references for downside risk approaches include Telser [Tel55], Rudolf [Rud94],
Leibowitz et al. [LBK96], and Lucas and Klaasen [LK98].

2.6 Convex portfolio optimization problems

If any number of convex transaction costs and convex constraints are combined,
the resulting problem is convex. Linear transaction costs, as well as all the
portfolio constraints described above, are convex, indeed, second-order cone
programs. Such problems can be globally solved with great efficiency, even for
problems with a large number of assets and constraints.



Example

We consider the specific problem

maximize al (w+zT —z7)
subject to 1T (2t —27) + >0 (afz} +a;2;7) <0

zf >0, z; >0, i=1,...,n
wi—l—x;r—x;Zsi, i1=1,...,n
O () |2V (w + 2t — 27| <@ (w2t —aT) - W,

j=1,...,2.

with 100 risky and one riskless assets (so n = 101). This specifies linear trans-
action costs, a limit on shortselling of s; per asset, and two shortfall risk con-
straints.

The mean and covariance of the risky assets was estimated from one year of
daily closing prices of S&P 500 stocks (the first 100, alphabetically by ticker,
with a full year of data from January 9, 1998 to January 8, 1999). The distri-
bution was scaled for a portfolio holding period of 20 days. The riskless asset
was assumed to have unit return. Far more sophisticated methods could have
been used to estimate the return mean and covariance; our only goal here is to
demonstrate the optimization method.

For transactions cost and constraint parameters, we (arbitrarily) selected

the values
wl,...,wmo:l/l()l, w101=1/101

+ + +
al .. afy = 1%, ajy; =0
ay ..., a0 = 1%, ajg; =0
S1,...45,8100 = 0.0057 S$101 = 0.5

(where index 101 is the riskless asset). For the shortfall constraints, we chose
m=80%, W =0.9; and n=97%, WiV =0.7,

which correspond to a limit on probabilities of a bad and of a disastrous return,
respectively.

This problem is a second-order cone program (SOCP), with 202 variables
and 306 constraints. The optimal portfolio was obtained in approximately three
minutes on a personal computer, using the general purpose software socp, which
does not take any advantage of the (substantial) sparsity in the problem data.

Figure 2 plots the cumulative distribution of the return for the optimal
portfolio. The 50% probability level corresponds, on the horizontal axis, to the
expected return. The loss probability constraints are also drawn in the figure.
Note that the 0.7 return (0.3 value at risk) for a 97% confidence level is the
active constraint.

Figure 3 plots the tradeoff curve of expected return versus standard de-
viation of return, which is the efficient frontier for the problem (ignoring the
shortfall probability constraints). On this plot, the shortfall probability con-
straints correspond to half-planes, whose boundaries are shown as dashed lines

10



Figure 2: Cumulative distribution function of the return, for the optimal portfolio in the example
with 100 stocks plus a riskless asset. The expected return, which is also the median return since
the distribution is assumed Gaussian, is shown with the dotted line. The two limits on shortfall
probability are shown as dashed lines. The limit on the right, and higher, limits the probability of
a return below 0.9 (i.e., a bad return) to no more than 20%; the limit on the left, and lower, limits
the probability of a return below 0.7 (i.e., a disastrous return) to no more than 3%.

11
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Figure 3: Efficient frontier of return mean versus return variance for example problem with 100
stocks plus riskless asset, ignoring the shortfall probability constraints. The sloped dashed lines
show the limits imposed by the shortfall probability constraints. The optimal solution of the
problem with the shortfall constraints is shown as the small circle.

in the figure. The dashed line with the smaller slope corresponds to the limit on
the probability of the bad return; the line with steeper slope corresponds to the
limit on the probability of the disastrous loss. The optimal solution is marked
with a small circle.

3 Fixed transaction costs

To simplify notation, we assume from now on equal costs for buying and selling,
the extension for nonsymmetric costs being straightforward. The transaction

costs function is then
n

dx) = ¢i(i),
i=1
with
O, Tr; = 0
() =

¢ilw:) { Bi + alw|, @ #0.

In the general case, costs of this form lead to a hard combinatorial problem.
The simplest way to obtain an approximate solution is to ignore the fixed
costs, and solve for ¢;(z;) = «;|z;|. If the §8; are very small, this may lead to

(16)

12



an acceptable approximation. In general, however, it will generate inefficient
solutions with too many transactions. (Note that if this approach is taken and
the solution is computed disregarding the fixed costs, some margin must be
added to the budget constraint to allow for the payment of the fixed costs.)

On the other hand, by considering the fixed costs, we discourage trading
small amounts of a large number of assets. Thus, we obtain a sparse vector of
trades; i.e., one that has many zero entries. This means most of the trading
will be concentrated in a few assets, which is a desirable property.

3.1 Finding the global optimum

To compute the exact solution, an exhaustive combinatorial search can be per-
formed. Each x; can either be set to zero (with ¢;(x;) = 0), or assumed to be
nonzero (with ¢;(x;) = «a;|z;| + Bi). These two alternatives for each of the n
assets yields 2" combinations. For each of these combinations a convex opti-
mization problem results, since the ¢; are convex (either zero or linear plus a
constant). If we solve each of these 2" convex problems, the global optimum is
found by choosing, out of the 2™ solutions, the one with the highest expected
end of period wealth. Because of computational requirements, this approach
becomes difficult for n larger than 10, and certainly unrealistic for n larger than
20.

The exhaustive search can be improved by using branch and bound meth-
ods, which can greatly reduce the required computational effort. These methods
require a procedure for computing upper and lower bounds. We will next pro-
pose a heuristic, which can be used to find approximate solutions (and therefore
lower bounds). Our experience indicates that this heuristic performs consis-
tently well, producing high-quality suboptimal solutions. We also show how to
compute a global upper bound on the achievable end of period wealth, which
makes it possible to embed the heuristic in branch and bound methods.

3.2 Convex relaxation and global bound

We assume that lower and upper bounds on the x; are known, i.e., [; and u; for
which x; must satisfy

=l < < wy.
(We will later describe how to obtain such bounds from the portfolio con-
straints.) The convex envelope of ¢;, which is the largest convex function which
is lower or equal to ¢; in the interval [—l;, u,], is given by

<&+ai>xi; z; >0

u;

- (@4-0@) zi, x; <0.
l;

This is shown in Figure 4. The extension for the case when one or both bounds

are not available, i.e., [; = —o0 or u; = 400, is trivial (e.g., ¢S (z;) = a;z; for

x; > 0 if u; = +00.)

o7 (@) = (17)

13



Using ¢/ for ¢; relaxes the budget constraint, in the sense that it enlarges
the search set. Consider the portfolio selection problem (5), with ¢ replaced
for ¢;,

maximize a’ (w + )
subject to 172+ 31 | ¢ (2;) <0 (18)
w+x €S.

This corresponds to optimizing the same objective (the expected end of period
wealth), subject to the same portfolio constraints, but with a looser budget
constraint. Therefore the optimal value of (18) is an upper bound on the optimal
value of the unmodified problem (5). Since the problem (18) is convex, we can
compute its optimal solution, and hence the upper bound on the optimal value
of the original problem (5), very efficiently.

Note that in most cases the optimal transactions vector for the relaxed prob-
lem (18) will not be feasible for the original problem (5). The unmodified budget
constraint will not be satisfied by the solution of the modified program, except
in the very special case when each transaction amount z; is either l;, u;, or
0. (These are the three values for which the convex envelope and the true
transaction costs function agree.)

This relaxation can also be used in problem (6), where the goal is to minimize
transaction costs. This results in the relaxed problem

minimize Y ., ¢S ()
subject to @’ (w + ) > rmin (19)
w4z €S.

Here, compared to the original problem, the relaxed problem has the same
feasible set, but a different objective function.

3.3 Bounds on the z;

Upper and lower bounds on the x; are required to perform the convex relax-
ation and obtain a global upper bound on the expected end of period wealth.
Such bounds are easily derived from the diversification, shortselling and budget
constraints. However, it is highly desirable to find tighter bounds on the z;
(because the tightness of the global upper bound will in turn depend on the
tightness of these bounds). The computation of such bounds depends on the
particular problem being addressed. If the problem includes a constraint on the
variance of portfolio return, an upper bound on z; is given by the solution of

maximize f(z) = x;
subject to  g(z) = (w + 2)"E(w + z) — 02 < 0.

The gradients are
Vof =Xei, Vg =2%(w+ z).

14
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Figure 4: The convex envelope of ¢; over the interval [l;, u;], is the largest convex function smaller
than ¢; over the interval. For fixed plus linear costs, as shown here, the convex envelope is a linear
transaction costs function.
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Forming the Lagrangian and minimizing, a simple calculation leads to

zi =0/ (871);; — ws,

where (-);; denotes the 4,4 element of the matrix. The same can be done for a
lower bound,

T; = —0O (E_l)“— — Wy,
although it is likely that, in this case, the bounds derived from the shortselling
constraints will be tighter.

3.4 Iterative heuristic

We now describe a heuristic for finding a feasible, suboptimal portfolio, which
is based on the same method used to find an upper bound. At the end of
that section, we noted that the transaction z that is optimal for the relaxed
problem (18) would be feasible for the original problem (5) if, by chance, the
optimal z for the relaxation satisfied ¢ (x) = ¢(z). This only happens when
each transaction is either zero, or at one of its bounds I; or u;.

The iterative procedure uses a modified transaction costs function which, like
the relaxed cost function, is convex. Unlike the relaxed cost function, however,
we do not require the convex cost function to be a lower bound on the true
transaction costs function.

An iterated reweighting of this convex cost function is used, in such a way
that most small transactions in the solution are driven to zero. We use ¢ (some
nonnegative and small value) as a threshold for deciding when a transaction
is considered to be zero. Since each of these reweighted modified functions is
convex, each iteration consists in solving a convex program. The feasibility of the
portfolio is obtained by ensuring that the modified transaction costs function
¢f agrees with the true ¢; at the solution transactions z}. These ideas will
become clearer with the ensuing discussion.

Consider the following procedure.

1. k:=0.
Solve the convex relaxed problem (18).
Let 2° be the solution to this problem.

2. k:=k+1. R
Given the solution to the previous problem z*~1  define ¢ as

Solve the modified (convex) portfolio selection problem
maximize al (w + x)
subject to 1Tz + 3" | (Ef(:zrl) <0 (20)
w+z€S.

16



Let 2* be the solution to this problem.

3. If the portfolios ¥ and z*~! found in the two previous iterations are
(approximately) equal, return z* := z* and exit.
Otherwise, go to step 2.

A rough interpretation of the algorithm is that, in each iteration, we amortize
the fixed costs evenly over the transaction amount in the previous iteration.

If this iterative procedure exits, which occurs if two successive iterates are
close to each other, the solution x* will be nearly feasible for the original problem
(see Figure 5). This is seen by noting that, for x> 4,

Bi
lzF| + 6

ial) = ( +ai) @] ~ it addal] = dulad),

and for zj =0,
¢i(z7) = 0 = ¢i(z7).

In a sense, § defines a soft threshold for deciding whether a given z; is considered
zero, i.e., whether the corresponding transaction should be performed or not. In
a practical implementation of the portfolio trades, a hard threshold is needed,
and the z7 on the order of § or smaller should be taken as zero. Note that
while g/b\l(:r;‘ ) < ¢i(x}) for all zF, this inequality is tight except for a2} in the
order of . Such terms may lead to feasibility problems, with a nonnegligible
violation of the budget constraint. In practice this is not an issue since terms
in the order of ¢ will seldom appear in the solution. On each iteration, for the
¥ that become small, the modified ¢.*!(x;) has an increased derivative. This
eventually pushes the small x; to zero, leading to sparse solutions.

This also provides the motivation for the method, and an intuition to justify
the quality of the approximate solutions that have been found in numerical
experiments.

The same method is applicable to problem (6), where we seek to minimize
the transaction costs. The iterative heuristic is identical, except that in each
iteration instead of problem (20), the following problem is solved

minimize Y7, ¢F (z;)
subject to @’ (w + ) > Tmin (21)
w+z€eS.

A proof of convergence for this heuristic (for the successive relaxation of the
objective function) is given in Appendix A. We note in the appendix that this
heuristic is equivalent to finding a local minimum of a log-like, concave function.
Our numerical experiments (performed on problem (5)) indicate that con-
vergence occurs in about 4 iterations or less for a wide range of problems.
Upper and lower bounds on the global optimum for the expected end of
period wealth are given by a”2° and a”z*. As a final step, an extra iteration
can be included with the sparsity pattern fixed, and with the transaction costs

17
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Figure 5: One iteration of the algorithm. Each of the nonconvex transaction costs (plotted as a
solid line) is replaced by a convex one (plotted as a dashed line) that agrees with the nonconvex
one at the current iterate. If two successive iterates are the same, then the iterates are feasible for
the original nonconvex problem.

exact for that pattern. That is, the small z; are set to zero, with ¢;(x;) = 0, and
the others are assumed nonzero, with ¢;(z;) = 5; + a;|z;|. (This is equivalent
to one particular combination, out of the possible 2™ in the exhaustive search.)

4 Examples with fixed costs

For numerical examples, we use the same stock data as in the previous example.
We specify fixed plus linear transaction costs, and constraints on shortselling
and on variance. We first describe an example with 10 stocks, plus a riskless
asset. The parameters used (again, arbitrarily) are

Wi, -..,W11 :1/11

at,...,a0 = 1%, a1 =0
B1,---, P10 = 0.01, Bi1=0
S1,...,810 = 0.057 S11 = 0.5.

The small size of this problem allows us to compute the exact solution, that
is the global optimum, by combinatorial search. Figure 6 displays the result-
ing tradeoff curve, with expected return plotted against standard deviation of
return. Four curves are shown: the upper bound; the exact solution; the heuris-
tic solution; and the solution computed without incorporating the fixed cost.

18



11

1.09F q

1.07r —
1.06 - B
B 105} ’ ]
1.04 4
1.03 B

1.02 4

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 6: Example with 10 stocks plus riskless asset, plot of expected return as a function of
standard deviation. Curves from top to bottom are: 1. global upper bound (solid), 2. true
optimum by exhaustive search (dotted), 3. heuristic solution (solid), and 4. solution computed
without regard for fixed costs (dotted). Note that curves 2 and 3 are nearly coincidental.

Note that the upper bound is close to the heuristic solution. Note also that
the heuristic solution nearly coincides with the exact solution, even though the
heuristic required only about one-thousandth the computational effort. For the
heuristic, we used § = 1073 (and did not include a final iteration with fixed
sparsity pattern).

In Figure 7, still for the same 11 assets example, 0,.x Was kept constant
at 0.15, and the problem was solved for a range of fixed costs 5. The optimal
expected return is plotted as a function of fixed costs, with the four curves
obtained by the same procedure as in the previous figure. Again we can see
that the difference between our heuristic and the optimal is very small. In this
figure we can also see the cost of ignoring the transaction costs, which, naturally,
increases with increasing fixed transaction costs.
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Figure 7: Example with 10 stocks plus riskless asset, plot of expected return as a function of
fixed transaction costs. Curves from top to bottom are: 1. global upper bound (solid), 2. true
optimum by exhaustive search (dotted), 3. heuristic solution (solid), and 4. solution computed
without regard for fixed costs (dotted). Note that curves 2 and 3 are nearly coincidental.
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As a second and larger example, we considered 100 stocks, plus a riskless
asset, using the parameters

w1, ...,W101 = 1/101

al,...,a100=1%7 aior =0
B1s- -, B1oo = 0.001, Bro1 =0
S1y...,8100 = 0.005, S$101 = 0.5.

Figure 8 displays the resulting tradeoff curve. The curves shown are the up-
per bound, the heuristic solution, and the solution computed without regard
for fixed costs. The exact tradeoff curve is not shown since, in this case, it
would require a prohibitive effort to compute. However, the fact that the upper
bound and the heuristic are close to each other establishes that computing the
exact, globally optimal solution would only yield a small improvement over the
heuristic solution. Note that the heuristic takes only a few minutes to compute,
while the time required to perform the combinatorial search with the same com-
putational resources would be of the order of 219, or 103° minutes. This is a
rather long time for what is guaranteed to be only a marginal improvement (for
reference, the age of the universe is approximately 1016 minutes.)

Again, we note that the upper bound and the heuristic can be embedded
in a branch and bound algorithm to find the global optimum. Since the upper
bound and the heuristic are often close, it can be expected that such a branch
and bound search would exhibit good convergence properties.
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Figure 8: Example with 100 stocks plus riskless asset, plot of expected return as a function of
standard deviation. Curves from top to bottom are: 1. global upper bound (solid), 2. heuristic
solution (solid), and 3. solution computed without regard for fixed costs (dotted).
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5 Related problems

A related problem is that of tracking a portfolio over a single period, with high
accuracy and low cost. This arises, for instance, in the problem of reproducing
an index formed by a large number of stocks, where trading in all the relevant
stocks would incur excessive costs. In this case, the desired solution is a portfolio
consisting of a relatively small subset of the stocks present in the index that,
with high probability, behaves like the index. (An equivalent problem is that
of portfolio insurance, where the goal is to reduce the downside risk as much as
possible by buying put options on a small number of the assets.)

A measure of closeness between the adjusted portfolio w + x and a reference
portfolio v is given by the expected square difference in returns (v may be
the index to be tracked, or the portfolio to be insured). The expected square
difference in the returns of the two portfolios is equal to

E(a"(w+2)—a'v)? = (w+2z—0)" (S +aa”)(w+z —v),

which we refer to as the tracking error, for short. It has a number of interesting
properties, but the one of main concern here is that it is convex in x.

The problem can be seen as having two conflicting objectives. In addition to
low transaction costs ¢(z), we want a portfolio w + 2 with small tracking error.
We can address this problem in any of the alternative formulations: minimize
the costs subject to a bound on the tracking error; minimize the tracking error
subject to a bound on the costs; or minimize a weighted combination of costs
and tracking error. (Other constraints, such as on budget and shortselling, will
also be included, of course.)

For linear transaction costs, each of these problem formulations is convex
and easy to solve (a quadratic program or a quadratically constrained quadratic
program). When fixed transaction costs are present, a difficult combinatorial
program results. This can be addressed by the same method as in section 3,
which will produce a global bound on achievable performance, and a subopti-
mal solution. Numerical simulations for the tracking problem have produced
suboptimal solutions of consistently high quality. Nevertheless, if so desired,
the global bound and the heuristic can be embedded in a branch and bound
method to guarantee a high accuracy solution.

Of many other possible extensions, most worthy of mention are those to a
multi-period setting or to continuous time. These are significantly more com-
plex problems due to the stochastic dynamics. The desirability of a trade in a
given stock must then take into account the alternative of delaying the trade.
The challenge is to develop effective numerical methods for the (approximate)
solution of the resulting stochastic programming (or optimal stopping) prob-
lems.
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6 Conclusions

We have described a number of portfolio optimization problems that are con-
vex, and therefore efficiently solved. If fixed transaction costs are included,
the resulting problem is not convex. In this case, we showed how to compute
a global upper bound from a convex relaxation, and proposed a heuristic for
computing an approximate solution (which yields, of course, a lower bound).
Computational experiments suggest that the gap between our heuristic subop-
timal solution and our guaranteed upper bound is very often small. If further
accuracy is needed, the upper bound and the heuristic method can be incorpo-
rated in a branch and bound method.

The unifying idea in this paper is to exploit new efficient interior-point meth-
ods for convex optimization. While such methods are of polynomial complex-
ity (in simple implementations, cubic) in problem dimension, the availability
of computing resources over time shows no signs of departing from geometric
growth. As a consequence, interior-point methods will be able to handle very
large problems, in very short run-times in the near future. Currently, run-times
are in the order of a minute for problems with a few hundred variables, on an
inexpensive personal computer, using generic software that is not optimized for
portfolio problems.
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A Convergence of the heuristic

We outline the proof of convergence of the following successive relaxation of a
nonconvex objective function. Define the transformation 4 : R" — R",

n

A(y) = arginf _

Ly

with S € R" a convex, compact set, and § > 0. We show that the sequence z*,

such that
€S and M = A(2h),

satisfies xf“ — xf — 0, for s = 1,...,n. For simplicity, we assume x; > 0.

This sequence corresponds to the heuristic applied to problem (6), where we
successively relax the objective function. As far as we can tell, the proof is
significantly harder for the successive relaxation of a constraint.

To prove this result, we first define the function L : R" — Ry, (6 > 0)

L(z) = [ (x: +9).

=1

and show that the sequence L(z¥) is monotonically nonincreasing (accordingly,
we refer to L as the descent function). Since x*+1 = A(z*) yields the infimum
over S, and z* € S, we have that

) )
3 3
b +6 b +6

= n.

i=1 i=1

Using the inequality between the arithmetic and geometric means for nonnega-
tive terms, we conclude
fraltt 48

<1,
b+~

i=1
which implies L(z**!) < L(z*). Since L is bounded below by §", the sequence
L(z*) converges.
Now, convergence of L(z*) to a nonzero limit implies that

L(gh+1 no ks
Lk) = szki—i— 1.
L(zF) i 2 t+6
Define 3**1 to be
b1 T4

3
Yi x?+5a

and write y¥ = 1 + ¢, it follows that

[ - 0+oflvt < a9 (1-75)" - s0
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where we used >, yf“ < n, and the inequality between the arithmetic and

geometric means. The function f is continuous in € and, with some algebra, it
is easily checked that f(0) =1, f’(0) =0, and f”(e) <0, for |¢|] < 1. Therefore,
fle) < 1fore#0, e <1.

We conclude that [, y¥ — 1 implies f(¢) — 1, and that this in turn
implies € — 0. Hence y¥ — 1, and likewise for all yf

Using ¥ 4+ < M < oo for all k (since the set S is bounded), we obtain the
desired result:

k k+1

x —x; — 0.

Note that, upon convergence, the partial derivative with respect to x; of the
function minimized in the last iteration is given by

1
xF+46’

which is equal to the derivative of the function

Z log(x; +6),
i=1

at x; = x7. (From the equality of the first-order conditions for optimality, it
is easy to see that the iterative procedure finds a local minimum in S of this
logarithmic function.
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